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Today’s Outline

• Course Logistics
• Introduction to the Course
• Getting Started with Neural Nets
• Classification
• Backpropagation
• Feedforward Neural Nets
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Course Topics

• We will cover several tools under the umbrella of
• Deep Learning
• Online and Reinforcement Learning
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Introduction to the Course
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20000 Ft View

Business Goal: 
Value creation

Solution: 
Product/Service

Delivery Stack

Data I/O

Techniques (e.g., 
Deep Learning)
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• You need a critical understanding of the domain to be 
successful in shipping solutions

• Before venturing into a complex technique, try a 
shallow/easy technique



A Business Analyst’s Toolkit

• Techniques
• Prediction
• Decision Trees
• Linear classifiers and logistic regression
• Naïve Bayes classifier 
• SVMs
• Neural networks (and deep learning)
• Online/reinforcement learning

• Exploration
• Clustering
• Market basket analysis
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Example I

• You are an online fashion retailer
• Want to adaptively recommend products
• Cannot measure certain quantities directly
• Substitution behavior
• Stock-level sensitivities
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Example I

• You are an online fashion retailer
• Want to adaptively recommend products
• Cannot measure certain quantities directly
• Substitution behavior
• Stock-level sensitivities

• Build a personalization system that infers the most 
likely product that would be bought given 
censored/partial information
• Recommend products
• Tweak prices
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Example II

• You are a home insurance provider
• Want to check houses for risks and opportunities
• Manually checking houses and neighborhood does not 

scale
• Fly a helicopter/drone and capture video
• Tag objects in the video
• Classify if a outdoor pool is present or not
• Classify greenery
• Including the types of trees!

• Segment the house from the background
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Example II

• You are a home insurance provider
• Want to check houses for risks and opportunities
• Manually checking houses and neighborhood does not 

scale
• Fly a helicopter/drone and capture video
• Tag objects in the video
• Classify if a outdoor pool is present or not
• Classify greenery
• Segment the house from the background

• Figure out insurance premiums across neighborhoods
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Example III

• Fashion retailing
• The customer dislikes our recommendation
• The customer finds the price too high
• How to update our recommendations and prices?
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Example: Updating our Decisions

• Fashion retailing example
• The customer dislikes our recommendation
• The customer finds the price too high
• How to update our recommendations and prices?

• Home insurance example
• Prices the premium too low for this year
• Had to payout a lot
• How to update the premium for next year?
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Data Variety

• Structured data
• Examples:
• Medical/healthcare data
• Advertising data

• Have ordinal, integer, binary or categorical fields
• Among other tools, one can use graphical models
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Data Variety

• Structured data
• Examples:
• Medical/healthcare data, advertising data

• Have ordinal, integer, binary or categorical fields
• Deep learning allows embedding of categorical 

features
• Unstructured data
• Examples:
• Images (tensor, i.e., typically a 3 dimensional 

array) and videos (a sequence of images), text 
strings/documents

• Deep learning reduces feature engineering effort 
here
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Complex Decisions

• Decisions 
• Examples: 
• which articles to show, how to price products

• May use many predictions 
• May need to be taken repeatedly for different 

contexts
• May have longer term goals
• Online and reinforcement learning methods 

address this ‘learning on the go’ problem
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Two Themes of the Course

• Data Variety
• Images and Videos/Audio
• Text and Language

• Complex Decisions
• Sequential Decision Making
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Techniques covered in the Course

• To address data variety and complex decision 
problems, we will look at:
• Deep Learning
• Online and Reinforcement Learning + Deep 

Learning
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Deep Learning

• One example (in vision) of its success is at the ILSVRC1

• ImageNet dataset has 22000 categories across 14 
million images

• ILSVRC Task 1 was a classification challenge
• Given 1000 categories and1.5 million images, 

predict 5 categories for a test image
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1ImageNet Large Scale Visual Recognition Challenge
2Figure: Russakovsky et al. arxiv:1409.0575



Deep Learning

• Neural nets are not new (1960s). Applied to 
handwritten digit recognition back in 1998

• Were not mainstream till around 2010/2012*
• What changed? Access to GPUs and Data

• Caveat: 
• Deep learning achieves good performance on 

some tasks 
• Typically has not worked well beyond 

classification…
• There is a lot of scope for improvement, 

engineering, system building, model building
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*Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition, Dahl et al. 2010
Imagenet classification with deep convolutional neural networks, Krizhevsky et al. 2012



Online/Reinforcement Learning

20
1Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966
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User demographics feature vector
User history feature vector
50 editorially chosen articles with 
feature vectors

User Clicks Story

…

ɛ-greedy 
exploratio

n
Ranked List

Front End Server Client Brower

Clicks logged as feedback

1Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966

Online/Reinforcement Learning



1Reference:  DeepMind, March 2016

Online/Reinforcement Learning



1Figure: Defazio Graepel, Atari Learning Environment

Online/Reinforcement Learning



Caveat with Any Technique

• Measurable metrics of business success take priority 
over technical success metrics

• Need to ask: 
• Does a Y% increase in classification accuracy help 

in X% increase in sales?
• Does a Z% increase in classification accuracy due 

to using a deep learning solution help the bottom-
line?

• What is the technical debt incurred? Who will 
maintain?
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Questions?
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Today’s Outline

• Course Logistics
• Introduction to the Course
• Getting Started with Neural Nets
• Classification
• Backpropagation
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Classification

• Classification
• Data
• Model
• Loss
• Optimization
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Classification

• To design the classifier, we need
• Training data
• Model specification for the classifier
• Loss function to define the best model
• Optimization to get to the best model
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Test 
example Classifier Label



Data (I)

• Lets pick a domain: Vision
• What is an image?
• A bunch of numbers between 0 to 255
• A 3 dimensional array
• The same object can look different based on
• Location of the camera
• Location of the light source
• Rigidity of the object
• Occluding objects
• Background
• Variation across objects of the same category
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Data (II)

• Say we have 𝑁 training examples 𝑥#, 𝑦# , 𝑖 = 1,… , 𝑁
• 𝑥# is the feature vector for the 𝑖th example
• 𝑦# is the label for the 𝑖th example

• Before deep learning
• Carefully designed features
• Histogram of colors
• Histogram of Oriented Gradients (HOG)
• Scale Invariant Feature Transform (SIFT)
• Various types of filters

• With deep learning
• Almost no feature engineering (for this type of data)
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Model (I)

• Parametric vs non-parametric
• Example: 
• Logistic classifier is parametric 
• K-Nearest Neighbor is a non-parametric classifier

• We will focus on parametric models
• A fixed set of parameters and hyper-parameters

determine a model completely
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Model (II)

• Pick a concrete parametric model 𝑓(𝑥,𝑊, 𝑏)
• 𝑥 is the input (𝑑×1 dimensional)
• Vectorize the image or get features

• 𝑊 is a parameter (𝑝×𝑑 dimensional)
• 𝑏 is also a parameter (𝑝×1 dimensional)

• Let 𝑓 𝑥,𝑊, 𝑏 = 𝑊𝑥 + 𝑏
• This is a linear model
• We will change this later
• The output of the linear model is a vector of scores
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Model (III)

• Given a model (i.e., a fixed 𝑊,𝑏 pair) our classifier 
can be 
• Pick the index with the highest ‘score’
• 3𝑙 = argmax :;<,…,= 𝑓(𝑥,𝑊, 𝑏)

• Pick the index with the highest ‘probability’
• Need a map/function from scores to 

probabilities
• We want to use the best model. How?
• Define best: Loss function
• Find the best: Optimization
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Loss functions (I)

• Let the 𝑗th coordinate of 𝑓(𝑥,𝑊, 𝑏) be 𝑠:
• Loss 𝐿ABCB is defined over the training data
• Is chosen to be decomposable over 𝑁 terms, one per 

example
• 𝐿ABCB = ∑#;<E 𝐿#
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Loss functions (I)

• Let the 𝑗th coordinate of 𝑓(𝑥,𝑊, 𝑏) be 𝑠:
• Loss 𝐿ABCB is defined over the training data
• Is chosen to be decomposable over 𝑁 terms, one per 

example
• 𝐿ABCB = ∑#;<E 𝐿#

• Logistic loss (Cross-entropy or softmax) for example 𝑖
• 𝐿# = −log 𝑃(𝑌 = 𝑦#|𝑋 = 𝑥#) where

• 𝑃(𝑌 = 𝑗|𝑋 = 𝑥#) =
MNO

∑P M
NP

• SVM loss (2 class, 𝑊 is a row vector) for example 𝑖
• 𝐿# = max(0,1 − 𝑦#𝑠RS)
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Loss functions (II)

• Need for regularization
• Unique model
• Desired model
• Control overfitting

• Final loss 𝐿 = 𝐿ABCB + 𝜆𝑅 𝑊, 𝑏
• 𝑅(𝑊, 𝑏) can be just a function of 𝑊 or 𝑏 or both
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Loss functions (III)

• L2 regularization: ||𝑊||VV = ∑# ∑:𝑊#:
V

• L1: |𝑊 |< = ∑# ∑: |𝑊#:|

• Elastic net: 𝛼 𝑊
<
+ 1 − 𝛼 𝑊

V
V

• Regularization may not always be and explicit 
function of the parameters
• We will see dropout later
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Optimization (I)

38

Parameter
𝑊,𝑏

Example 1Example 2Example 𝑖

𝑓(𝑥#,𝑊, 𝑏)

Example 𝑁

𝐿

R(𝑊, 𝑏)

𝑥# 𝑦#

𝛾

Need to find parameters 𝑊,𝑏 and hyper-parameter 𝛾
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Parameter
𝜃

Example 1Example 2Example 𝑖

𝑓(𝑥#, 𝜃)

Example 𝑁

𝐿

R(𝜃)

𝑥# 𝑦#

𝛾

Need to find parameters 𝜃 and hyper-parameter 𝛾

Optimization (I)



Optimization (II)

• Many ways to optimize differentiable models
• We will focus on first order methods
• Key ingredient: Gradient

• Gradient is the vector of partial derivatives of a 
function

• Can be computed 

• Numerically: lim
\→^

_ `a\ b_(`)
\

• Analytically: Calculus and chain rule 
40



Optimization (III)

• Intuition
• Start with a model (i.e., 𝑊^, 𝑏^)
• Evaluate 𝐿 for this model on the training data
• Change 𝑊^, 𝑏^ to 𝑊<, 𝑏< such that the new 𝐿 is 

smaller
• Repeat

• This intuition is the essence of Gradient Descent 
methods
• Gradient of 𝐿 with respect to the parameters is 

used to change 𝑊^, 𝑏^ to 𝑊<, 𝑏<
41



Optimization (IV)

• Example method: Batched Gradient Descent
• Get a sample of training data
• Example: AlexNet1 used 256 examples as one 

batch
• Get gradient of 𝐿 with respect to parameters 𝑊,𝑏
• Update
• 𝑊ca< ← 𝑊c − 𝛼𝛻f𝐿
• 𝑏ca< ← 𝑏c − 𝛽𝛻h𝐿

• Step sizes (learning rates) 𝛼, 𝛽 need careful choice

42
1Krizhevsky et al. NIPS Deep Learning Workshop 2012



Optimization (IV): Gradient Descent

43
1By I, KSmrq, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2276449

Gradient descent can only reach local optima



Optimization (V)

• Tuning the hyper-parameter(s)
• Break dataset into two parts: test and train
• Remove test data access while you are tuning the 

parameters of your model
• With training data, do cross validation to tune 

parameters and hyper-parameters
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Fold 1

Fold 2

Fold 3

Fold 4

Essentially cycle through the choice of validation fold
Optimize parameters over the remaining folds



Questions?
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Today’s Outline

• Course Logistics
• Introduction to the Course
• Getting Started with Neural Nets
• Classification
• Backpropagation

46



Backpropagation

• An efficient way to get the gradient needed for 
optimization
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Backpropagation
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Notion of a Computational Graph

• Consider a function 𝑔(𝑎, 𝑏, 𝑐) = 𝑎 ∗ 𝑏 + 𝑐
• Draw a graph
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Backprop Example 1

• The circles represent compute nodes
• Let ℎ = 𝑎 ∗ 𝑏. Then 𝑔 = ℎ + 𝑐

50

+

×

𝑎

𝑏

𝑐
𝜕𝑔
𝜕𝑔

= 1𝜕𝑔
𝜕𝑐

= 1

𝜕𝑔
𝜕ℎ

= 1



Backprop Example 1

• The circles represent compute nodes
• Let ℎ = 𝑎 ∗ 𝑏. Then 𝑔 = ℎ + 𝑐
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Backprop Example 1

• We can find op
oB
, op
oh

and op
oq

by chain rule!

52

+

×

𝑎

𝑏

𝑐
𝜕𝑔
𝜕𝑔

= 1𝜕𝑔
𝜕𝑐

= 1

𝜕𝑔
𝜕ℎ

= 1

𝜕ℎ
𝜕𝑎

= 𝑏

𝜕ℎ
𝜕𝑏

= 𝑎



Backprop Example 2

• Consider a function 𝑔 𝑎, 𝑏, 𝑥, 𝑦 = <
<aMr(stuvw)

• Let 𝑎 = 2, 𝑏 = 1, 𝑥 = −3 and 𝑦 = 4
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Backprop Example 2

• Consider a function 𝑔 𝑎, 𝑏, 𝑥, 𝑦 = <
<aMr(stuvw)

• Let 𝑎 = 2, 𝑏 = 1, 𝑥 = −3 and 𝑦 = 4
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Backprop Example 2

• Consider a function 𝑔 𝑎, 𝑏, 𝑥, 𝑦 = <
<aMr(stuvw)

• Let 𝑎 = 2, 𝑏 = 1, 𝑥 = −3 and 𝑦 = 4
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Backprop Example 2

• Consider a function 𝑔 𝑎, 𝑏, 𝑥, 𝑦 = <
<aMr(stuvw)

• Let 𝑎 = 2, 𝑏 = 1, 𝑥 = −3 and 𝑦 = 4
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Backprop for multiple outputs
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Backprop for vectors

• Say, a is 𝑝×1 dimensional, b is 𝑞×1 dimensional and 
h is 𝑟×1 dimensional and 𝑔 is scalar
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ℎ(𝑎, 𝑏)

𝑎

𝑏

ℎ

o\
oh is 𝑞×𝑟

o\
oB is 𝑝×𝑟

op
o\ is 𝑟×1

op
oB is 𝑝×1

op
oh is 𝑞×1

Node tracks matrices (cleverly)



Backprop API for a node

• Implement two functions
• Forward
• Backward

• Forward
• Get input from preceding node(s)
• Track inputs and local gradients
• Return computation

• Backward
• Get gradient from succeeding node(s)
• Compute gradients (simple multiplication)
• Return gradients to preceding node(s)
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Computational Graph API

• Data structure a graph (nodes and directed edges)
• Implement two functions for it
• Forward
• Backward

• Forward
• Recursively pass the inputs to the next nodes
• Return 𝐿

• Backward
• Recursively traverse the graph backwards
• Return gradients
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Backprop and batched Gradient Descent

• Choose a mini-batch (sample) of size B
• Forward propagate through the computation graph
• Compute losses 𝐿#�, 𝐿#~, … 𝐿#� and 𝑅(𝑊, 𝑏)
• Get loss 𝐿 for the batch

• Backprop to compute gradients with respect to 𝑊,𝑏
• Update parameters 𝑊,𝑏
• In the direction of the negative gradient
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Linear Classifier in Python
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Linear Classifier in Python

63



Linear Classifier in Python
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Linear Classifier in Python
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Linear Classifier in Python
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Linear Classifier in Python
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Linear Classifier in Python
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Linear Classifier in Python
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Questions?
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Summary

• Data variety poses challenges
• Missing
• Noisy

• Complex decisions poses challenges
• Learning on the go

• We reviewed classification
• Regression would have similar considerations

• Discussed backpropagation
• A useful method for optimizing for the best model 

parameters
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Appendix
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Reverse mode AutoDiff

• Backpropagation is a case of reverse accumulation 
automatic differentiation1

73
1See https://en.wikipedia.org/wiki/Automatic_differentiation

An example from wikipedia

https://en.wikipedia.org/wiki/Automatic_differentiation

