Advanced Prediction Models

Deep Learning, Graphical Models and Reinforcement Learning

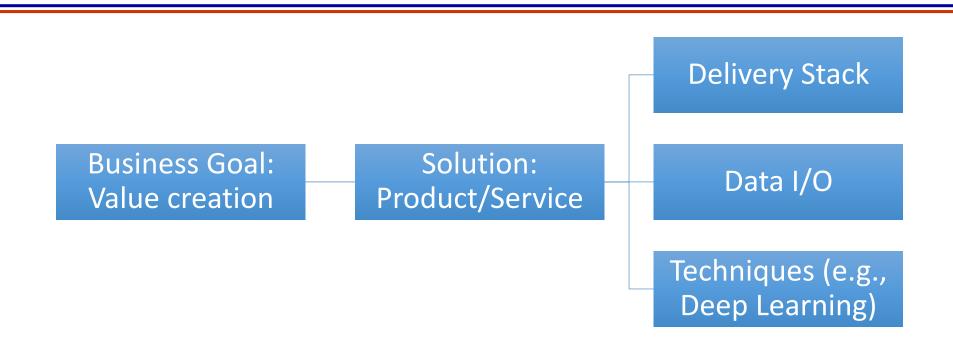
Today's Outline

- Course Logistics
- Introduction to the Course
- Getting Started with Neural Nets
 - Classification
 - Backpropagation
 - Feedforward Neural Nets

Course Topics

- We will cover several tools under the umbrella of
 - Deep Learning
 - Online and Reinforcement Learning

Introduction to the Course



- You need a critical understanding of the domain to be successful in shipping solutions
- Before venturing into a complex technique, try a shallow/easy technique

A Business Analyst's Toolkit

- Techniques
 - Prediction
 - Decision Trees
 - Linear classifiers and logistic regression
 - Naïve Bayes classifier
 - SVMs
 - Neural networks (and deep learning)
 - Online/reinforcement learning
 - Exploration
 - Clustering
 - Market basket analysis

Example I

- You are an online fashion retailer
- Want to adaptively recommend products
- Cannot measure certain quantities directly
 - Substitution behavior
 - Stock-level sensitivities

Example I

- You are an online fashion retailer
- Want to adaptively recommend products
- Cannot measure certain quantities directly
 - Substitution behavior
 - Stock-level sensitivities
- Build a personalization system that infers the most likely product that would be bought given censored/partial information
 - Recommend products
 - Tweak prices

Example II

- You are a home insurance provider
- Want to check houses for risks and opportunities
- Manually checking houses and neighborhood does not scale

Example II

- You are a home insurance provider
- Want to check houses for risks and opportunities
- Manually checking houses and neighborhood does not scale
- Fly a helicopter/drone and capture video
- Tag objects in the video
 - Classify if a outdoor pool is present or not
 - Classify greenery
 - Segment the house from the background
- Figure out insurance premiums across neighborhoods

Example III

- Fashion retailing
 - The customer dislikes our recommendation
 - The customer finds the price too high
 - How to update our recommendations and prices?

Example: Updating our Decisions

- Fashion retailing example
 - The customer dislikes our recommendation
 - The customer finds the price too high
 - How to update our recommendations and prices?
- Home insurance example
 - Prices the premium too low for this year
 - Had to payout a lot
 - How to update the premium for next year?

Data Variety

- Structured data
 - Examples:
 - Medical/healthcare data
 - Advertising data
 - Have ordinal, integer, binary or categorical fields
 - Among other tools, one can use graphical models

Data Variety

- Structured data
 - Examples:
 - Medical/healthcare data, advertising data
 - Have ordinal, integer, binary or categorical fields
 - Deep learning allows embedding of categorical features
- Unstructured data
 - Examples:
 - Images (tensor, i.e., typically a 3 dimensional array) and videos (a sequence of images), text strings/documents
 - Deep learning reduces feature engineering effort here

Complex Decisions

- Decisions
 - Examples:
 - which articles to show, how to price products
 - May use many predictions
 - May need to be taken repeatedly for different contexts
 - May have longer term goals
 - Online and reinforcement learning methods address this 'learning on the go' problem

Two Themes of the Course

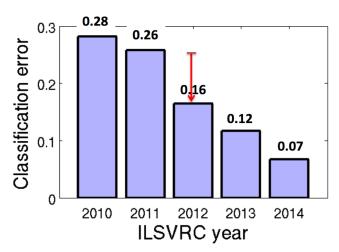
- Data Variety
 - Images and Videos/Audio
 - Text and Language
- Complex Decisions
 - Sequential Decision Making

Techniques covered in the Course

- To address data variety and complex decision problems, we will look at:
 - Deep Learning
 - Online and Reinforcement Learning + Deep Learning

Deep Learning

- One example (in vision) of its success is at the ILSVRC¹
- ImageNet dataset has 22000 categories across 14 million images
- ILSVRC Task 1 was a classification challenge
 - Given 1000 categories and 1.5 million images, predict 5 categories for a test image



¹ImageNet Large Scale Visual Recognition Challenge ²Figure: Russakovsky et al. arxiv:1409.0575

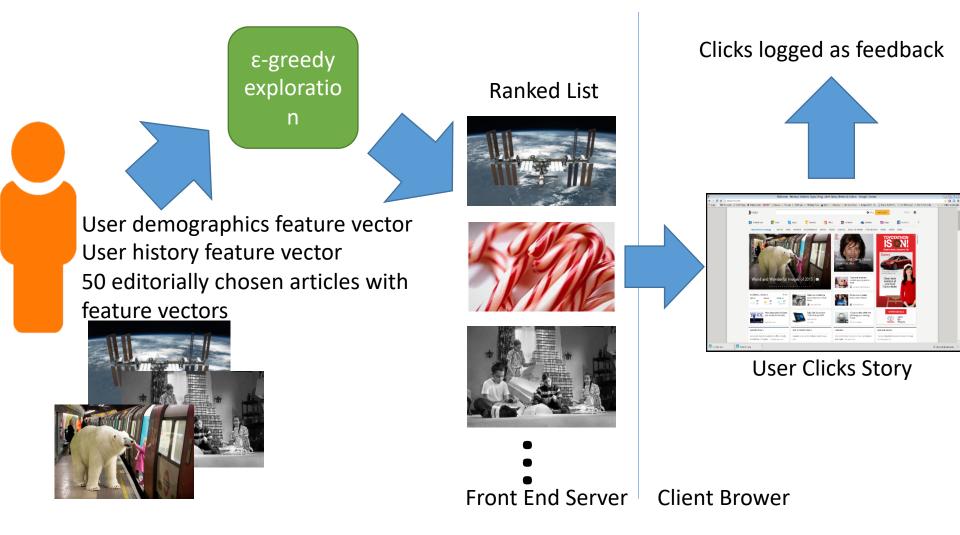
Deep Learning

- Neural nets are not new (1960s). Applied to handwritten digit recognition back in 1998
- Were not mainstream till around 2010/2012*
 - What changed? Access to GPUs and Data
- Caveat:
 - Deep learning achieves good performance on some tasks
 - Typically has not worked well beyond classification...
 - There is a lot of scope for improvement, engineering, system building, model building

*Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition, Dahl et al. 2010 Imagenet classification with deep convolutional neural networks, Krizhevsky et al. 2012

msn						🕨 bing	web search	Sign in
Outlook.com	Store	S Skype	😽 Rewards	(] Office	N OneNote	CneDrive	Maps	Facebook
Make MSN my homepage	DATING	NEWS WEATHER	ENTERTAINMENT	SPORTS MONEY	LIFESTYLE HEALTH	& FITNESS FOOD & DRI	NK TRAVEL AUTOS	VIDEO
BEST OF LATE NIGHT VIDEO					Marjorie Lord, 't Show' star, dies			ATHON Number of the second sec
Models devour Buffalo wings	Trum	lers talks np, Clinton ^{wsy}	Stewart ret 'The Daily ! NowThis News	Show'	mista avoid	r-end retirement kes you may want to S. News & World Report	Great deals available at your local Toyota deale	
MONTREAL, CANADA > SAT 12 SUN 13 50° 33° 38° 35°	Chi MON 14		Wife's role in C attack raises fer brides <u>AP</u> Associated P	ar of jihad	Fighting for us	on vows to defeat ic State if elected ssociated Press	F	
	s plan for Alib er the IRS balk ^{ker}		Daily Deal: Buy TP550LA for jus Sponsored by Microsoft		will ch foreve	ays to drink coffee that hange your mornings er ourmandize	OFFER TOYOTA	DETAILS Let's Go Places
EDITORS' PICKS >		BEST OF WE	EK'S VIDEO >		CAREERS >		WEEKEND READS >	
How police duty belt went from to Mad Max in 30 years The W		lly Reporter co	vering storm blows Inte	ernet away	The 50 best places to wo employees Business Insid		The haunting link betwee The Washington Post	en two mass shootings
Bruce Springsteen Fans Upset About "River Tour" Ticket Prices, Resale Scams Gossip Cop		our" Epic fails: He	ow not to fit a rear wipe		15 blue-collar jobs for ad	renaline junkies	Newborns die after being sent home with drug- dependent mothers Reuters	

¹Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966



¹Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966

¹Reference: DeepMind, March 2016

¹Figure: Defazio Graepel, Atari Learning Environment

Caveat with Any Technique

- Measurable metrics of business success take priority over technical success metrics
- Need to ask:
 - Does a Y% increase in classification accuracy help in X% increase in sales?
 - Does a Z% increase in classification accuracy due to using a deep learning solution help the bottomline?
 - What is the technical debt incurred? Who will maintain?

Questions?

Today's Outline

- Course Logistics
- Introduction to the Course
- Getting Started with Neural Nets
 - Classification
 - Backpropagation

Classification

- Classification
 - Data
 - Model
 - Loss
 - Optimization

Classification

- To design the classifier, we need
 - Training data
 - Model specification for the classifier
 - Loss function to define the best model
 - Optimization to get to the best model

Data (I)

- Lets pick a domain: Vision
- What is an image?
 - A bunch of numbers between 0 to 255
 - A 3 dimensional array
 - The same object can look different based on
 - Location of the camera
 - Location of the light source
 - Rigidity of the object
 - Occluding objects
 - Background
 - Variation across objects of the same category

Data (II)

- Say we have N training examples $(x_i, y_i), i = 1, ..., N$
 - x_i is the feature vector for the i^{th} example
 - y_i is the label for the i^{th} example
- Before deep learning
 - Carefully designed features
 - Histogram of colors
 - Histogram of Oriented Gradients (HOG)
 - Scale Invariant Feature Transform (SIFT)
 - Various types of filters
- With deep learning
 - Almost no feature engineering (for this type of data)

Model (I)

- Parametric vs non-parametric
- Example:
 - Logistic classifier is parametric
 - K-Nearest Neighbor is a non-parametric classifier
- We will focus on parametric models
- A fixed set of parameters and hyper-parameters determine a model completely

Model (II)

- Pick a concrete parametric model f(x, W, b)
 - x is the input ($d \times 1$ dimensional)
 - Vectorize the image or get features
 - W is a parameter (p imes d dimensional)
 - b is also a parameter ($p \times 1$ dimensional)
- Let f(x, W, b) = Wx + b
 - This is a linear model
 - We will change this later
 - The output of the linear model is a vector of scores

Model (III)

- Given a model (i.e., a fixed W, b pair) our classifier can be
 - Pick the index with the highest 'score'
 - $\hat{l} = \operatorname{argmax}_{\{j=1,\dots,p\}} f(x, W, b)$
 - Pick the index with the highest 'probability'
 - Need a map/function from scores to probabilities
- We want to use the best model. How?
 - Define best: Loss function
 - Find the best: Optimization

Loss functions (I)

- Let the j^{th} coordinate of f(x, W, b) be s_j
- Loss L_{data} is defined over the training data
- Is chosen to be decomposable over ${\cal N}$ terms, one per example

•
$$L_{data} = \sum_{i=1}^{N} L_i$$

Loss functions (I)

- Let the j^{th} coordinate of f(x, W, b) be s_j
- Loss L_{data} is defined over the training data
- Is chosen to be decomposable over N terms, one per example

•
$$L_{data} = \sum_{i=1}^{N} L_i$$

• Logistic loss (Cross-entropy or softmax) for example i

•
$$L_i = -\log P(Y = y_i | X = x_i)$$
 where
• $P(Y = j | X = x_i) = \frac{e^{s_j}}{\sum_k e^{s_k}}$

• SVM loss (2 class, W is a row vector) for example i

•
$$L_i = \max(0, 1 - y_i s_{y_i})$$

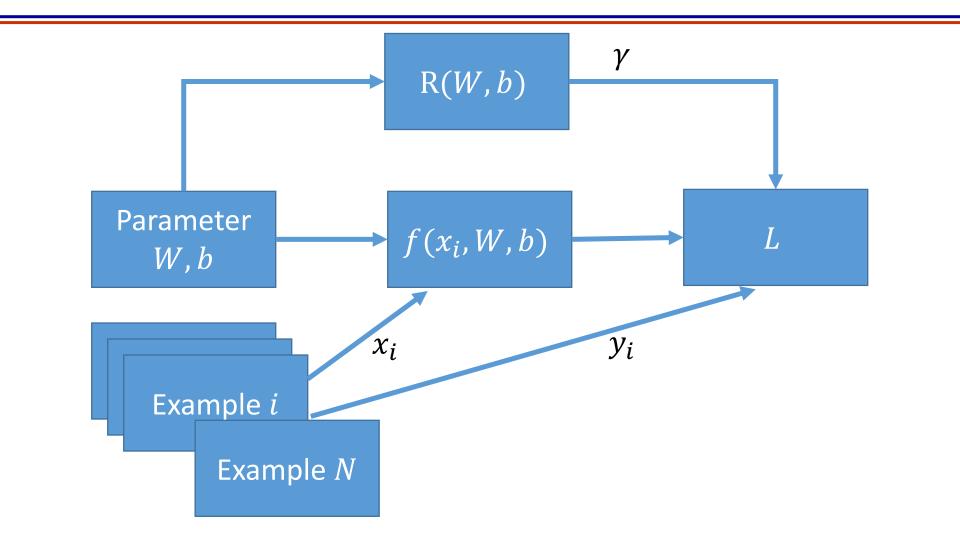
Loss functions (II)

- Need for regularization
 - Unique model
 - Desired model
 - Control overfitting
- Final loss $L = L_{data} + \lambda R(W, b)$
- R(W, b) can be just a function of W or b or both

Loss functions (III)

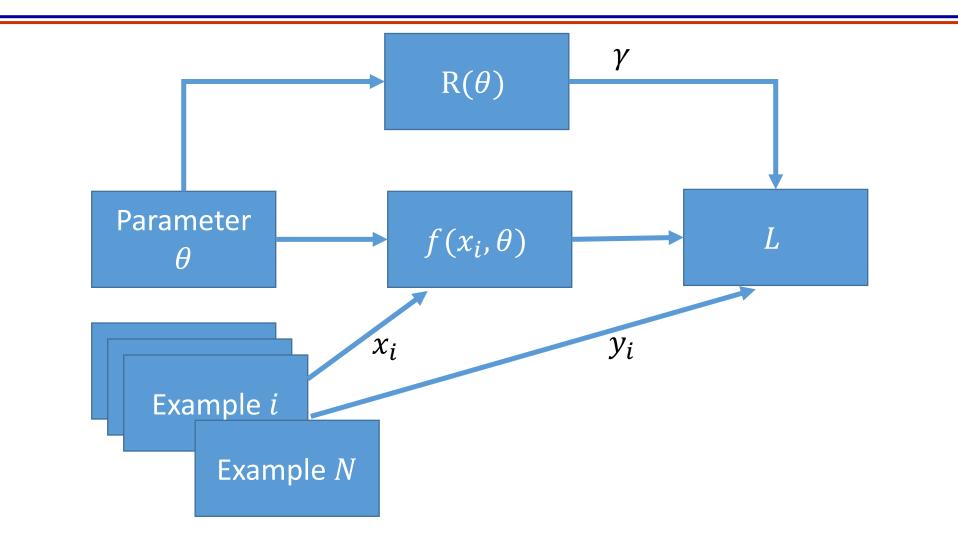
- L2 regularization: $||W||_2^2 = \sum_i \sum_j W_{ij}^2$
- L1: $||W||_1 = \sum_i \sum_j |W_{ij}|$
- Elastic net: $\alpha ||W||_1 + (1-\alpha) ||W||_2^2$
- Regularization may not always be and explicit function of the parameters
 - We will see dropout later

Optimization (I)



Need to find parameters W, b and hyper-parameter γ

Optimization (I)



Need to find parameters θ and hyper-parameter γ

Optimization (II)

- Many ways to optimize differentiable models
- We will focus on first order methods
 - Key ingredient: Gradient
- Gradient is the vector of partial derivatives of a function
- Can be computed
 - Numerically: $\lim_{h \to 0} \frac{f(z+h) f(z)}{h}$
 - Analytically: Calculus and chain rule

Optimization (III)

- Intuition
 - Start with a model (i.e., W_0, b_0)
 - Evaluate L for this model on the training data
 - Change W_0, b_0 to W_1, b_1 such that the new L is smaller
 - Repeat

- This intuition is the essence of Gradient Descent methods
 - Gradient of L with respect to the parameters is used to change W_0 , b_0 to W_1 , b_1

Optimization (IV)

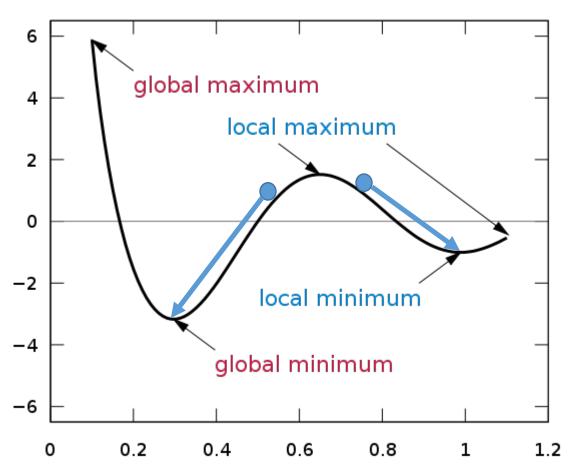
- Example method: Batched Gradient Descent
- Get a sample of training data
 - Example: AlexNet¹ used 256 examples as one batch
- Get gradient of L with respect to parameters W, b
- Update

•
$$W_{k+1} \leftarrow W_k - \alpha \nabla_W L$$

- $b_{k+1} \leftarrow b_k \beta \nabla_b L$
- Step sizes (learning rates) α , β need careful choice

Optimization (IV): Gradient Descent

Gradient descent can only reach local optima

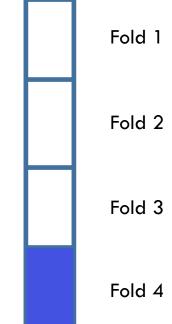


¹By I, KSmrq, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2276449

Optimization (V)

- Tuning the hyper-parameter(s)
 - Break dataset into two parts: test and train
 - Remove test data access while you are tuning the parameters of your model
 - With training data, do cross validation to tune parameters and hyper-parameters

Essentially cycle through the choice of validation fold Optimize parameters over the remaining folds



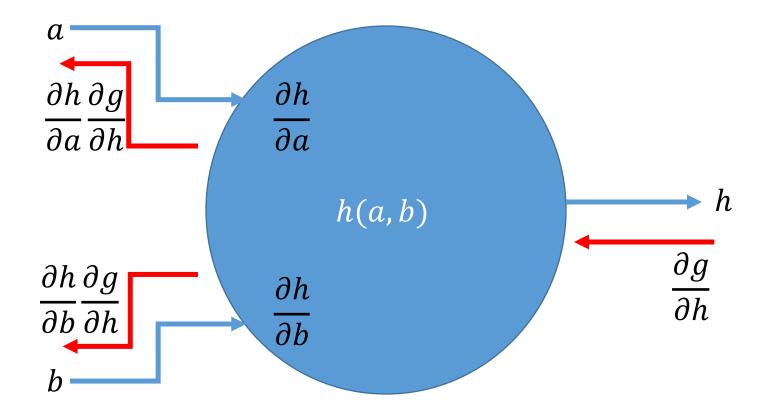
Questions?

Today's Outline

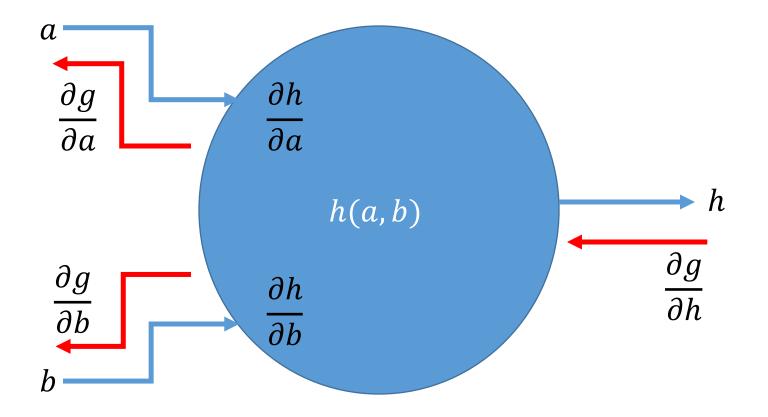
- Course Logistics
- Introduction to the Course
- Getting Started with Neural Nets
 - Classification
 - Backpropagation

Backpropagation

• An efficient way to get the gradient needed for optimization

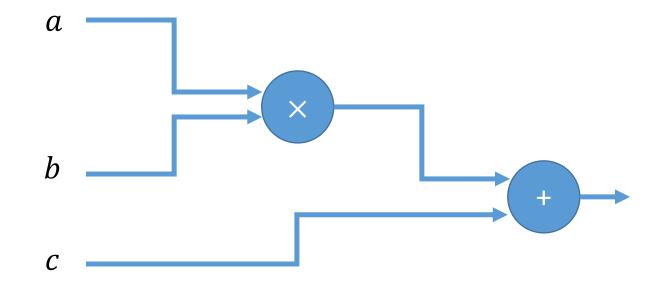


Backpropagation

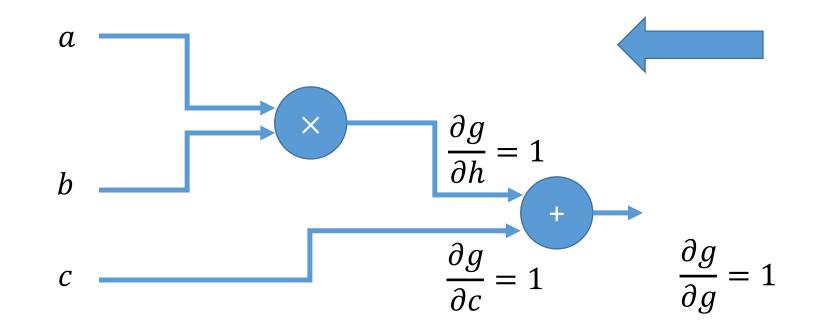


Notion of a Computational Graph

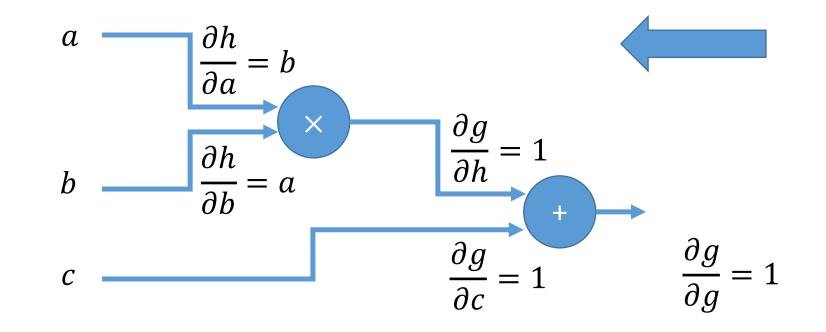
- Consider a function g(a, b, c) = a * b + c
- Draw a graph



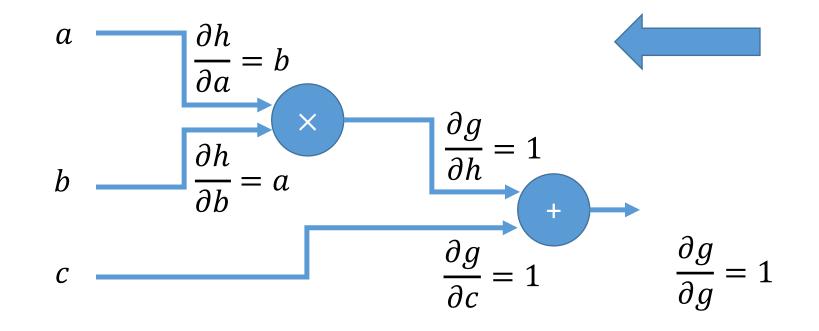
- The circles represent compute nodes
- Let h = a * b. Then g = h + c



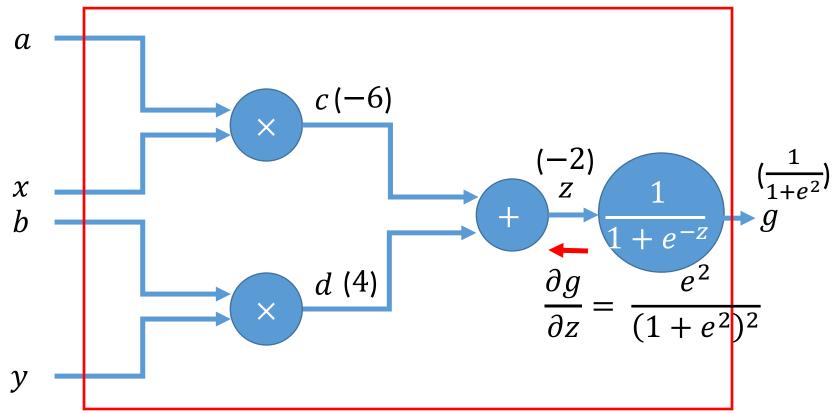
- The circles represent compute nodes
- Let h = a * b. Then g = h + c



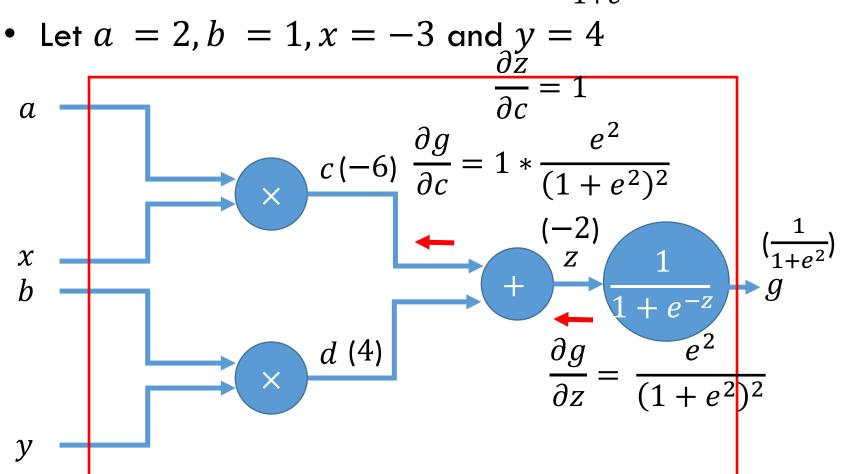
• We can find
$$\frac{\partial g}{\partial a}$$
, $\frac{\partial g}{\partial b}$ and $\frac{\partial g}{\partial c}$ by chain rule!



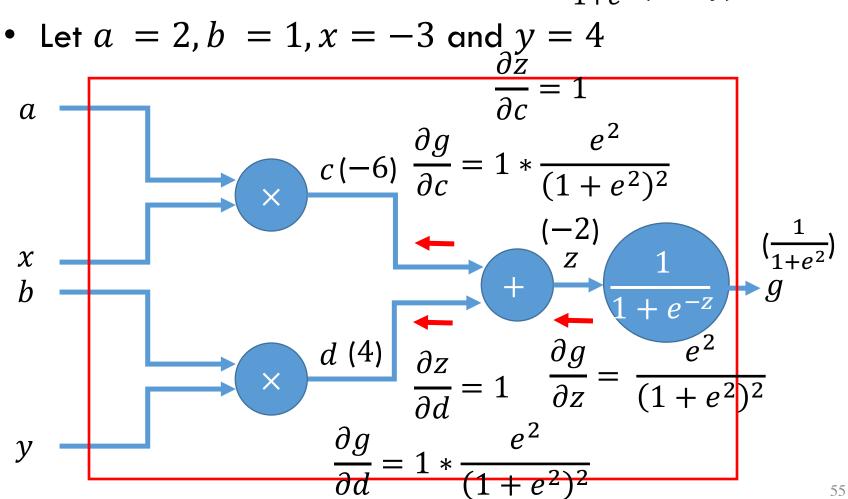
- Consider a function $g(a, b, x, y) = \frac{1}{1 + e^{-(ax+by)}}$
- Let a = 2, b = 1, x = -3 and y = 4



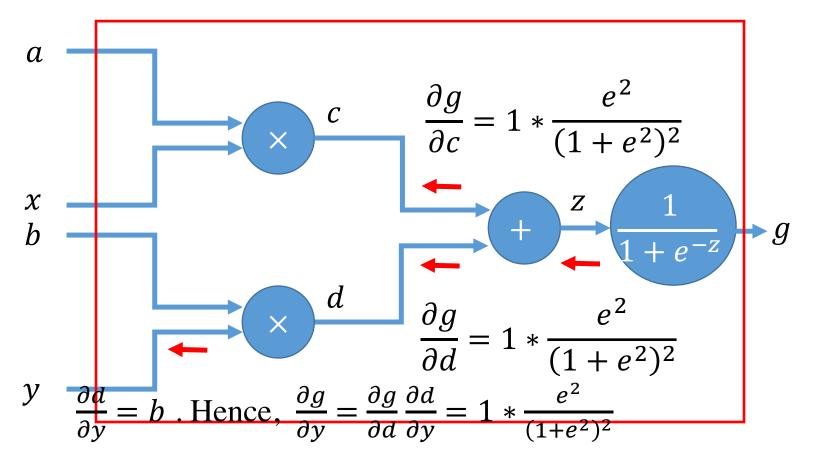
• Consider a function $g(a, b, x, y) = \frac{1}{1 + e^{-(ax+by)}}$



• Consider a function $g(a, b, x, y) = \frac{1}{1 + e^{-(ax+by)}}$

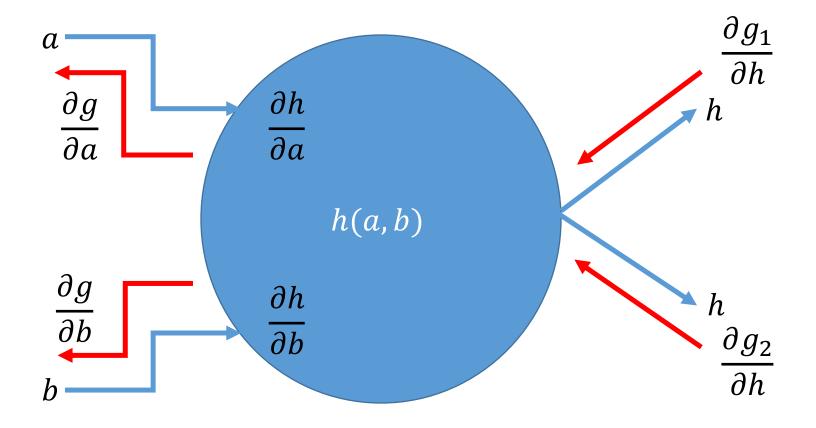


- Consider a function $g(a, b, x, y) = \frac{1}{1 + e^{-(ax+by)}}$
- Let a = 2, b = 1, x = -3 and y = 4



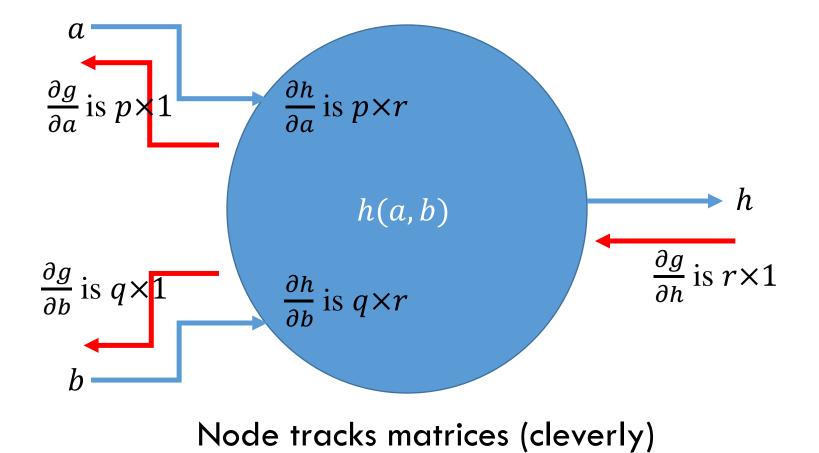
56

Backprop for multiple outputs



Backprop for vectors

 Say, a is p×1 dimensional, b is q×1 dimensional and h is r×1 dimensional and g is scalar



Backprop API for a node

- Implement two functions
 - Forward
 - Backward
- Forward
 - Get input from preceding node(s)
 - Track inputs and local gradients
 - Return computation
- Backward
 - Get gradient from succeeding node(s)
 - Compute gradients (simple multiplication)
 - Return gradients to preceding node(s)

Computational Graph API

- Data structure a graph (nodes and directed edges)
- Implement two functions for it
 - Forward
 - Backward
- Forward
 - Recursively pass the inputs to the next nodes
 - Return *L*
- Backward
 - Recursively traverse the graph backwards
 - Return gradients

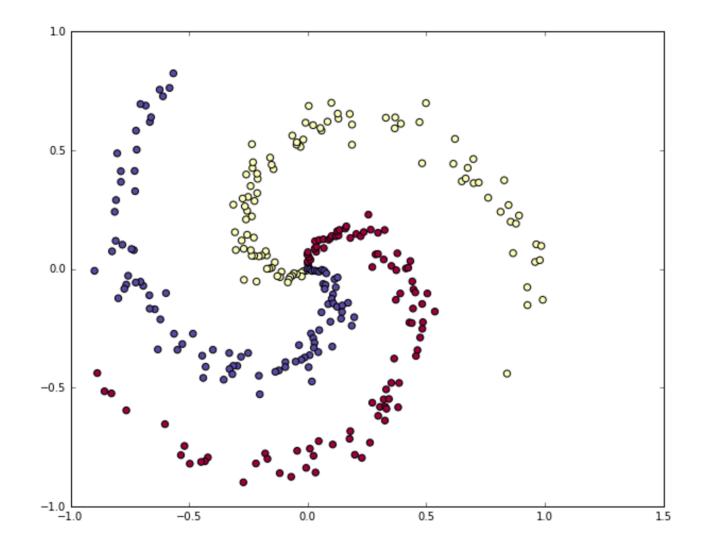
Backprop and batched Gradient Descent

- Choose a mini-batch (sample) of size B
- Forward propagate through the computation graph
 - Compute losses $L_{i_1}, L_{i_2}, \dots L_{i_B}$ and R(W, b)
 - Get loss L for the batch
- Backprop to compute gradients with respect to W, b
- Update parameters W, b
 - In the direction of the negative gradient

```
#Example modified from http://cs231n.github.io/neural-networks-case-study/
#Imports
import numpy as np #Represent ndarrays a.k.a. tensors
import matplotlib.pyplot as plt #For plotting
np.random.seed(0) #For repeatability of the experiment
import pickle #To read data for this experiment
#Setup
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
```

Data

```
#Read data
X = pickle.load(open('dataX.pickle','rb'))
y = pickle.load(open('dataY.pickle','rb'))
#Define some local varaibles
D = X.shape[1] #Number of features
K = max(y)+1 #Number of classes assuming class index starts from 0
#Plot the data
fig = plt.figure()
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
```



Model

```
# Linear model
# Start with an initialize parameters randomly
W = 0.01 * np.random.randn(D,K)
b = np.zeros((1,K))
# Initial values from hyperparameter
reg = 1e-3 # regularization strength
#For simplicity, we will not optimize this using grid search here.
```

```
#Perform batch SGD using backprop
```

```
#For simplicity we will take the batch size to be the same as number of examples
num_examples = X.shape[0]
```

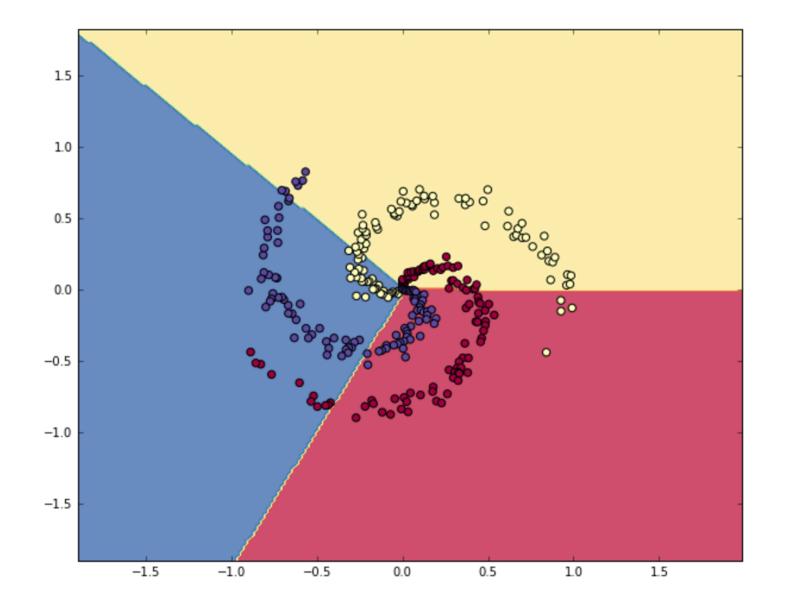
```
#Initial value for the Gradient Descent Parameter
step size = 1e-0 #Also called learning rate
```

#For simplicity, we will not hand tune this algorithm parameter as well.

```
# gradient descent loop
for i in xrange(200):
   # evaluate class scores, [N x K]
   scores = np.dot(X, W) + b
   # compute the class probabilities
   exp scores = np.exp(scores)
   probs = exp scores / np.sum(exp scores, axis=1, keepdims=True) \# [N x K]
   # compute the loss: average cross-entropy loss and regularization
   corect logprobs = -np.log(probs[range(num_examples),y])
   data loss = np.sum(corect logprobs)/num examples
   reg loss = 0.5*reg*np.sum(W*W)
   loss = data loss + reg loss
    if i % 10 == 0:
       print "iteration %d: loss %f" % (i, loss)
    # compute the gradient on scores
   dscores = probs
    dscores[range(num examples),y] -= 1
   dscores /= num examples
   # backpropate the gradient to the parameters (W,b)
   dW = np.dot(X.T, dscores)
   db = np.sum(dscores, axis=0, keepdims=True)
   dW += reg*W # regularization gradient
   # perform a parameter update
   W += -step size * dW
   b += -step size * db
```

Post Training

```
# Post-training: evaluate test set accuracy
#For simplicity, we will use training data as proxy for test. Do not do this.
X_test = X
y_test = y
scores = np.dot(X_test, W) + b
predicted_class = np.argmax(scores, axis=1)
print 'test accuracy: %.2f' % (np.mean(predicted class == y test))
```



69

Questions?

Summary

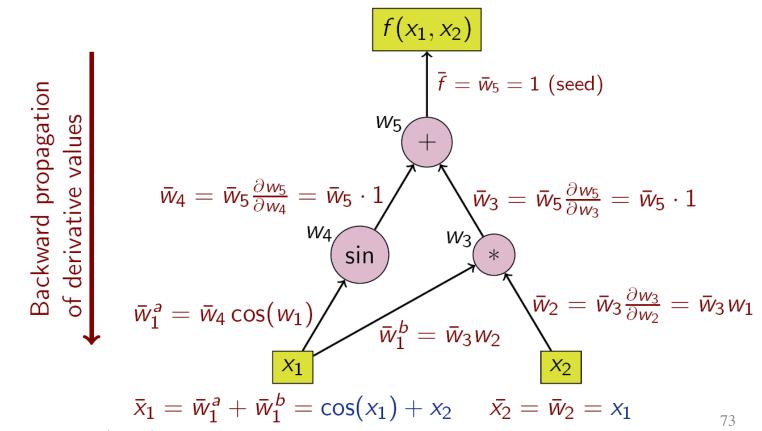
- Data variety poses challenges
 - Missing
 - Noisy
- Complex decisions poses challenges
 - Learning on the go
- We reviewed classification
 - Regression would have similar considerations
- Discussed backpropagation
 - A useful method for optimizing for the best model parameters

Appendix

Reverse mode AutoDiff

 Backpropagation is a case of reverse accumulation automatic differentiation¹

An example from wikipedia



¹See <u>https://en.wikipedia.org/wiki/Automatic differentiation</u>