
Advanced Prediction
Models

Today’s Outline

• Visualizing CNNs
• Transfer Learning
• Neural Net Training Tricks
• Data Augmentation
• Weight Initialization/Batch Normalization/Dropout

2

Quick Review:
Convolutional Neural
Networks

3

Recap of CNN Architecture

• Typically a CONV is followed by a POOL
• Closer to the output, use FC layers
• In CONV, smaller filters are preferred (say 3 ∗ 3 ∗ 𝑧)
• Input image should ideally be divisible by 2 many

times

4

Input CONV POOL CONV POOL CONV POOL FC FC

Example: A CNN Architecture

5

CONV CONV CONV CONV CONV CONV

• A different sequence of layers
• Number of filters (layer depth) is 10
• Activation tensors (flattened along depth) are shown

1Figure: http://cs231n.github.io/convolutional-networks/

Example: CONV Layer Parameter Count

• Input tensor of size 90 ∗ 90 ∗ 10
• Say we have 5 filters, each is 3 ∗ 3 ∗ 10
• Stride is 1 and zero padding is 1
• Then output tensor will be 90 ∗ 90 ∗ 5
• We can calculate manually for other strides and padding

values

• Number of parameters is 5 ∗ 3 ∗ 3 ∗ 10 + 1 = 455
• Contrast with Fully connected net:
• Number of inputs is 81000
• Number of hidden layer neurons is 40500
• Hence, the number of parameters is > 3,280,500,000

6

CNN and Backpropagation

• Backpropagation through a CONV layer
• Constitutes a set of matrix-matrix products and

whatever is the behavior for the nonlinearity
• Backpropagation through a POOL layer
• Essentially like ReLU where one can keep track of

the index of the maximum

• (You will not have to do this by hand in real-life)

7

Questions?

8

Visualizing CNNs

9

Combating Non-Interpretability

• Common criticism: learned features are not
interpretable

• We will look at a few attempts
• Look at activations
• Look at weights
• Look at images in an embedded space
• Look at impact of occlusion
• Look at images that activate neurons highly

10

An Example CNN Visualization Tool

• Online tool by Adam Harley
• http://scs.ryerson.ca/~aharley/vis/conv/flat.html

11

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Visualize: Activations
• Useful to debug ‘dead’ filters (e.g., when using ReLU)
• Input is a cat image

12
1st CONV 5th CONV

1Figure: http://cs231n.github.io/understanding-cnn/

Visualize: Weights

• Useful to debug if training needs to be run more (if
patterns are noisy)

13
1st CONV 2nd CONV

1Figure: http://cs231n.github.io/understanding-cnn/

Visualize: Low-Dimensional
Embeddings

• CNN
• Input: Image
• Output: Scores

• The input to the layer that computes scores:
• 𝑠 = 𝑊max 0, ℎ + 𝑏 = 𝑊𝑎 + 𝑏

• Activation 𝑎 can be considered as a representation of
the input image

• Embed 𝑎’s into a 2D space
• Such that distance properties are preserved

14

Visualize: Low-Dimensional
Embeddings

• In Alexnet, the output of layer before FC layer is 4096 dim
• The t-SNE embedding is shown below:

• Similarities are class-based and semantic rather than color and
pixel based
• Implies: images close to each other are similar for the CNN15

1Figure: http://cs231n.github.io/understanding-cnn/

Visualize: By Occlusion

• To figure out which part of the image is leading to a
certain classification

• Plot the probability of class of interest as a function
of occlusion

16

Visualize: By Occlusion

• Occlusion in grey is slid over the images and plot
probability of correct class

17
1Figure: http://cs231n.github.io/understanding-cnn/

Visualize: Synthesize Images

• Find images that activate a neuron the most

• Seed with ‘natural’ image priors

18
1Figure: http://yosinski.com/deepvis

Visualize: Synthesize Images

• Find images that activate a neuron the most

• Seed with ‘natural’ image priors

19
1Figure: http://yosinski.com/deepvis

Visualize:
Synthesize images

20
1Figure: http://yosinski.com/deepvis

Visualize: Images that Activate a
Neuron

• Track which images maximally activate a neuron
• Understand what the neuron is tracking

21
1Figure: http://cs231n.github.io/understanding-cnn/

5th POOL Activation values and receptive fields of some neurons in Alexnet
(May not be a good idea…)

Questions?

22

Today’s Outline

• Visualizing CNNs
• Transfer Learning
• Neural Net Training Tricks
• Data Augmentation
• Weight Initialization/Batch Normalization/Dropout

23

Transfer Learning

24

Transfer Learning

• Very few people train a deep feedforward net or a
CNN from scratch

• Myth: “We need a lot of data to use Deep Neural
Networks”

• We will see two approaches if we have small data
• Feature extraction
• Fine-tuning

• Both these are loosely termed as Transfer learning

25

Transfer by Feature Extraction (I)

• Get a pretrained CNN
• Example: VGG or AlexNet that was trained on

Imagenet
• Remove the last FC (that outputs 1000 dim score)
• Pass new training data to get embeddings

26

Input CONV POOL CONV POOL CONV POOL FC FC

Input CONV POOL CONV POOL CONV POOL FC FC

Image Embeddings

• We can think of the penultimate hidden layer
activations (a 4096 dim vector) as an embedding of
the image

• This is the activation vector or the representation or
the CNN code of the image

27
1Figure: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Transfer by Feature Extraction (II)

• Input these to a linear or non-linear classifier!

• For example, for imagenet output 1000 dim scores
• For our data, output say 2 scores (cat vs dog)

28

Input CONV POOL CONV POOL CONV POOL FC FC

Input CONV POOL CONV POOL CONV POOL FC FCFC

More generic features More specific features

Transfer by Fine-tuning

• Retrain or finetune additional layers of the pre-
trained if we have more data

• We can even go all the way back to the first layer if
there is a lot of training data available 29

Input CONV POOL CONV POOL CONV POOL FC FC

Input CONV POOL CONV POOL CONV POOL FC FC

Backpropagate

Benefits of Transfer

• We can get a significant boost in performance
compared to hand engineered classification/machine-
learning pipelines

30
1Figure: https:// arxiv.org/abs/1403.6382

Aside: Other Vision Tasks

• Some example vision tasks are given below

31
1Figure: http://cs231n.stanford.edu/

Transfer Learning Choices

Similar dataset Different dataset

Small data Feature extract NA

Large data Fine-tune a bit Fine-tune a lot

32

• When to transfer

• How to transfer
• Get pre-trained models for popular software

systems

This is key for projects!

VGG Net Example

• 2nd in the 2014 ILSVRC classification task
• 3x3 conv filters with stride 1
• ReLU non-linearity
• 5 POOL layers
• 3 FC layers

33
1Figure: http://www.robots.ox.ac.uk/%7Evgg/research/very_deep/

Questions?

34

Today’s Outline

• Visualizing CNNs
• Transfer Learning
• Neural Net Training Tricks
• Data Augmentation
• Weight Initialization/Batch Normalization/Dropout

35

Neural Net Training
Tricks

36

Neural Nets in Practice

• There are a few empirically validated techniques that
improve the performance (classification accuracy) of
feedforward nets and CNNs

• We will look at some of these
• Data: data augmentation
• Model: initalization, batch normalization, dropout

• For our discussion, we will fix the optimization
technique to be a gradient based method. We will
revisit related algorithmic enhancements later.

37

Data
• Data:
• How is it handled?
• What is it quality?

• Handling:
• Deep nets may need to read lots of data (images),

so keep them in contiguous spaces of hard-disk

• Quality:
• Collect as much clean data as possible. At the

same time, unclean may also be good enough

38Next: Extract the most out of existing data for CNNs

Augmenting Data (I)

39

Input CONV POOL CONV POOL FC
Get

(𝑥9, 𝑦9)
Loss

Augmenting Data (I)

40

Input CONV POOL CONV POOL FC
Get

(𝑥9, 𝑦9)
Loss

Input CONV POOL CONV POOL FC
Get

(<𝑥9, 𝑦9)
Loss

And

Where <𝑥9 = 𝑔(𝑥) is a transformation

Augmenting Data (II)

• We are changing the input without changing the label
• We then add this new example to our training set
• Widely used technique!

41

Flip Random crop

Random scale

Augmenting Data (III)

• At test time, average the predictions of a fixed set of
transformations

• Example (for Resnet, the ILSVRC 2015 winner):
• Image at 5 scales: 224,256,384,460 and 640
• At each scale, get 10 224*224 crops

42

Augmenting Data (IV)

• Other ways to augment data include
• Changing contrast and color
• Mix translations, rotations, stretching, shearing,

distortions

• This is very useful for small datasets

• From one point of view, this is essentially
• Adding some noise during training
• Marginalizing noise out at test

43

Model

• We have already seen few choices
• Activation function or nonlinearities
• Number of layers and number of neurons per layer
• CNN filter choices …

• There are other choices while training deep neural nets
(including CNNs) that also make a difference
• Weight initialization
• Batch normalization
• Dropout

44

Model: Weight Initialization

• Weight initialization plays a key role in training deep
networks
• Example: 𝑊 = 0 may be bad

• Not just the issue of local optima

• But also the magnitudes of gradients in backprop
• Activation statistics (mean and variance) influence

gradients
• Heuristics available in the literature to initialize W

45

Model: Batch Normalization

• Activations magnitudes and their statistics depend on
the dataset, the network and the nonlinearity used

• Their statistics influence gradient propagation, hence
also learning

• Is there a way to control them?
• Yes, through batch normalization!

46

Model: Batch Normalization
• Idea: Make each activation unit-Gaussian by subtracting the

mean and then dividing by standard deviation

• Is a differentiable function: hence no issue with
backpropagation

• At test time, there is no batch. Use the training data means
and variances 47

Batch-size = 𝑁
Number of output neurons = 𝐷

𝑁×𝐷

𝑥 A𝑥 =
𝛾(𝑥 − 𝐸 𝑥)

𝑉𝑎𝑟[𝑥]
+ 𝛽

𝑁×𝐷

A𝑥

Model: Batch Normalization
• Previously,

• Now
• Insert a Batch Normalization layer between CONV

and nonlinearity (ReLU)

• Empirically observed: improved gradient flows, less
sensitive to initialization.

48

Input CONV POOL CONV POOL FC

Input CONV BN+ReLU POOL CONV BN+ReLU POOL FC

Model: Dropout (Regularization)

• Idea: During training, every time we forward pass, we
set the output of a few neurons to zero with some
probability

49
1Figure: http://cs231n.stanford.edu/

Without dropout One pass with dropout

Model: Dropout (Regularization)

• Intuitively, it is
• Making us use smaller capacity of the network.

Hence, can think of it as a regularization
• Forcing all the neurons to be useful. Hence there is

over-representation or redundency

• Also think of it as
• Subsampling a part of the network for each

example
• Thus, we get an ensemble of neural networks that

share parameters

50

Model: Dropout (Regularization)

• Higher probability means stronger regularization

• At test time,
• Instead of doing many forward passes
• Perform no dropout
• Scale all activations by the probability of dropout

• Example:
• Say dropout with probability 𝑝
• Originally: 𝑓 𝑥,𝑊L, 𝑏L,𝑊M, 𝑏M = 𝑊Mmax 0,𝑊L𝑥 + 𝑏L + 𝑏M
• With dropout: 𝑊M ∗ 𝑝 ∗ max 0,𝑊L𝑥 + 𝑏L + 𝑏M

51

Summary (I)

• CNN are very effective in image related applications.
• State of the art!

• Exploit specific properties of images
• Hierarchy of features
• Locality
• Spatial invariance

• Lots of design choices that have been empirically
validated and are intuitive. Still, there is room for
improvement.

52

Summary (II)

• We saw
• Visualizations to understand how CNNs work
• Transfer learning applied to CNNs (important for

applications)
• An excellent way to get a deep learning solution

working
• There is no need for large datasets to get started

53

Summary (III)

• Neural Nets Training Tricks
• Revisited data: data augmentation
• Revisited models: initialization, batch norm, dropout

• To train state of the art deep learning systems, you
have to rethink:
• (a) data, (b) models, and (c) optimization1

• What is the most bang per buck for your business?

• If the deep learning system is core to the business, look at
engineering best practices (we saw some today)

541We did not cover this in this lecture

Appendix

55

Sample Questions

• How does a 2 layer feedforward net differ from a
linear classifier?

• Describe why nonlinearities are introduced in a neural
network? Why is the ReLU non-linearity called a
gradient gate?

• Describe the parameter sharing property of a
convolutional layer

• How is backpropagation used while optimizing the
parameters of a neural network?

56

Advice

• In spite of all these design choices, for 90% of the
applications, pick an architecture that works well on
an established dataset (e.g., Imagenet)

• Focus on the application and business considerations,
not architectural decisions!

57Ref: http://cs231n.github.io/convolutional-networks/

Practical Considerations

• Model choice: nonlinearity, number of layers, number
of neurons

• Data preprocessing: batch normalization, subtracting
mean of inputs

• Parameter initialization: random or zeroes?
• Learning rate: How to change?
• Batch normalization: re-normalizing activations
• Monitoring learning: plot graphs of training and

validation
• Cross validation: hyper-parameter tuning is non-trivial

58

Partial Robustness to Input Size

• The input image size determines the tensors in
intermediate stages

• Example
• Alexnet requires 224*224*3 sized images

• What if we have a larger sized image?
• We can ‘convert’ FC layers to equivalent CONV

layers for efficiency
• Then slide the original CNN over the larger image!
• This leads to a ‘single’ forward pass

59

Partial Robustness to Input Size

• Instead of a single vector of scores, now we get a
bunch of scores

60

Input Image CNN
Score vector

CNN

Score vector

