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Today’s Outline

• Python Walkthrough
• Feedforward Neural Nets
• Convolutional Neural Nets
• Convolution
• Pooling
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Python Walkthrough
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Python Setup (I)

• Necessary for the programming portions of the 
assignments

• More precisely, use Ipython (ipython.org)
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Python Setup (II)

• Install Python
• Use Anaconda 

(https://www.continuum.io/downloads)
• Python 3
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https://www.continuum.io/downloads)


Python Setup (III)

• Install Ipython/Jupyter
• If you installed the Anaconda distribution, you are 

all set
• Else use the command on the command-line
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Python Setup (IV)

• Run Jupyter (or ipython)

• Your browser with open a page like this

• Start a new notebook (see button on the right)
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Python Setup (V)
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Press 
shift+enter, or
ctrl+enter

cells
(code)



Python Setup (VI)

• Global variables are shared between cells
• Cells are typically run from top to bottom

• Save changes using the save button
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Python Review

• General purpose programming language
• 2 vs 3 (3 is backward incompatible)
• Very similar to Matlab (and better) for scientific 

computing
• It is dynamically typed
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Python Review: Data Types
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Python Review: Data Types
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Python Review: List and Tuple
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Python Review: Dictionary & Set
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Python Review: Naïve for-loop
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Python Review: Function

16



Python Review: Numpy

17



Python Review: Numpy
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Python Review: Scipy Images

19Additional resources:  1. http://cs231n.github.io/python-numpy-tutorial/ 
2. http://docs.scipy.org/doc/scipy/reference/index.html



Questions?
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Today’s Outline

• Python Walkthrough
• Feedforward Neural Nets
• Convolutional Neural Nets
• Convolution
• Pooling
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Feedforward Neural Network

• Linear model 𝑓(𝑥,𝑊, 𝑏) = 𝑊𝑥 + 𝑏
• A feedforward neural network model will include 

nonlinearities
• Two layer model
• 𝑓 𝑥,𝑊*, 𝑏*,𝑊+, 𝑏+ = 𝑊+max 0,𝑊*𝑥 + 𝑏* + 𝑏+
• Say 𝑥 is 𝑑 dimensional
• 𝑊* is 𝑑×q dimensional
• 𝑊+ is 𝑞×p dimensional
• Then the number of hidden nodes is 𝑞
• The number of labels is 𝑝
• The notion of layer is for vectorizing/is conceptual
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Nonlinearities (I)

23
1Systematic evaluation of CNN advances on the ImageNet, arxiv:1606.02228

• How to pick the nonlinearity/activation function?



Nonlinearities (II)

• Sigmoid
• Is a map whose range is [0,1]

24
1Figure: Qef, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4310325



Nonlinearities (III)

• Saturated node/neuron makes gradients vanish

• Not zero-centered
• Empirically may lead to slower convergence

25
1Figure: Qef, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4310325

𝑔1
1 + 𝑒9:

𝑧 ℎ

𝜕ℎ
𝜕𝑔

𝜕𝑔
𝜕𝑧

𝜕ℎ
𝜕𝑔



Nonlinearities (IV)

• tanh() addresses the zero-centering problem. So will 
typically give better results

• Still gradients vanish
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1Figure: Fylwind, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1642946



Nonlinearities (V)

• ReLU (2012 Krizhevsky et al.)
• No vanishing gradient on the positive side
• Empirically observed to be very good
• Initialization/high learning rate may lead to 

permanently dead ReLUs (diagnosable)
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1Figure: CC0, https://en.wikipedia.org/w/index.php?curid=48817276
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Feedforward Neural Net

• Lets focus on a 2-layer net
• Layers
• Input
• Hidden
• Output

• Node
• Nonlinearity
• Activation

28
𝑓 𝑥,𝑊*, 𝑏*,𝑊+, 𝑏+ = 𝑊+max 0,𝑊*𝑥 + 𝑏* + 𝑏+

1Figure: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version



Feedforward Net: Two Layer Model

• Number of layers is the 
number of 𝑊,𝑏 pairs

• Some questions to think 
about:
• How to pick the number 

of layers?
• How to pick the number 

of hidden units in each 
layer?

29
1CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=8201514



Feedforward Net and Backprop

• Choose a mini-batch (sample) of size B
• Forward propagate through the computation graph
• Compute losses 𝐿BC, 𝐿BD, … 𝐿BF and 
𝑅(𝑊*, 𝑏*,𝑊+, 𝑏+)

• Get loss 𝐿 for the batch
• Backprop to compute gradients with respect to 
𝑊*, 𝑏*,𝑊+ and 𝑏+

• Update parameters 𝑊*, 𝑏*,𝑊+ and 𝑏+
• In the direction of the negative gradient
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Feedforward Net in Python
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Feedforward Net in Python
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Feedforward Net in Python
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Feedforward Net in Python
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Feedforward Net in Python
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FNN in the Browser

• See playground.tensorflow.org
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Questions?
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Today’s Outline

• Python Walkthrough
• Feedforward Neural Nets
• Convolutional Neural Nets
• Convolution
• Pooling
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Convolutional Neural 
Network
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Similar to Feedforward NN

• Similar to feedforward neural networks
• Each neuron/node is associated with weights and a 

bias
• Node receives input
• Performs dot product of vectors
• Applies non-linearity

• The difference: 
• Number of parameters is reduced!

40
1Reference: http://cs231n.github.io/convolutional-networks/

How? That is the content of this lecture!



• Recall a Feedforward net:
• Get a vector 𝑥B and transform it to a score vector 

by passing through a sequence of hidden layers
• Each hidden layer has neurons
• Each neuron is fully connected to previous layer

41
1Figure: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

Similar to Feedforward NN



Towards CNNs (I)

• Feedforward net:
• Can you visualize the connections for an arbitrary 

neuron here?

42
1Figure: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version



Towards CNNs (II)

• Consider the CIFAR-10 Dataset.  Images are 32*32*3 in size 

43
1Figure: http://cs231n.github.io/classification/



Towards CNNs (III)

• First fully connected feedforward neuron would have 
32*32*3 weights associated with it (+1 bias 
parameter)

• What if the images were 1280*800*3?

• Clearly, we also need many neurons in each hidden 
layer. This leads to explosion in the total number of 
parameters (or the dimension of 𝑊s and 𝑏s)
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CNN Architecture

• We will look at it from layers point of view

• The new idea is that layers have width and depth!
• (In contrast, Feedforward NN layers only had 

height)
• (depth here does NOT correspond to number of 

layers of a network)
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CNN Architecture

• View FFN layers as having width and height
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Input Image

Hidden layer

Score vector

1Left figure: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version



CNN Architecture

• The new idea is that CNN layers have depth!
• (depth here does NOT correspond to number of 

layers of a network)

47
Depth

Width

Height



3D Volumes of Neurons

• Input has dimension 32*32*3 (for CIFAR-10 dataset)
• Final output has dimension 1*1*10 (10 classes)

• Previously,
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3D Volumes of Neurons

• Input has dimension 32*32*3 (for CIFAR-10 dataset)
• Final output has dimension 1*1*10 (10 classes)

• So assuming 2 hidden layers, previously we had,
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Input Image

Hidden layer

Score vector

Hidden layer

1Left figure: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version



3D Volumes of Neurons

• Now,

• Each layer simply does this: transforms an input tensor 
(3D volume) to an output tensor using some function

50
1Figure: http://cs231n.github.io/convolutional-networks/



3D Volumes of Neurons

• Now,

• Each layer simply does this: transforms an input tensor 
(3D volume) to an output tensor using some function
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CNN Layers

• Three types
• Convolutional Layer (CONV)
• Pooling Layer (POOL)
• Fully Connected Layer (same as Feedforward 

neural network, i.e., 1*1*#Neurons is the layer’s 
output tensor)

• Stack these in various ways
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CNN Example Architecture

• Say our classification dataset is CIFAR-10
• Let the architecture be as follows:
• INPUT -> CONV -> POOL -> FC

• INPUT: 
• This layer is nothing but 32*32*3 in dimension 

(width*height*3 color channels)
• CONV: 
• Neurons compute like regular feedforward neurons 

(sum the product of inputs with weights and add 
bias).

• May output a different shaped tensor, say, 
32*32*12
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CNN Example Architecture

• Say our classification dataset is CIFAR-10
• Let the architecture be as follows:
• INPUT -> CONV -> POOL -> FC

• INPUT: 
• This layer is nothing but 32*32*3 in dimension 

(width*height*3 color channels)
• CONV: 
• Neurons compute like regular feedforward neurons 

(sum the product of inputs with weights and add 
bias).

• May output a different shaped tensor, say with 
dimension 32*32*12
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CNN Example Architecture

• POOL:
• Performs a down-sampling in the spatial dimension
• Outputs a tensor with the depth dimension the 

same as input
• If input is 32*32*12, then output could be 

16*16*12
• FC:
• This is the fully connected layer. Input can be any 

tensor (say 16*16*12) but the output will have 
only one effective dimension (1*1*10 since this is 
the last layer and CIFAR-10 has 10 classes)
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CNN Example Architecture

• POOL:
• Performs a down-sampling in the spatial dimension
• Outputs a tensor with the depth dimension the 

same as input
• If input is 32*32*12, then output could be 

16*16*12
• FC:
• This is the fully connected layer. Input can be any 

tensor (say 16*16*12) but the output will have 
only one effective dimension (1*1*10 since this is 
the last layer and CIFAR-10 has 10 classes)
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CNN Example Architecture

• So we went from pixels (32*32 RGB images) to scores 
(10 in number)

• Some layers have parameters (CONV and FC), other 
layers do not (POOL)

• Optimization of these parameters still for achieving 
scores consistent with image labels

57

Input CONV POOL FC



The Convolution Layer (CONV)

• Layer’s parameters correspond to a set of filters 
• What is a filter? 
• A linear function parameterized by a tensor
• Outputs a scalar
• The parameter tensor is learned during training

• Example
• First layer filter may be of dimension 3*3*3
• 3 pixels wide
• 3 pixels high
• 3 unit filter-depth for three color channels

• We slide (convolve) the filter across the width and height 
of the input volume and compute the scalar output to be 
passed into the nonlinearity 58



CONV: Sliding/Convolving

59

Also see http://setosa.io/ev/image-kernels/

• We slide (convolve) the filter across the width and height of 
the input volume and compute the scalar output to be passed 
into the nonlinearity

1Figure: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution



The Convolution Layer (CONV)

• Three things to notice
• Filters are small along width and height
• Same filter-depth as the input tensor (3D volume)
• If the input is 𝑥 ∗ 𝑦 ∗ 𝑧, then filter could be 3 ∗
3 ∗ 𝑧

• As we slide, we produce a 2D activation map

60



The Convolution Layer (CONV)

• Three things to notice
• Filters are small along width and height
• Same filter-depth as the input tensor (3D volume)
• If the input is 𝑥 ∗ 𝑦 ∗ 𝑧, then filter could be 3 ∗
3 ∗ 𝑧

• As we slide, we produce a 2D activation map

• Filters (i.e., filter parameters) will be learned during 
training that ‘detect’ certain visual features
• Example: 
• Oriented edges, colors, etc. at the first layer
• Specific patterns in higher layers 61



CONV: Filters

• Before we look at the patterns …

• Lets now look at the neurons themselves
• How are they connected?
• How are they arranged?
• How can we get reduced parameters?

62



CONV: Local Connectivity

• Connect each neuron to a local (spatial) region of the 
input tensor

• Spatial extent of this connectivity is called receptive 
field

• Depth connectivity is the same as input depth

63



CONV: Local Connectivity

• Connect each neuron to a local (spatial) region of the 
input tensor

• Spatial extent of this connectivity is called receptive 
field

• Depth connectivity is the same as input depth

• Example: If input tensor is 32*32*3 and filter is 
3*3*3 then 
• the number of weight parameters is 27, and 
• there is 1 bias parameter

64

One neuron

1Figure: http://cs231n.github.io/convolutional-networks/



CONV: Local Connectivity

• All 5 neurons are looking at the same spatial region
• Each neuron belongs to a different filter
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One neuron

1Figure: http://cs231n.github.io/convolutional-networks/



CONV: Spatial Arrangement

• Back to layer point of view
• Size of output tensor depends on three numbers:
• Layer Depth
• Corresponds to the number of filters

• Stride (how much the filter is moved spatial)
• Example: If stride is 1, then filter is moved 1 

pixel at a time
• Zero-padding
• Deals with boundaries (is usually 1 or 2)
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CONV: Stride/Zero-pad

67

Stride = 1, Zero-padding = 0

1Figure: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution



CONV: Parameter Sharing

• Key assumption: If a filter is useful for one region, it 
should also be useful for another region

• Denote a single 2D slice of depth of a layer as depth 
slice

68

Depth Slice

1Figure: http://cs231n.github.io/convolutional-networks/



CONV: Parameter Sharing

• Then, all neurons in each depth slide use the same 
weight and bias parameters!

69

Depth Slice

1Figure: http://cs231n.github.io/convolutional-networks/



CONV: Parameter Sharing

• Number of parameters is reduced!

• Example: 
• Say the number of filters is 𝑀 (= Layer Depth)
• Then, this layer will have 𝑀 ∗ (3 ∗ 3 ∗ 3 + 1)

parameters

• Gradients will get added up across neurons of a 
depth slice
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CONV: Parameter Sharing

• AlexNet’s first layer has 11*11*3 sized filters 96 in 
number. The filter weights are plotted below:

• Intuition: If capturing an edge is important, then important 
everywhere

71
1Figure: http://cs231n.github.io/convolutional-networks/



Example: CONV Layer Computation

72Figure: http://cs231n.github.io/convolutional-networks/



The Pooling Layer: POOL

• Vastly more simpler than CONV

• Reduce the spatial size by using a MAX or similar 
operation

• Operate independently for each depth slice
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POOL: Example

• Input depth is retained

74
1Figure: http://cs231n.github.io/convolutional-networks/



POOL: Example

• Recent research is showing that you may not need a 
pooling layer

75
1Figure: http://cs231n.github.io/convolutional-networks/



POOL: Example

• Recent research is showing that you may not need a 
pooling layer
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Fully Connected Layer: FC

• Essentially a fully connected layer
• Already seen while discussing feedforward neural 

networks
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CNN in the Browser

• Dataset: CIFAR-10
• http://cs.stanford.edu/people/karpathy/convnetjs/d

emo/cifar10.html
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Summary

• Feedforward neural nets can do better than linear 
classifiers (saw this for a low-dimensional small 
synthetic example)

• CNN have been very effective in image related 
applications.

• Exploit specific properties of images
• Hierarchy of features
• Locality
• Spatial invariance

• Lots of design choices that have been empirically 
validated and are intuitive. Still, there is room for 
improvement.
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Appendix
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Naming: Why ‘Neural’

• Historical
• Let 𝑓 𝑥 = 𝑤 ⋅ 𝑥 + 𝑏

• Perceptron from 1957: ℎ(𝑥) = N 0, 𝑓(𝑥) < 0
1, otherwise

• Update rule was 𝑤VW* = 𝑤V + 𝛼(𝑦 − ℎ(𝑥))𝑥 similar 
to gradient update rules we see today

• Passing the score through a sigmoid was likened to 
how a neuron fires

• Firing rate = *
*WZ[\](^)
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Naming: Why ‘Convolution’

821Figure: http://cs231n.github.io/convolutional-networks/

The name 
‘convolution’ 

comes from the 
convolution 
operation in 

signal processing 
that is essentially 
a matrix matrix 

product.



Naming: Why ‘Convolution’

83Figure:https://en.wikipedia.org/wiki/Convolution#/media/File:Comparison_convolution_correlation.svg


