
Advanced Prediction
Models

Today’s Outline

• Recurrent Neural Networks
• Long-Short Term Memory based RNNs
• Sequence to Sequence Learning and other RNN

Applications

2

Recurrent Neural
Network

3

RNN Application Categories

• Input: Red, Output: Blue, RNN’s state: Green

4
1Figure: 1Figure: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Classif
ier

Fix
ed

 inp
ut

Fix
ed

 ou
tput

Sequence
 outp

ut

E.g
.: Im

age ca
ptionin

g

Sequence
 inp

ut

E.g
.: S

entim
ent a

nalysis

Sequence
 inp

ut

Sequence
 outp

ut

E.g
.: M

achi
ne tra

nsla
tion

Sequence
 inp

ut

Sequence
 outp

ut

E.g
.: V

ideo cla
ssif

ica
tion

The Idea of Persistence (I)

• Our thoughts have persistence
• We understand the present given what we have seen

in the past

• Feedforward neural networks and CNNs don’t
explicitly model persistence
• Example:
• classify every scene in a movie
• Output size (number of classes) is fixed
• Number of layers is fixed

• Unclear how a CNN can use information from
previous scenes 5

The Idea of Persistence (II)

• Architectures called Recurrent Neural Networks
address the idea of persistence explicitly

6
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unrolled Diagrams (I)

• Let 𝐴 repersent a base network with two inputs and
two outputs

• A loop based drawing of the architecture is as
follows:

7
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unrolled Diagrams (II)

• Here is the unrolled representation

8
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unrolled Diagrams (III)

• This sequential or repetitive structure is useful for
working with sequences
• Of images
• Of words

9
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unrolled Diagrams (V)

• At a stage, they accept an input and give an output,
which are parts of sequences

10
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Output

Input

𝜃 𝜃 𝜃 𝜃

Vanilla RNN (I)

• Some quick notation
• Dark arrow represents a vector
• Box represents a (fully connected hidden) layer

11
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanilla RNN (II)

• Unrolled representation is key to understanding
• For vanilla RNN it is:

• Assuming a single hidden layer with tanh
nonlinearity 12

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanilla RNN using Numpy

13

• Training an RNN means finding 𝜃 (e.g., 𝑊 and 𝑏) that give
rise to a desired behavior quantified by a loss function

Language Model (LM) Example

• Build a character-level language model
• Give RNN a large text dataset
• Model the probability of the next character given a

sequence of previous characters

• Application: allows us to generate new text, can be used
as a prior for classification tasks

• Note: This is a toy example

14
1Reference: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

LM Example: Data and Embedding

• Vocabulary: {h,e,l,o}

• Training sequence: {h,e,l,l,o}
• Four training examples:
• P(e|h) should be high
• P(l|he) should be high
• P(l|hel) should be high
• P(o|hell) should be high

• Embedding:
• Encode each character as a 4-dimensional vector

15
1Reference: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

LM Example: RNN

• Feed each vector into the RNN
• Output is a sequence of vectors
• Let dimension be 4
• Interpret as the confidence that the corresponding character is

the next in sequence 16

1Figure: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

We want green numbers
to be high and red
numbers to be low

LM Example: RNN

• Define loss as the cross entropy loss (i.e., multiclass
logistic) on every output vector simultaneously

• When first time {l} is input, the next character should
be {l}

• When the second time {l} is input, the next character
should be {o}

• Hence, we need state/persistence, which the RNN
hopefully captures

17

Questions?

18

Today’s Outline

• Recurrent Neural Networks
• Long-Short Term Memory based RNNs
• Sequence to Sequence Learning and other RNN

Applications

19

Long-Short Term Memory
RNNs

20

Long Term vs Short Term (I)

• Why are we looking at RNN?

• Hypothesis: enable the network to connect past
information to the current

• Can they persist both long and short range
information?
• It depends…

21

Long Term vs Short Term (II)

• Consider a model predicting next word based on
previous words

• Case A:
• R(“… advanced prediction”) = “models”
• Here, the immediate preceding words are helpful

• Case B:
• R(“I went to UIC… I lived in [?]”) = “Chicago”
• Here, more context is needed
• Recent info suggests [?] is a place.
• Need the context of UIC from further back 22

Long Term vs Short Term (II)

• Consider a model predicting next word based on
previous words

• Case A:
• R(“… advanced prediction”) = “models”
• Here, the immediate preceding words are helpful

• Case B:
• R(“I went to UIC… I lived in [?]”) = “Chicago”
• Here, more context is needed
• Recent info suggests [?] is a place.
• Need the context of UIC from further back 23

Long Term vs Short Term (III)

• Consider a model predicting next word based on
previous words

• Case A:

• Case B:

24
1Figures: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

A Special RNN: LSTM

• The gap between the relevant information and the point
where it is needed can become unbounded

• Empirical observation: Vanilla RNNs seem unable to learn to
connect long range information.

• This is a reason why we are looking at LSTMs (Long Short
Term Memory Cells)

25
1Reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Long Short Term Memory based RNN

• Potentially capable of learning long-term
dependencies

• Designed to avoid the long range issue that a vanilla
RNN faces
• How do they do that? We will address that now

26

LSTM: Block Level

• LSTM RNN have a similar structure to vanilla RNNs
• Only the repeating module is different
• Instead of a single neural layer, they have four

27
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Recall Notation

• Dark arrow represents a vector, output from one layer
and input to another

• Circle represents element-wise operations
• Example: sum of two vectors

• Box represents a (fully connected) hidden layer

28
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Cell State (I)

• There is a notion of cell state
• Horizontal line

29
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Cell State (I)

• There is a notion of cell state
• Horizontal line

30

LSTM: Cell State (II)

• Cell state:
• Runs straight down the unrolled network
• Minor interactions
• Information could flow along it unchanged

31
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Gates (I)

• The LSTM can add or remove information to the cell
state by regulating gates

• Gates optionally let information through
• Made of a sigmoid NN layer and a pointwise

multiplication

32
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Gates (I)

• The LSTM can add or remove information to the cell
state by regulating gates

• Gates optionally let information through
• Made of a sigmoid NN layer and a pointwise

multiplication

33

Mathematically,
𝑓 𝑢, 𝑣 = 𝑣 ⊗ 𝜎(𝑊𝑢 + 𝑏)

𝑣

𝑢

𝑓(𝑢, 𝑣)

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Gates (II)

• Gate:
• The sigmoid layer outputs numbers in (0,1)
• Determines how much of each component to let

through
• 0 means ‘do not let input through’
• 1 means ‘let input through’

34
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

𝑣

𝑢

𝑓(𝑢, 𝑣)

Mathematically,
𝑓 𝑢, 𝑣 = 𝑣 ⊗ 𝜎(𝑊𝑢 + 𝑏)

LSTM: Gates (III)

• LSTM has three gates to control the cell state

35
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

𝑣

𝑢

𝑓(𝑢, 𝑣)

LSTM: Forget Old Information

• First Step: what information to throw away from cell
state

• Decided by forget gate layer
• Input: ℎ678 and 𝑥6
• Output: a vector with entries in (0,1)

corresponding to entries in 𝐶678
• 1 corresponds to keep the input
• 0 corresponds to get rid of the input

36

LSTM: Forget Old Information

• Example: In the task of predicting the next word
based on all previous ones
• Cell state may include gender of current subject
• This will be useful to predict/use correct

pronouns (male: he, female: she)
• When a new subject is observed
• Need to forget the gender of old subject

37
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Remember New Information

• Next step: decide what new information we will store
in cell state

• Two ingredients
• Input gate layer
• Tanh layer

• Input gate layer
• Decides which values to update

• Tanh layer
• Creates a vector of new candidate values ;𝐶6 that

can be added to the cell state 38

LSTM: Remember New Information

• Next step: decide what new information we will store
in cell state

• Two ingredients
• Input gate layer
• Tanh layer

• Input gate layer
• Decides which values to update

• Tanh layer
• Creates a vector of new candidate values ;𝐶6 that

can be added to the cell state 39

LSTM: Remember New Information

• Next step: decide what new information we will store
in cell state

• Two ingredients
• Input gate layer
• Tanh layer

• Input gate layer
• Decides which values to update

• Tanh layer
• Creates a vector of new candidate values ;𝐶6 that

can be added to the cell state 40

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Remember New Information

• Combine ;𝐶6 with the output 𝑖6 of the input gate layer to
get 𝑖6 ⊗ ;𝐶6

• In the language model example
• Add the gender of the new subject to the cell state (this

replaces the old one we are forgetting)
41

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Forget and Remember

• Last step:
• Modify the cell state

• 𝑖6 ⊗ ;𝐶6 are the new values, scaled by how much we
want to update each coordinate of cell state

42
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Output

• Output a filtered or transformed version of cell state

• Two stages:
• Pass the cell state through a tanh layer
• Scale it with a sigmoid layer output
• The sigmoid layer decides what parts of the

cell state we will output

43

LSTM: Output

• In the language model example
• Since it just saw a new subject, it may output

information related to actions (verbs)
• Output whether the subject is singular or plural

so verb can be modified appropriately

44
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Architecture Summary

45

Forget Modify cell state

Remember Output

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Other Variations in the Family of RNNs (I)

• The vanilla RNN and the LSTM we saw are just one of
many variations

• Example: Gated Recurrent Unit (GRU)
• Combines the forget and input gates
• Merges the cell state and hidden state
• …

46
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Other Variations in the Family of RNNs (II)

• One can also go deep by stacking RNNs on top of
each other

47
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Other Variations in the Family of RNNs (II)

• One can also go deep by stacking RNNs on top of
each other

48
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Other Variations in the Family of RNNs (II)

• One can also go deep by stacking RNNs on top of
each other

49
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Other Variations in the Family of RNNs (III)

• Extensive investigation has been done to see which
variations are the best1,2

• As a practitioner, use popular architectures as starting
points

• To recap, we are studying RNNs because we:
• Want a notion of state/persistence to capture long

term dependence
• Want to process variable length sequences

50
1Reference: http://arxiv.org/pdf/1503.04069.pdf
2Reference: http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

Training RNNs

• These networks consist of differentiable operations
• Suitably define loss
• Run backpropagation to find best parameters

51

LSTM Recap: Accounting for Dimensions

• Think of ℎ6 as 2 dimensional and cell state as 2
dimensional

52
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Questions?

53

Today’s Outline

• Recurrent Neural Networks
• Long-Short Term Memory based RNNs
• Sequence to Sequence Learning and other RNN

Applications

54

Sequence to Sequence
Learning and other RNN
Applications

55

Example I: Sentence Classification

• We saw how to use a CNN for this task.
• Now, we can use an RNN as well:

56
1Additional Info: http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

Example II: Image Captioning

• Use CNNs and RNNs together to go from one data
type to another

57
1Figure: http://cs231n.stanford.edu/ Lecture 10

http://cs231n.stanford.edu/

Example II: Image Captioning

58
1Figure: http://cs231n.stanford.edu/ Lecture 10

http://cs231n.stanford.edu/

Example II: Image Captioning

59
1Figure: http://cs231n.stanford.edu/ Lecture 10

http://cs231n.stanford.edu/

Example II: Image Captioning

60
1Figure: http://cs231n.stanford.edu/ Lecture 10

http://cs231n.stanford.edu/

Example II: Image Captioning

61
1Figure: http://cs231n.stanford.edu/ Lecture 10

http://cs231n.stanford.edu/

Example II: Image Captioning

62
1Figure: http://cs231n.stanford.edu/ Lecture 10

http://cs231n.stanford.edu/

Example III: Auto-Reply

• In this family of applications, we want mapping
between variable length inputs to variable length
outputs

• Other applications:
• Translation
• Summarizing
• Speech transcription
• Question answering

63

Example III: Auto-Reply

• Auto-reply is a feature
where the computer
reads your email and
responds appropriately

64
1Figure: Quoc Le, Google Brain

Example III: Auto-Reply

• First version

• Note that the number of classes in output is the
number of words in the vocab!

65
1Figure: Quoc Le, Google Brain

Example III: Auto-Reply

• Second version

• Feed back the true output at each stage during initial training

66
1Figure: Quoc Le, Google Brain

Encoder Decoder

Example III: Auto-Reply

• As we saw with image captioning example,
• Given input sequence 𝑥, we first output 𝑦> which has

the highest probability
• Given 𝑥 and 𝑦>, we output 𝑦8, which has the highest

probability

• This is greedy
• Does not correct for mistakes

67
1Figure: Quoc Le, Google Brain

Example III: Auto-Reply
• Beam Search Decoding
• Retain 𝑘 best candidate output sequences up to the time we

see < end >

68
1Figure: Quoc Le, Google Brain

Example III: Auto-Reply
• Issue with second version: ℎD is the only link
• In fact, it is a fixed length vector. Whereas input is

variable length
• Can be fixed with an ‘attention’ layer

69
1Figure: Quoc Le, Google Brain

Encoder Decoder

Example IV: Speech Transcription

• Traditional pipeline has
• Acoustic model 𝑃(𝑜𝑢𝑡𝑝𝑢𝑡|𝑤𝑜𝑟𝑑)
• Language model 𝑃(𝑤𝑜𝑟𝑑)
• Feature engineering
• …

• Sequence to sequence learning can do ‘end-to-end’
without much feature engineering or blockwise
modeling

70

Example IV: Speech Transcription

• What we want is the following

71
1Figure: Quoc Le, Google Brain

Example IV: Speech Transcription

• Step 1: Get some fixed length vectors

72
1Figure: Quoc Le, Google Brain

Example IV: Speech Transcription

• Step 2: Pass through an encoder

73
1Figure: Quoc Le, Google Brain

Example IV: Speech Transcription
• Step 3: Decode
• This is only a high level idea. Many many challenges.

74
1Figure: Quoc Le, Google Brain

Questions?

75

Summary

• We motivated when RNNs can be used
• Understood the internal working of RNNs (incl. LSTMs)
• Looked at some details for of ‘sequence to sequence’

applications.
• These significantly extend beyond classification

76

Appendix

77

Sample Exam Questions

• What is the need for an RNN architecture?
• What shortcoming of vanilla RNNs does an LSTM RNN

attempt to fix?
• Describe how sentence classification can be done with

both an RNN and a CNN.

78

Yet Another Diagram of LSTM

79
By Tim Rocktäschel

Understanding LSTM: LSTMVis

• A visual tool to see which cell states do what

80
1Reference: https://github.com/HendrikStrobelt/LSTMVis

Tensorflow Seq2Seq/RNN Models

• For sequence to sequence modeling nuances,
especially about how to deal with variable length
training input and output data, see
https://www.tensorflow.org/tutorials/seq2seq/

81

https://www.tensorflow.org/tutorials/seq2seq/

Example III (Extension): Auto-Reply

• Third version: Attention Mechanism
• Ideally output could consider ‘attention’ to parts of history

82
1Figure: Quoc Le, Google Brain

Example III (Extension): Auto-Reply

• Could look at every state in the past

83
1Figure: Quoc Le, Google Brain

Example III (Extension): Auto-Reply

• So instead of returning a word, output the current
state

84
1Figure: Quoc Le, Google Brain

Example III (Extension): Auto-Reply

• Take inner products with previous states

85
1Figure: Quoc Le, Google Brain

Example III (Extension): Auto-Reply

• Take inner products with previous states

86
1Figure: Quoc Le, Google Brain

Example III (Extension): Auto-Reply

• Pass through a neural net layer to predict final word

87
1Figure: Quoc Le, Google Brain

Example III (Extension): Same with Translation!

• Same principle also applies for translation. The first
prediction learns to focus on certain part of the input

88
1Figure: Quoc Le, Google Brain

Example III (Extension): Auto-Reply

• The second prediction learns to focus on certain part
of the input

89
1Figure: Quoc Le, Google Brain

Example V: Object Recognition with Visual
Attention
• Even if we do not have sequences, we can still use

RNNs to process the single fixed input in a sequence

90
1Figure: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
2Reference: http://arxiv.org/abs/1412.7755

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

