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Today’s Outline

• Visualizing CNNs
• Transfer Learning
• Neural Net Training Tricks
• Data Augmentation
• Weight Initialization/Batch Normalization/Dropout
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Quick Review: 
Convolutional Neural 
Networks

3



Recap of CNN Architecture

• Typically a CONV is followed by a POOL
• Closer to the output, use FC layers
• In CONV, smaller filters are preferred (say 3 ∗ 3 ∗ 𝑧)
• Input image should ideally be divisible by 2 many 

times
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Example: A CNN Architecture
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CONV CONV CONV CONV CONV CONV

• A different sequence of layers
• Number of filters (layer depth) is 10
• Activation tensors (flattened along depth) are shown 

1Figure: http://cs231n.github.io/convolutional-networks/



Example: CONV Layer Parameter Count

• Input tensor of size 90 ∗ 90 ∗ 10
• Say we have 5 filters, each is 3 ∗ 3 ∗ 10
• Stride is 1 and zero padding is 1
• Then output tensor will be 90 ∗ 90 ∗ 5
• We can calculate manually for other strides and padding 

values

• Number of parameters is 5 ∗ 3 ∗ 3 ∗ 10 + 1 = 455
• Contrast with Fully connected net:
• Number of inputs is 81000
• Number of hidden layer neurons is 40500
• Hence, the number of parameters is > 3,280,500,000
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CNN and Backpropagation

• Backpropagation through a CONV layer
• Constitutes a set of matrix-matrix products and 

whatever is the behavior for the nonlinearity
• Backpropagation through a POOL layer 
• Essentially like ReLU where one can keep track of 

the index of the maximum

• (You will not have to do this by hand in real-life)
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Questions?
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Visualizing CNNs
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Combating Non-Interpretability

• Common criticism: learned features are not 
interpretable

• We will look at a few attempts
• Look at activations
• Look at weights
• Look at images in an embedded space
• Look at impact of occlusion 
• Look at images that activate neurons highly
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An Example CNN Visualization Tool

• Online tool by Adam Harley
• http://scs.ryerson.ca/~aharley/vis/conv/flat.html
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http://scs.ryerson.ca/~aharley/vis/conv/flat.html


Visualize: Activations
• Useful to debug ‘dead’ filters (e.g., when using ReLU)
• Input is a cat image
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1st CONV 5th CONV

1Figure: http://cs231n.github.io/understanding-cnn/



Visualize: Weights

• Useful to debug if training needs to be run more (if 
patterns are noisy)

13
1st CONV 2nd CONV

1Figure: http://cs231n.github.io/understanding-cnn/



Visualize: Low-Dimensional 
Embeddings

• CNN
• Input: Image
• Output: Scores

• The input to the layer that computes scores:
• 𝑠 = 𝑊max 0, ℎ + 𝑏 = 𝑊𝑎 + 𝑏

• Activation 𝑎 can be considered as a representation of 
the input image

• Embed 𝑎’s into a 2D space
• Such that distance properties are preserved
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Visualize: Low-Dimensional 
Embeddings

• In Alexnet, the output of layer before FC layer is 4096 dim
• The t-SNE embedding is shown below:

• Similarities are class-based and semantic rather than color and 
pixel based
• Implies: images close to each other are similar for the CNN15

1Figure: http://cs231n.github.io/understanding-cnn/



Visualize: By Occlusion

• To figure out which part of the image is leading to a 
certain classification

• Plot the probability of class of interest as a function 
of occlusion
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Visualize: By Occlusion

• Occlusion in grey is slid over the images and plot 
probability of correct class
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1Figure: http://cs231n.github.io/understanding-cnn/



Visualize: Synthesize Images

• Find images that activate a neuron the most

• Seed with ‘natural’ image priors
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1Figure: http://yosinski.com/deepvis



Visualize: Synthesize Images

• Find images that activate a neuron the most

• Seed with ‘natural’ image priors
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1Figure: http://yosinski.com/deepvis



Visualize: 
Synthesize images
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1Figure: http://yosinski.com/deepvis



Visualize:  Images that Activate a 
Neuron

• Track which images maximally activate a neuron
• Understand what the neuron is tracking
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1Figure: http://cs231n.github.io/understanding-cnn/

5th POOL Activation values and receptive fields of some neurons in Alexnet
(May not be a good idea…)



Questions?
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• Visualizing CNNs
• Transfer Learning
• Neural Net Training Tricks
• Data Augmentation
• Weight Initialization/Batch Normalization/Dropout
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Transfer Learning
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Transfer Learning

• Very few people train a deep feedforward net or a 
CNN from scratch

• Myth: “We need a lot of data to use Deep Neural 
Networks”

• We will see two approaches if we have small data
• Feature extraction
• Fine-tuning

• Both these are loosely termed as Transfer learning
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Transfer by Feature Extraction (I)

• Get a pretrained CNN 
• Example: VGG or AlexNet that was trained on 

Imagenet
• Remove the last FC (that outputs 1000 dim score)
• Pass new training data to get embeddings
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Image Embeddings

• We can think of the penultimate hidden layer 
activations (a 4096 dim vector) as an embedding of 
the image

• This is the activation vector or the representation or 
the CNN code of the image
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1Figure: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf



Transfer by Feature Extraction (II)

• Input these to a linear or non-linear classifier!

• For example, for imagenet output 1000 dim scores
• For our data, output say 2 scores (cat vs dog)
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Input CONV POOL CONV POOL CONV POOL FC FCFC

More generic features More specific features



Transfer by Fine-tuning

• Retrain or finetune additional layers of the pre-
trained if we have more data

• We can even go all the way back to the first layer if 
there is a lot of training data available 29
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Input CONV POOL CONV POOL CONV POOL FC FC

Backpropagate



Benefits of Transfer

• We can get a significant boost in performance 
compared to hand engineered classification/machine-
learning pipelines
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1Figure: https:// arxiv.org/abs/1403.6382



Aside: Other Vision Tasks

• Some example vision tasks are given below
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1Figure: http://cs231n.stanford.edu/



Transfer Learning Choices

Similar dataset Different dataset

Small data Feature extract NA

Large data Fine-tune a bit Fine-tune a lot
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• When to transfer

• How to transfer
• Get pre-trained models for popular software 

systems

This is key for projects!



VGG Net Example

• 2nd in the 2014 ILSVRC classification task
• 3x3 conv filters with stride 1
• ReLU non-linearity
• 5 POOL layers
• 3 FC layers
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1Figure: http://www.robots.ox.ac.uk/%7Evgg/research/very_deep/



Questions?
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Neural Net Training 
Tricks
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Neural Nets in Practice

• There are a few empirically validated techniques that 
improve the performance (classification accuracy) of 
feedforward nets and CNNs

• We will look at some of these
• Data: data augmentation
• Model: initalization, batch normalization, dropout

• For our discussion, we will fix the optimization 
technique to be a gradient based method. We will 
revisit related algorithmic enhancements later.

37



Data
• Data:
• How is it handled?
• What is it quality?

• Handling:
• Deep nets may need to read lots of data (images), 

so keep them in contiguous spaces of hard-disk

• Quality:
• Collect as much clean data as possible. At the 

same time, unclean may also be good enough

38Next: Extract the most out of existing data for CNNs



Augmenting Data (I)
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Input CONV POOL CONV POOL FC
Get 

(𝑥9, 𝑦9)
Loss



Augmenting Data (I)
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Input CONV POOL CONV POOL FC
Get 

(𝑥9, 𝑦9)
Loss

Input CONV POOL CONV POOL FC
Get 

( <𝑥9, 𝑦9)
Loss

And

Where <𝑥9 = 𝑔(𝑥) is a transformation



Augmenting Data (II)

• We are changing the input without changing the label
• We then add this new example to our training set
• Widely used technique!
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Flip Random crop

Random scale



Augmenting Data (III)

• At test time, average the predictions of a fixed set of 
transformations

• Example (for Resnet, the ILSVRC 2015 winner):
• Image at 5 scales: 224,256,384,460 and 640
• At each scale, get 10 224*224 crops
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Augmenting Data (IV)

• Other ways to augment data include
• Changing contrast and color
• Mix translations, rotations, stretching, shearing, 

distortions

• This is very useful for small datasets

• From one point of view, this is essentially
• Adding some noise during training
• Marginalizing noise out at test
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Model

• We have already seen few choices
• Activation function or nonlinearities
• Number of layers and number of neurons per layer
• CNN filter choices …

• There are other choices while training deep neural nets 
(including CNNs) that also make a difference
• Weight initialization
• Batch normalization
• Dropout
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Model: Weight Initialization

• Weight initialization plays a key role in training deep 
networks
• Example: 𝑊 = 0 may be bad

• Not just the issue of local optima

• But also the magnitudes of gradients in backprop
• Activation statistics (mean and variance) influence 

gradients
• Heuristics available in the literature to initialize W
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Model: Batch Normalization

• Activations magnitudes and their statistics depend on 
the dataset, the network and the nonlinearity used

• Their statistics influence gradient propagation, hence 
also learning

• Is there a way to control them?
• Yes, through batch normalization!
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Model: Batch Normalization
• Idea: Make each activation unit-Gaussian by subtracting the 

mean and then dividing by standard deviation

• Is a differentiable function: hence no issue with 
backpropagation

• At test time, there is no batch. Use the training data means 
and variances 47

Batch-size = 𝑁
Number of output neurons = 𝐷

𝑁×𝐷

𝑥 A𝑥 =
𝛾(𝑥 − 𝐸 𝑥 )

𝑉𝑎𝑟[𝑥]
+ 𝛽

𝑁×𝐷

A𝑥



Model: Batch Normalization
• Previously,

• Now
• Insert a Batch Normalization layer between CONV 

and nonlinearity (ReLU) 

• Empirically observed: improved gradient flows, less 
sensitive to initialization.
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Input CONV POOL CONV POOL FC

Input CONV BN+ReLU POOL CONV BN+ReLU POOL FC



Model: Dropout (Regularization)

• Idea: During training, every time we forward pass, we 
set the output of a few neurons to zero with some 
probability

49
1Figure: http://cs231n.stanford.edu/

Without dropout One pass with dropout



Model: Dropout (Regularization)

• Intuitively, it is
• Making us use smaller capacity of the network. 

Hence, can think of it as a regularization
• Forcing all the neurons to be useful. Hence there is 

over-representation or redundency

• Also think of it as 
• Subsampling a part of the network for each 

example
• Thus, we get an ensemble of neural networks that 

share parameters
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Model: Dropout (Regularization)

• Higher probability means stronger regularization

• At test time,
• Instead of doing many forward passes
• Perform no dropout
• Scale all activations by the probability of dropout

• Example: 
• Say dropout with probability 𝑝
• Originally: 𝑓 𝑥,𝑊L, 𝑏L,𝑊M, 𝑏M = 𝑊Mmax 0,𝑊L𝑥 + 𝑏L + 𝑏M
• With dropout: 𝑊M ∗ 𝑝 ∗ max 0,𝑊L𝑥 + 𝑏L + 𝑏M
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Summary (I)

• CNN are very effective in image related applications.
• State of the art!

• Exploit specific properties of images
• Hierarchy of features
• Locality
• Spatial invariance

• Lots of design choices that have been empirically 
validated and are intuitive. Still, there is room for 
improvement.
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Summary (II)

• We saw
• Visualizations to understand how CNNs work
• Transfer learning applied to CNNs (important for 

applications)
• An excellent way to get a deep learning solution 

working
• There is no need for large datasets to get started
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Summary (III)

• Neural Nets Training Tricks
• Revisited data: data augmentation
• Revisited models: initialization, batch norm, dropout

• To train state of the art deep learning systems, you 
have to rethink: 
• (a) data, (b) models, and (c) optimization1

• What is the most bang per buck for your business?

• If the deep learning system is core to the business, look at 
engineering best practices (we saw some today)

541We did not cover this in this lecture



Appendix
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Sample Questions

• How does a 2 layer feedforward net differ from a 
linear classifier?

• Describe why nonlinearities are introduced in a neural 
network? Why is the ReLU non-linearity called a 
gradient gate?

• Describe the parameter sharing property of a 
convolutional layer

• How is backpropagation used while optimizing the 
parameters of a neural network?
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Advice

• In spite of all these design choices, for 90% of the 
applications, pick an architecture that works well on 
an established dataset (e.g., Imagenet)

• Focus on the application and business considerations, 
not architectural decisions!

57Ref: http://cs231n.github.io/convolutional-networks/



Practical Considerations

• Model choice: nonlinearity, number of layers, number 
of neurons

• Data preprocessing: batch normalization, subtracting 
mean of inputs

• Parameter initialization: random or zeroes?
• Learning rate: How to change?
• Batch normalization: re-normalizing activations
• Monitoring learning: plot graphs of training and 

validation
• Cross validation: hyper-parameter tuning is non-trivial
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Partial Robustness to Input Size

• The input image size determines the tensors in 
intermediate stages

• Example
• Alexnet requires 224*224*3 sized images

• What if we have a larger sized image?
• We can ‘convert’ FC layers to equivalent CONV 

layers for efficiency
• Then slide the original CNN over the larger image!
• This leads to a ‘single’ forward pass
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Partial Robustness to Input Size

• Instead of a single vector of scores, now we get a 
bunch of scores
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Input Image CNN
Score vector

CNN

Score vector


