Advanced Prediction Models

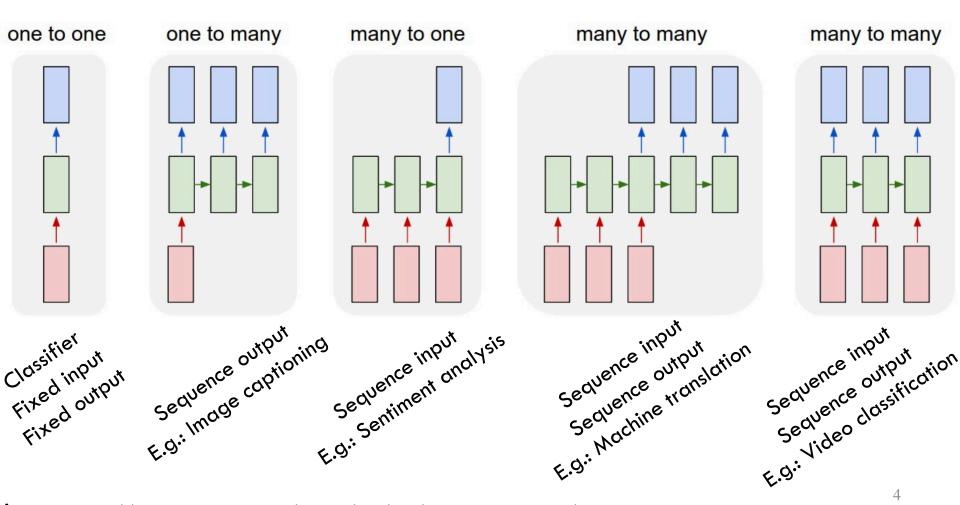
Today's Outline

- Recurrent Neural Networks
- Long-Short Term Memory based RNNs
- Sequence to Sequence Learning and other RNN Applications

Recurrent Neural Network

RNN Application Categories

Input: Red, Output: Blue, RNN's state: Green



¹Figure: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

The Idea of Persistence (I)

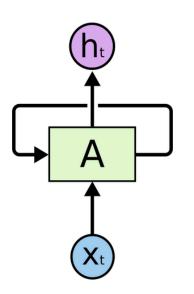
- Our thoughts have persistence
- We understand the present given what we have seen in the past
- Feedforward neural networks and CNNs don't explicitly model persistence
 - Example:
 - classify every scene in a movie
 - Output size (number of classes) is fixed
 - Number of layers is fixed
 - Unclear how a CNN can use information from previous scenes

The Idea of Persistence (II)

• Architectures called Recurrent Neural Networks address the idea of persistence explicitly

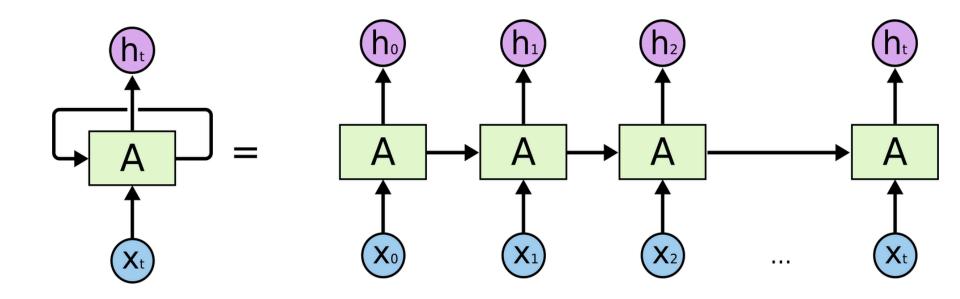
Unrolled Diagrams (I)

- Let A repersent a base network with two inputs and two outputs
- A loop based drawing of the architecture is as follows:



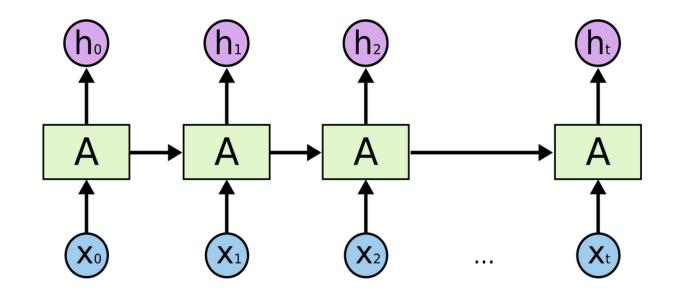
Unrolled Diagrams (II)

• Here is the unrolled representation



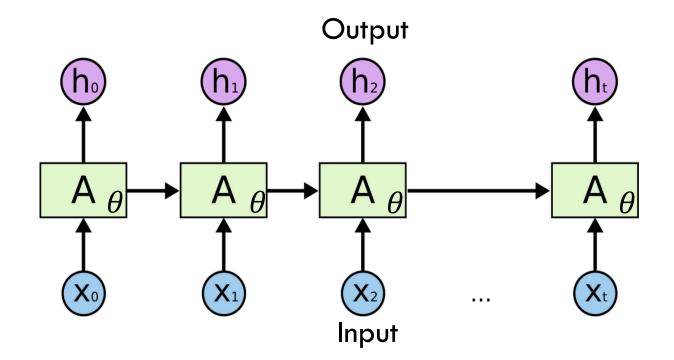
Unrolled Diagrams (III)

- This sequential or repetitive structure is useful for working with sequences
 - Of images
 - Of words



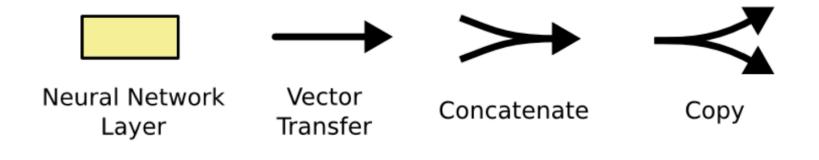
Unrolled Diagrams (V)

• At a stage, they accept an input and give an output, which are parts of sequences



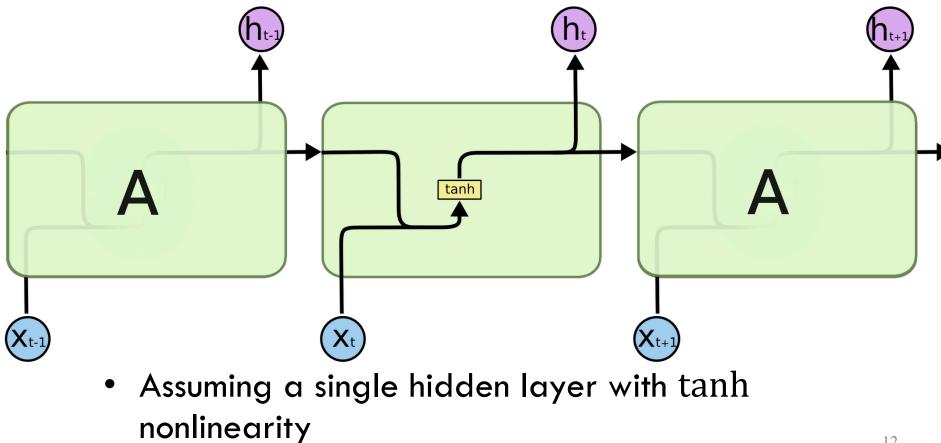
Vanilla RNN (I)

- Some quick notation
 - Dark arrow represents a vector
 - Box represents a (fully connected hidden) layer



Vanilla RNN (II)

- Unrolled representation is key to understanding
 - For vanilla RNN it is:



¹Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanilla RNN using Numpy

• Training an RNN means finding θ (e.g., W and b) that give rise to a desired behavior quantified by a loss function **import** numpy as np

```
class RNN:
    #...
def __init__(self,len_h,len_x):
    self.h = np.zeros(len_h)
    self.W = np.random.randn(len_h,len_h+len_x)
    self.bias = np.random.randn(len_h)
    #...
def step(self,x_t):
    activation = np.dot(self.W,np.hstack((self.h,x_t))) + self.bias
    self.h = np.tanh(activation)
    return self.h #could have returned g(self.h) for some function g
```

```
rnn = RNN(3,4)
for _ in range(5):
    x_t = np.random.randn(4)
    h_t = rnn.step(x_t)
    print h t
```

Language Model (LM) Example

- Build a character-level language model
 - Give RNN a large text dataset
 - Model the probability of the next character given a sequence of previous characters
- Application: allows us to generate new text, can be used as a prior for classification tasks

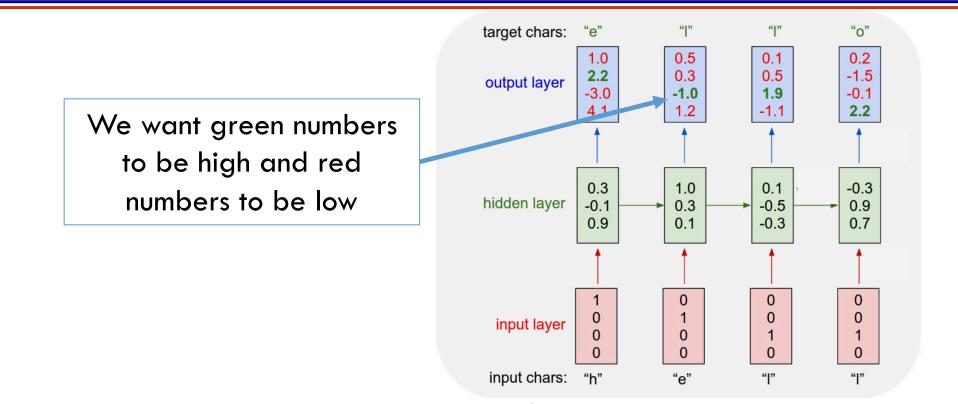
• Note: This is a toy example

LM Example: Data and Embedding

- Vocabulary: {h,e,l,o}
- Training sequence: {h,e,l,l,o}
 - Four training examples:
 - P(e|h) should be high
 - P(I|he) should be high
 - P(I|hel) should be high
 - P(o|hell) should be high
- Embedding:
 - Encode each character as a 4-dimensional vector

¹Reference: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

LM Example: RNN



- Feed each vector into the RNN
- ¹Figure: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- Output is a sequence of vectors
 - Let dimension be 4
 - Interpret as the confidence that the corresponding character is the next in sequence

LM Example: RNN

- Define loss as the cross entropy loss (i.e., multiclass logistic) on every output vector simultaneously
- When first time {I} is input, the next character should be {I}
- When the second time {I} is input, the next character should be {o}
- Hence, we need state/persistence, which the RNN hopefully captures

Questions?

Today's Outline

- Recurrent Neural Networks
- Long-Short Term Memory based RNNs
- Sequence to Sequence Learning and other RNN Applications

Long-Short Term Memory RNNs

Long Term vs Short Term (I)

- Why are we looking at RNN?
 - Hypothesis: enable the network to connect past information to the current
 - Can they persist both long and short range information?
 - It depends...

Long Term vs Short Term (II)

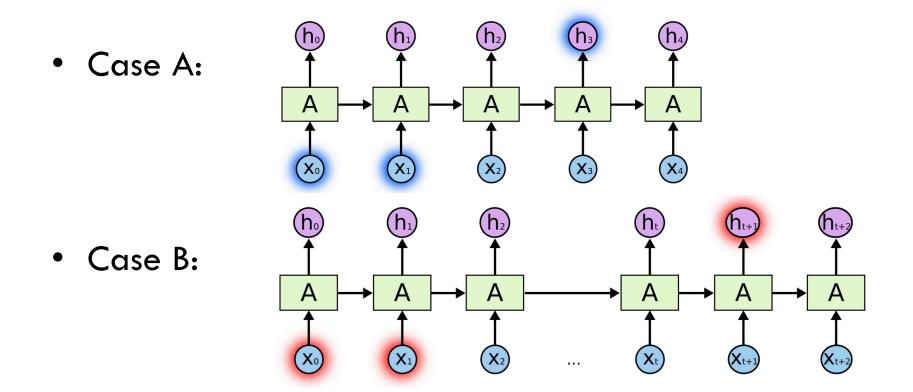
- Consider a model predicting next word based on previous words
- Case A:
 - R("... advanced prediction") = "models"
 - Here, the immediate preceding words are helpful

Long Term vs Short Term (II)

- Consider a model predicting next word based on previous words
- Case A:
 - R("... advanced prediction") = "models"
 - Here, the immediate preceding words are helpful
- Case B:
 - R("I went to UIC... I lived in [?]") = "Chicago"
 - Here, more context is needed
 - Recent info suggests [?] is a place.
 - Need the context of UIC from further back

Long Term vs Short Term (III)

 Consider a model predicting next word based on previous words



A Special RNN: LSTM

• The gap between the relevant information and the point where it is needed can become unbounded

• Empirical observation: Vanilla RNNs seem unable to learn to connect long range information.

 This is a reason why we are looking at LSTMs (Long Short Term Memory Cells)

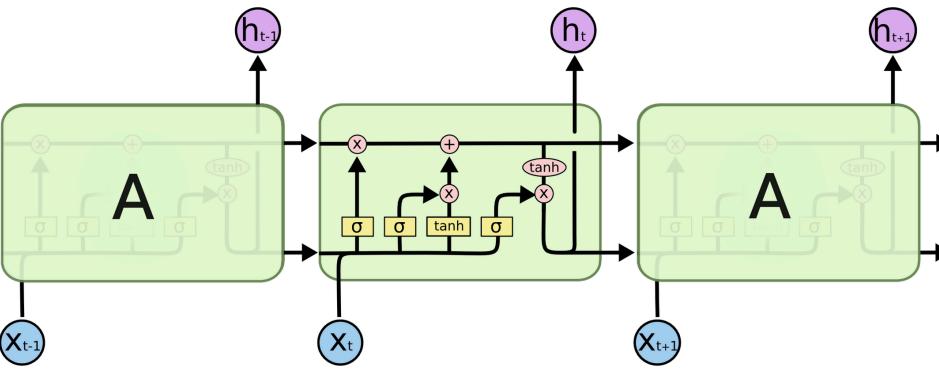
¹Reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Long Short Term Memory based RNN

- Potentially capable of learning long-term dependencies
- Designed to avoid the long range issue that a vanilla RNN faces
 - How do they do that? We will address that now

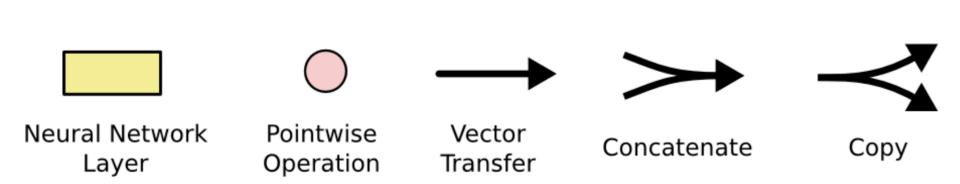
LSTM: Block Level

- LSTM RNN have a similar structure to vanilla RNNs
- Only the repeating module is different
- Instead of a single neural layer, they have four



¹Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

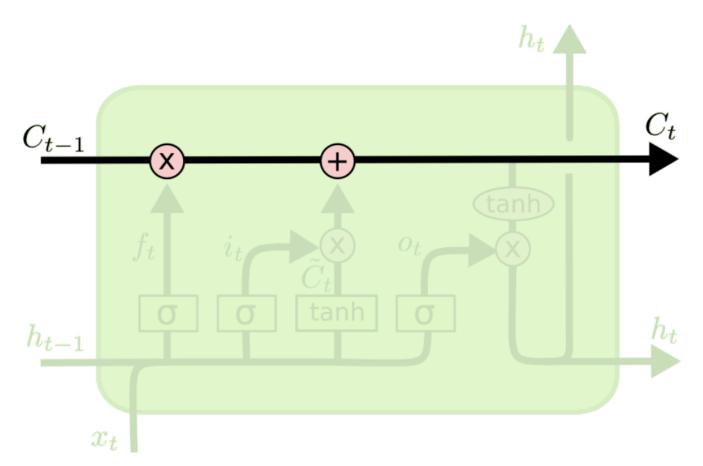
LSTM: Recall Notation



- Dark arrow represents a vector, output from one layer and input to another
- Circle represents element-wise operations
 - Example: sum of two vectors
- Box represents a (fully connected) hidden layer

LSTM: Cell State (I)

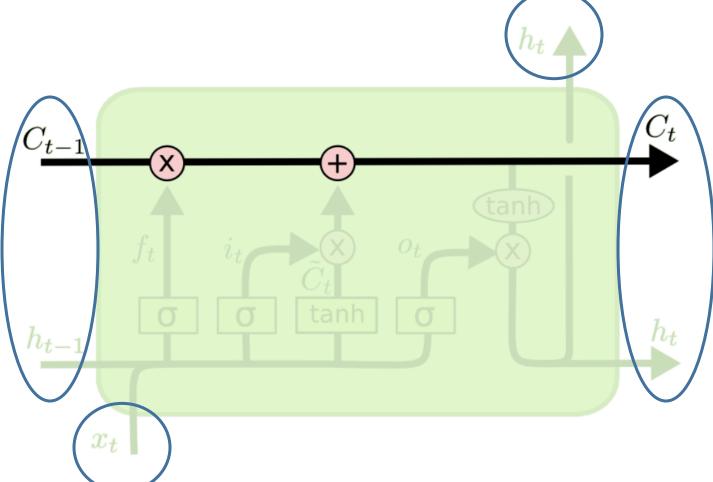
- There is a notion of cell state
 - Horizontal line



¹Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

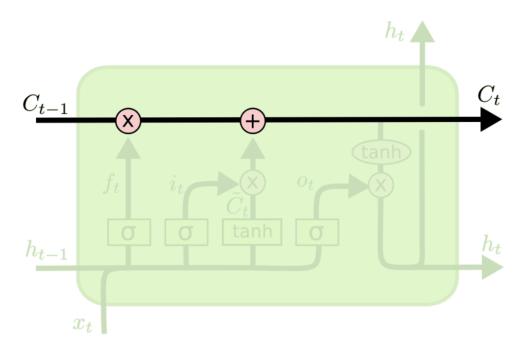
LSTM: Cell State (I)

- There is a notion of cell state
 - Horizontal line



LSTM: Cell State (II)

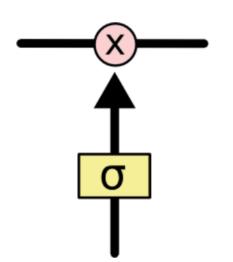
- Cell state:
 - Runs straight down the unrolled network
 - Minor interactions
 - Information could flow along it unchanged



LSTM: Gates (I)

 The LSTM can add or remove information to the cell state by regulating gates

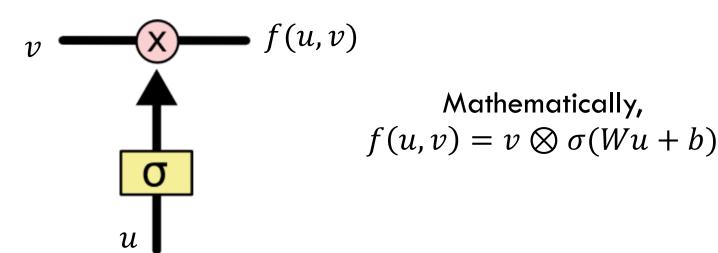
- Gates optionally let information through
 - Made of a sigmoid NN layer and a pointwise multiplication



LSTM: Gates (I)

 The LSTM can add or remove information to the cell state by regulating gates

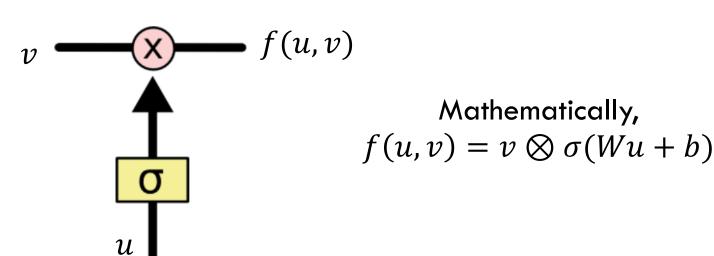
- Gates optionally let information through
 - Made of a sigmoid NN layer and a pointwise multiplication



¹Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Gates (II)

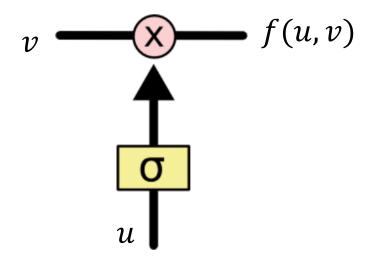
- Gate:
 - The sigmoid layer outputs numbers in (0,1)
 - Determines how much of each component to let through
 - 0 means 'do not let input through'
 - 1 means 'let input through'



¹Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Gates (III)

• LSTM has three gates to control the cell state



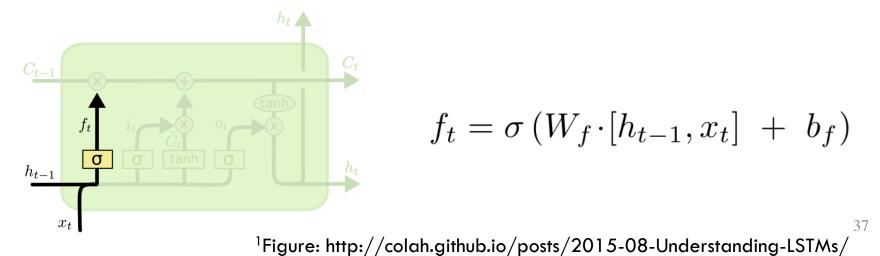
LSTM: Forget Old Information

• First Step: what information to throw away from cell state

- Decided by forget gate layer
 - Input: h_{t-1} and x_t
 - Output: a vector with entries in (0,1) corresponding to entries in C_{t-1}
 - 1 corresponds to keep the input
 - 0 corresponds to get rid of the input

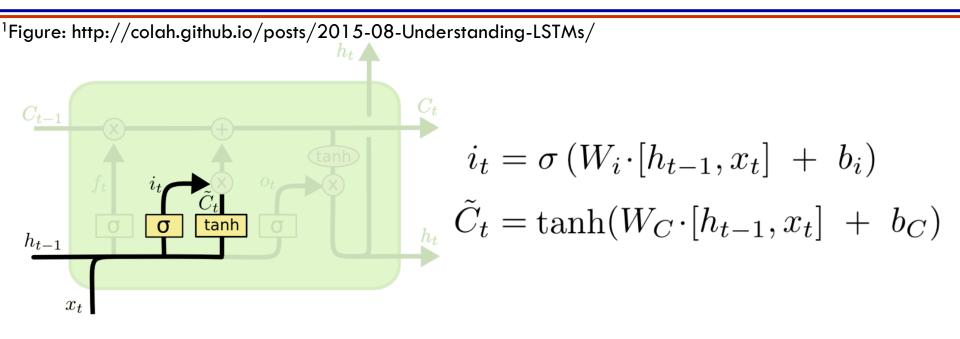
LSTM: Forget Old Information

- Example: In the task of predicting the next word based on all previous ones
 - Cell state may include gender of current subject
 - This will be useful to predict/use correct pronouns (male: he, female: she)
 - When a new subject is observed
 - Need to forget the gender of old subject

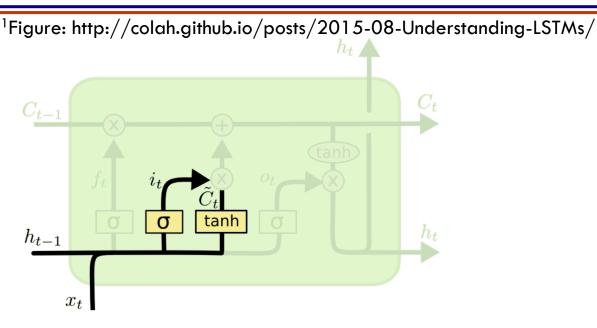


- Next step: decide what new information we will store in cell state
- Two ingredients
 - Input gate layer
 - Tanh layer
- Input gate layer
 - Decides which values to update

- Next step: decide what new information we will store in cell state
- Two ingredients
 - Input gate layer
 - Tanh layer
- Input gate layer
 - Decides which values to update
- Tanh layer
 - Creates a vector of new candidate values \tilde{C}_t that can be added to the cell state



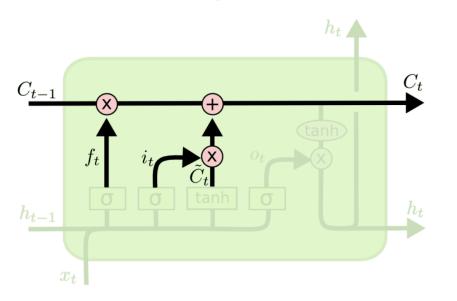
- Input gate layer
 - Decides which values to update
- Tanh layer
 - Creates a vector of new candidate values $ilde{C}_t$ that can be added to the cell state 40



- Combine \tilde{C}_t with the output i_t of the input gate layer to get $i_t \otimes \tilde{C}_t$
- In the language model example
 - Add the gender of the new subject to the cell state (this replaces the old one we are forgetting)

LSTM: Forget and Remember

- Last step:
 - Modify the cell state



$$C_t = f_t \otimes C_{t-1} + i_t \otimes \tilde{C}_t$$

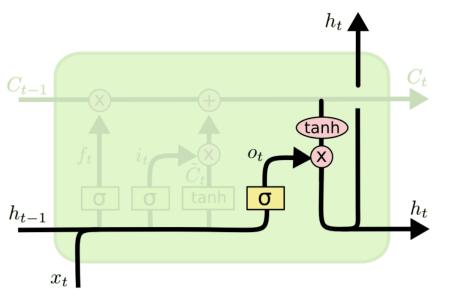
• $i_t \otimes \tilde{C}_t$ are the new values, scaled by how much we want to update each coordinate of cell state

LSTM: Output

- Output a filtered or transformed version of cell state
- Two stages:
 - Pass the cell state through a tanh layer
 - Scale it with a sigmoid layer output
 - The sigmoid layer decides what parts of the cell state we will output

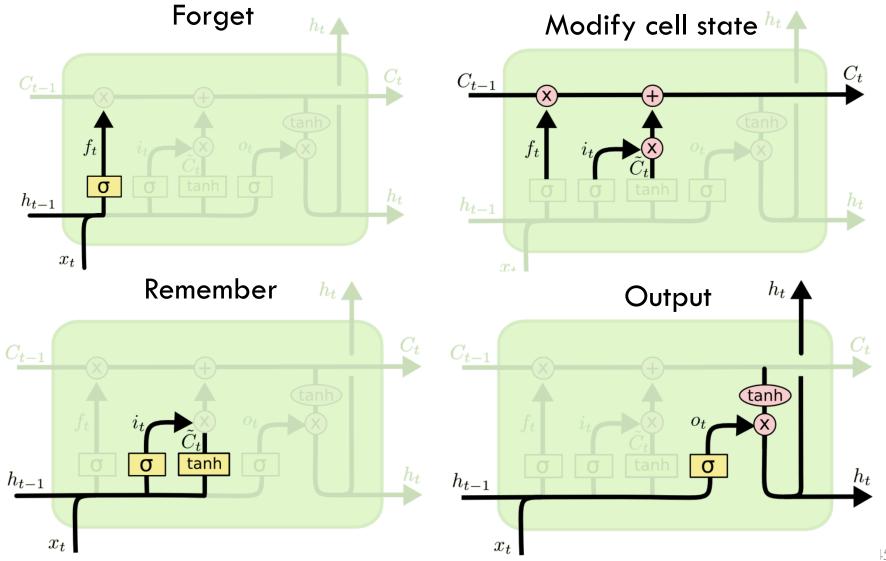
LSTM: Output

- In the language model example
 - Since it just saw a new subject, it may output information related to actions (verbs)
 - Output whether the subject is singular or plural so verb can be modified appropriately



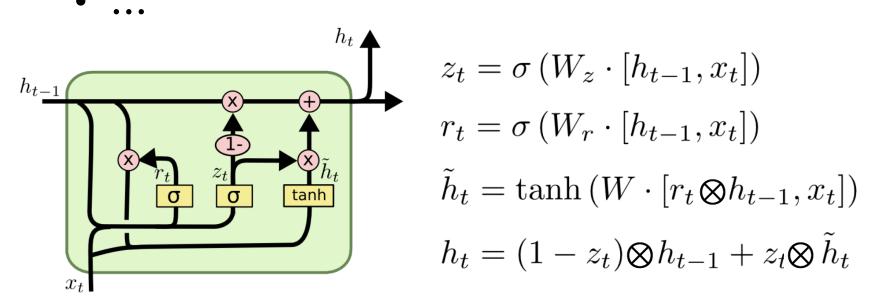
 $o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$ $h_t = o_t \otimes \tanh \left(C_t \right)$

LSTM: Architecture Summary



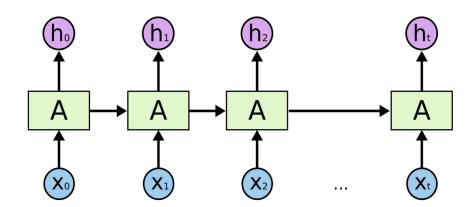
Other Variations in the Family of RNNs (I)

- The vanilla RNN and the LSTM we saw are just one of many variations
- Example: Gated Recurrent Unit (GRU)
 - Combines the forget and input gates
 - Merges the cell state and hidden state



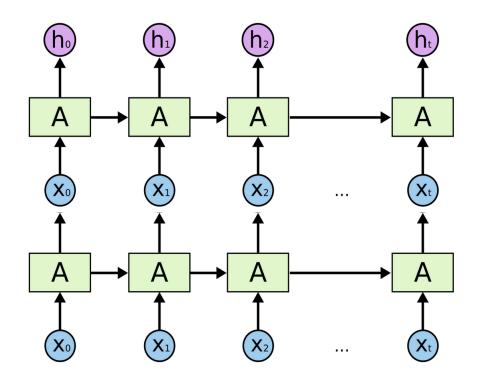
Other Variations in the Family of RNNs (II)

 One can also go deep by stacking RNNs on top of each other



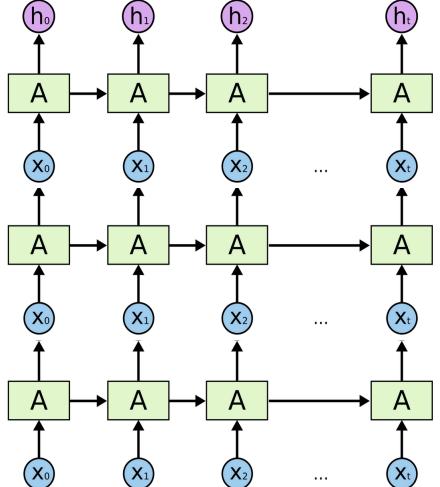
Other Variations in the Family of RNNs (II)

 One can also go deep by stacking RNNs on top of each other



Other Variations in the Family of RNNs (II)

One can also go deep by stacking RNNs on top of each other



Other Variations in the Family of RNNs (III)

• Extensive investigation has been done to see which variations are the best^{1,2}

- As a practitioner, use popular architectures as starting points
- To recap, we are studying RNNs because we:
 - Want a notion of state/persistence to capture long term dependence
 - Want to process variable length sequences

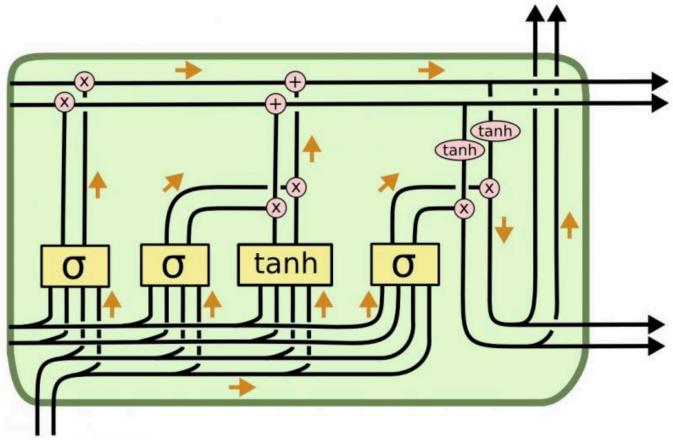
¹Reference: http://arxiv.org/pdf/1503.04069.pdf ²Reference: http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

Training RNNs

- These networks consist of differentiable operations
- Suitably define loss
- Run backpropagation to find best parameters

LSTM Recap: Accounting for Dimensions

• Think of h_t as 2 dimensional and cell state as 2 dimensional



Questions?

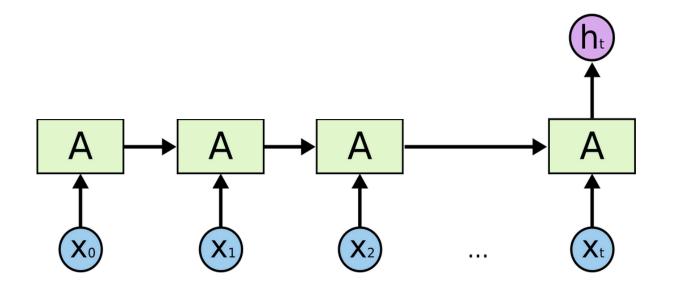
Today's Outline

- Recurrent Neural Networks
- Long-Short Term Memory based RNNs
- Sequence to Sequence Learning and other RNN Applications

Sequence to Sequence Learning and other RNN Applications

Example I: Sentence Classification

- We saw how to use a CNN for this task.
- Now, we can use an RNN as well:

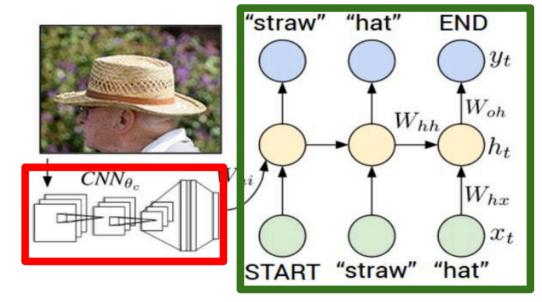


56

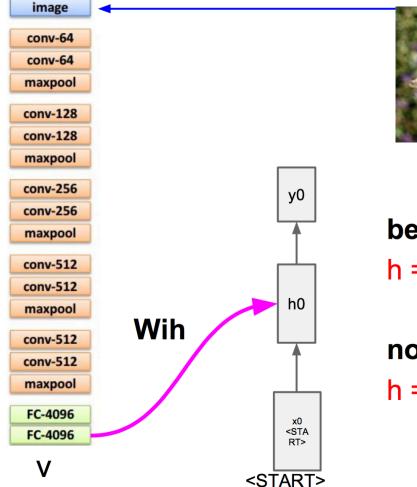
¹Additional Info: http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

• Use CNNs and RNNs together to go from one data type to another

Recurrent Neural Network

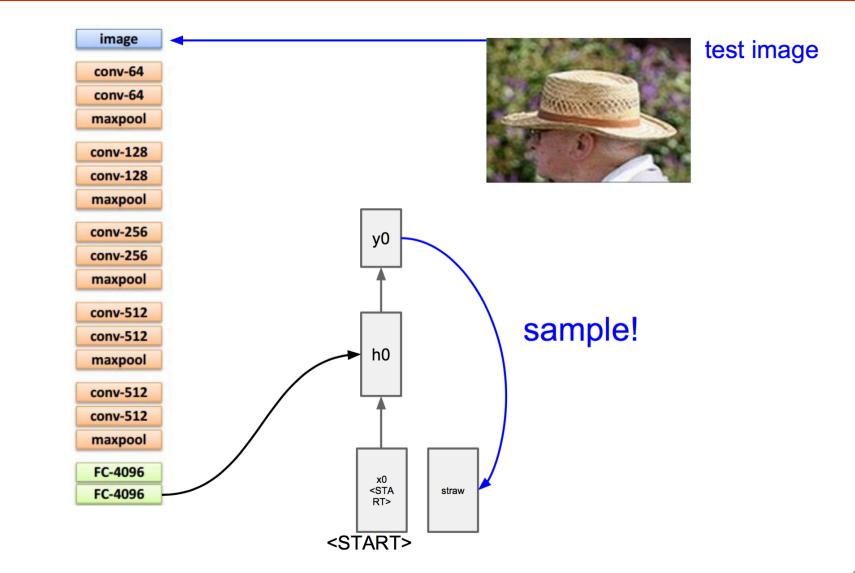


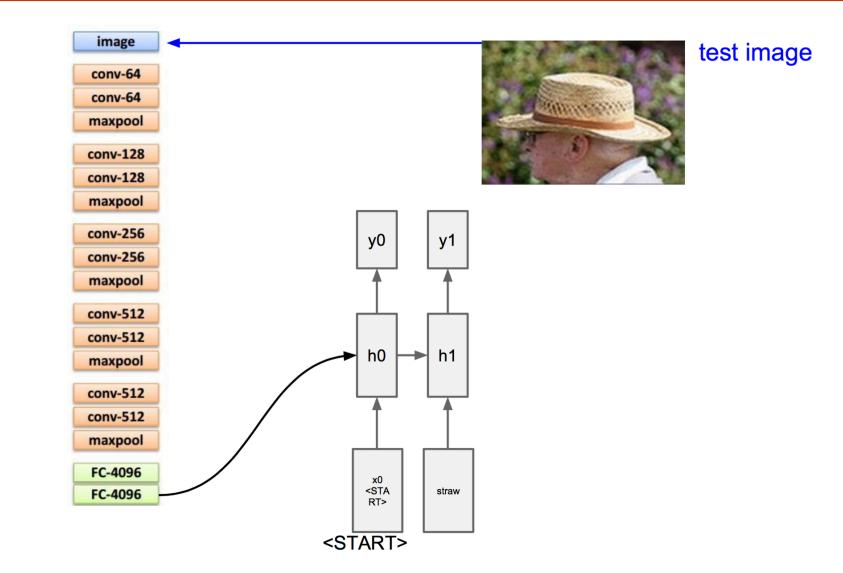
Convolutional Neural Network

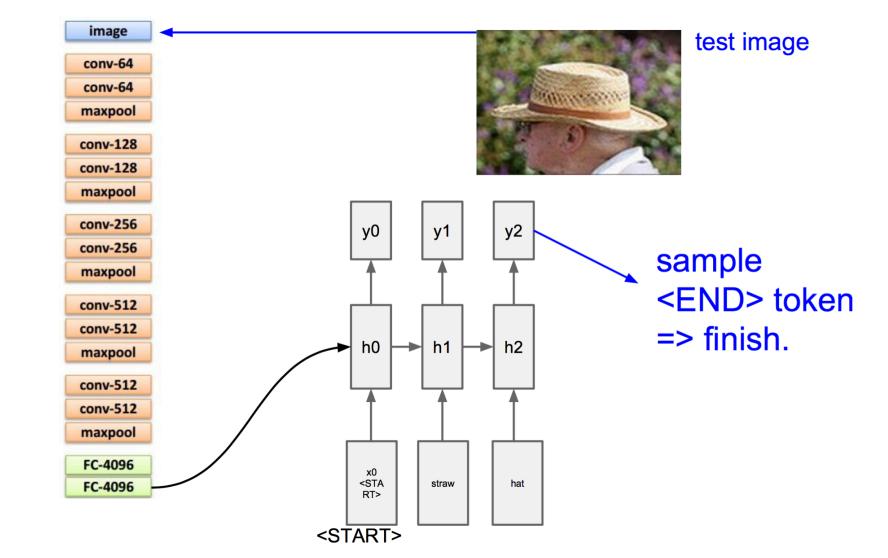


test image

now: h = tanh(Wxh * x + Whh * h + Wih * v)

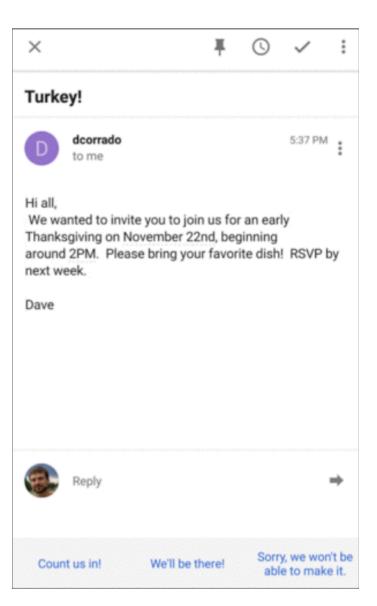




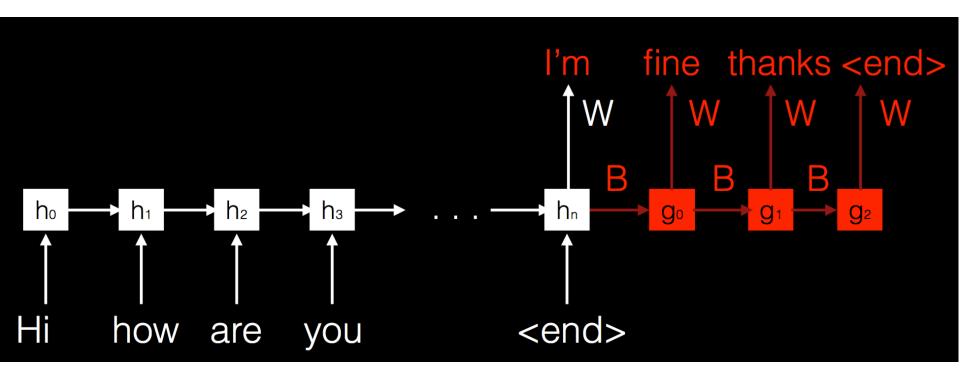


- In this family of applications, we want mapping between variable length inputs to variable length outputs
- Other applications:
 - Translation
 - Summarizing
 - Speech transcription
 - Question answering

 Auto-reply is a feature where the computer reads your email and responds appropriately

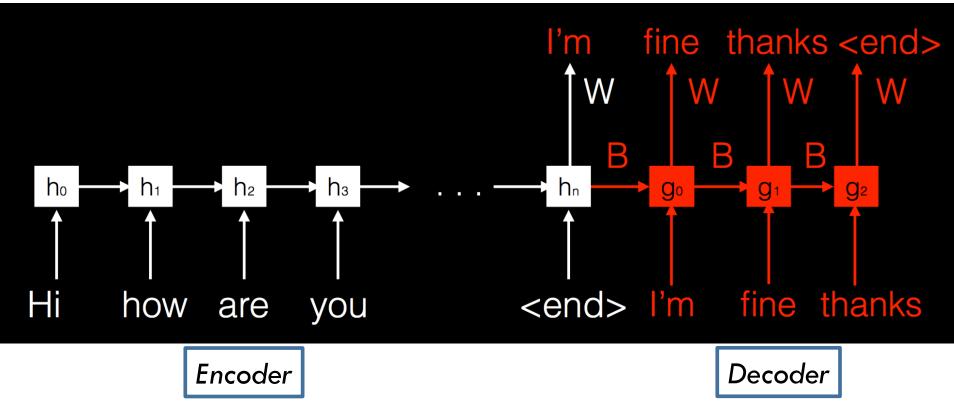


• First version



• Note that the number of classes in output is the number of words in the vocab!

• Second version

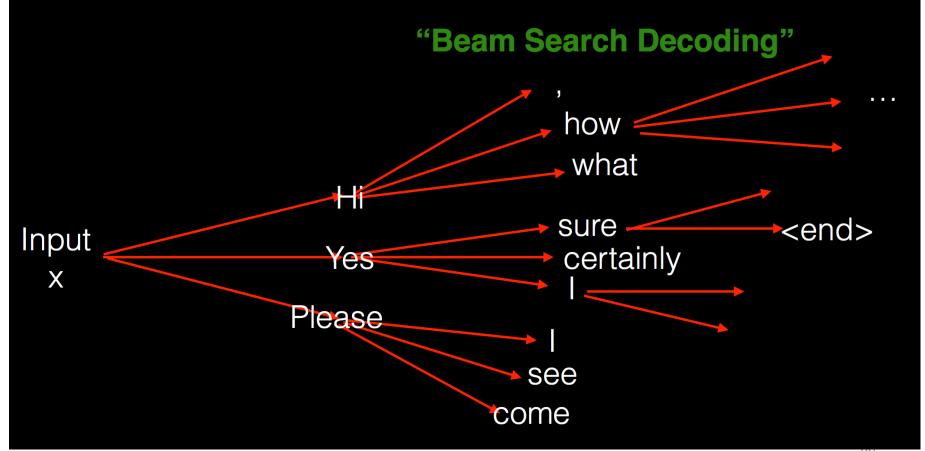


• Feed back the true output at each stage during initial training

- As we saw with image captioning example,
- Given input sequence x, we first output y_0 which has the highest probability
- Given x and y_0 , we output y_1 , which has the highest probability

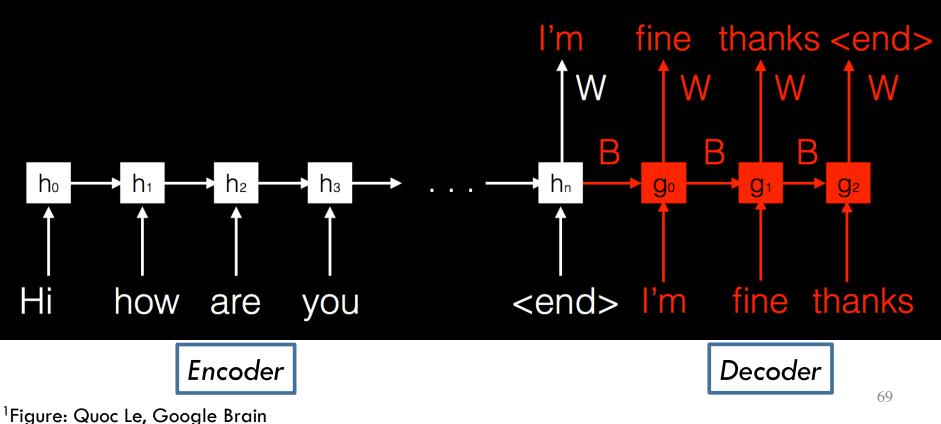
- This is greedy
 - Does not correct for mistakes

- Beam Search Decoding
- Retain k best candidate output sequences up to the time we see < end >



¹Figure: Quoc Le, Google Brain

- Issue with second version: h_n is the only link
 - In fact, it is a fixed length vector. Whereas input is variable length
- Can be fixed with an 'attention' layer



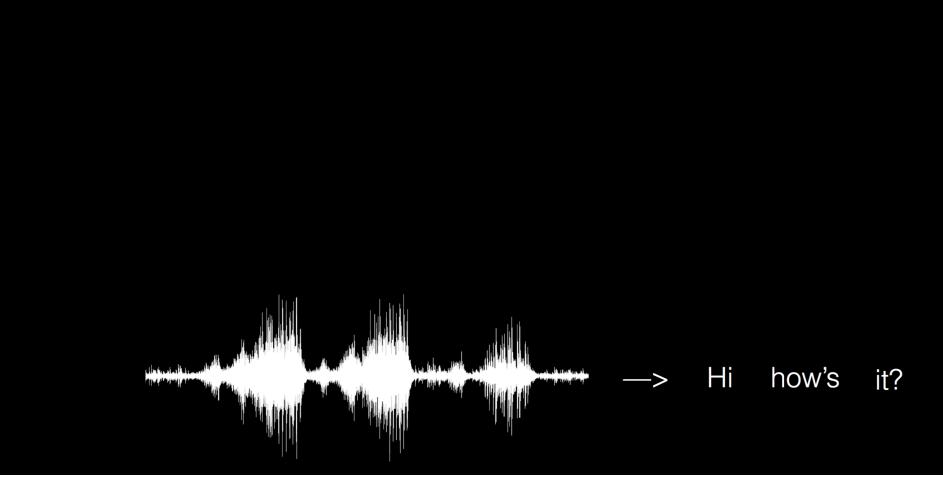
Example IV: Speech Transcription

- Traditional pipeline has
 - Acoustic model P(output|word)
 - Language model P(word)
 - Feature engineering
 - ..

 Sequence to sequence learning can do 'end-to-end' without much feature engineering or blockwise modeling

Example IV: Speech Transcription

• What we want is the following

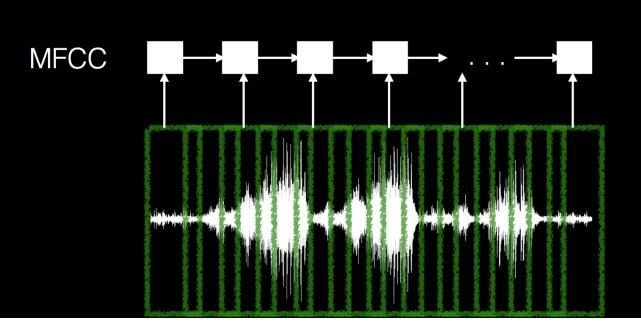


Example IV: Speech Transcription

• Step 1: Get some fixed length vectors

Example IV: Speech Transcription

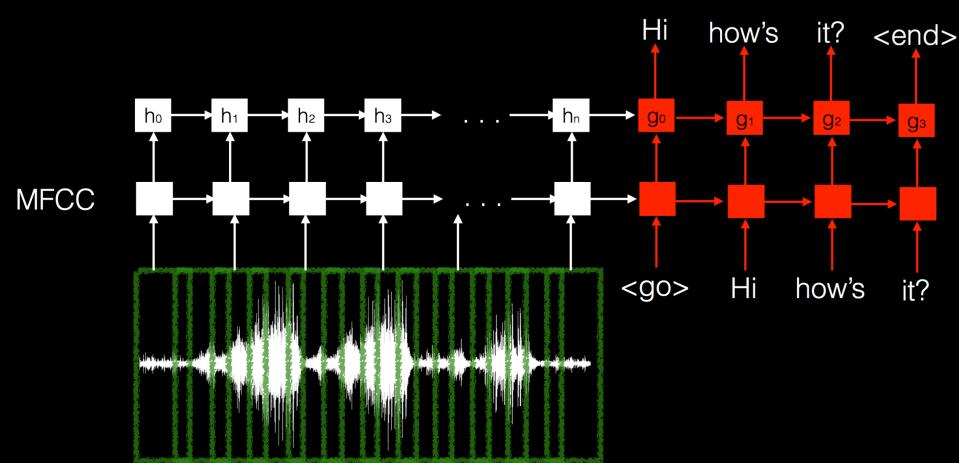
• Step 2: Pass through an encoder



¹Figure: Quoc Le, Google Brain

Example IV: Speech Transcription

- Step 3: Decode
- This is only a high level idea. Many many challenges.



¹Figure: Quoc Le, Google Brain

Questions?

Summary

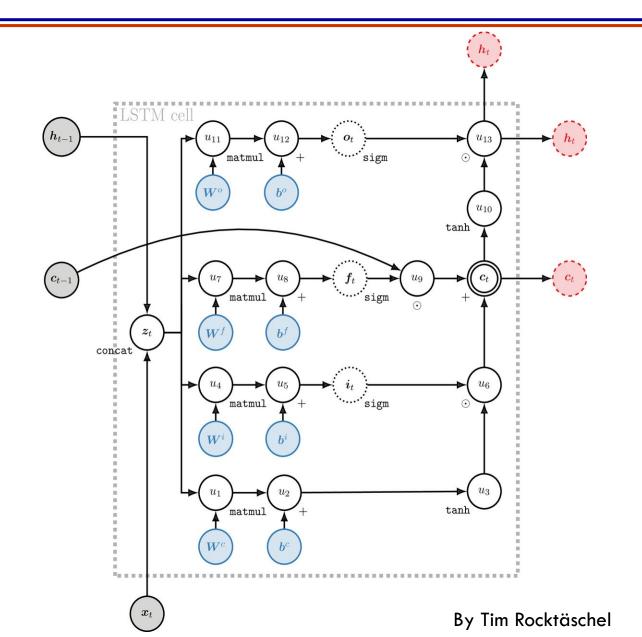
- We motivated when RNNs can be used
- Understood the internal working of RNNs (incl. LSTMs)
- Looked at some details for of 'sequence to sequence' applications.
 - These significantly extend beyond classification

Appendix

Sample Exam Questions

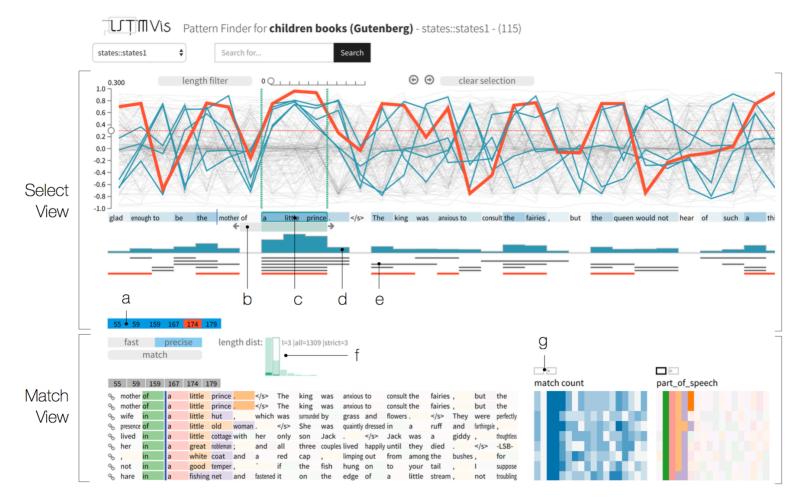
- What is the need for an RNN architecture?
- What shortcoming of vanilla RNNs does an LSTM RNN attempt to fix?
- Describe how sentence classification can be done with both an RNN and a CNN.

Yet Another Diagram of LSTM



Understanding LSTM: LSTMVis

• A visual tool to see which cell states do what

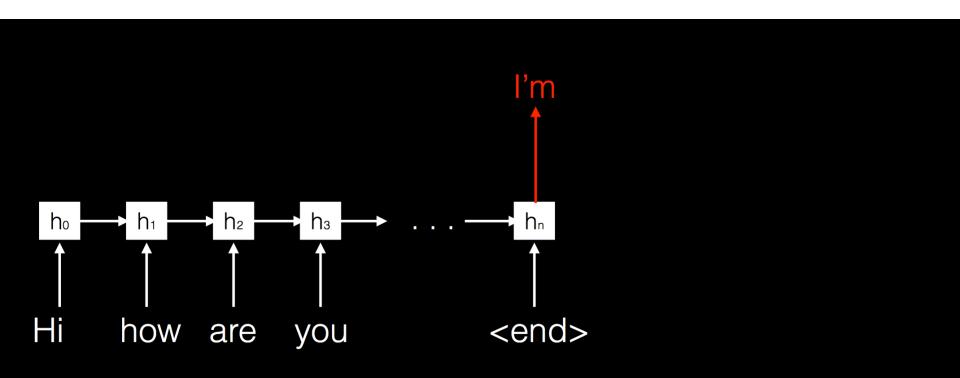


¹Reference: https://github.com/HendrikStrobelt/LSTMVis

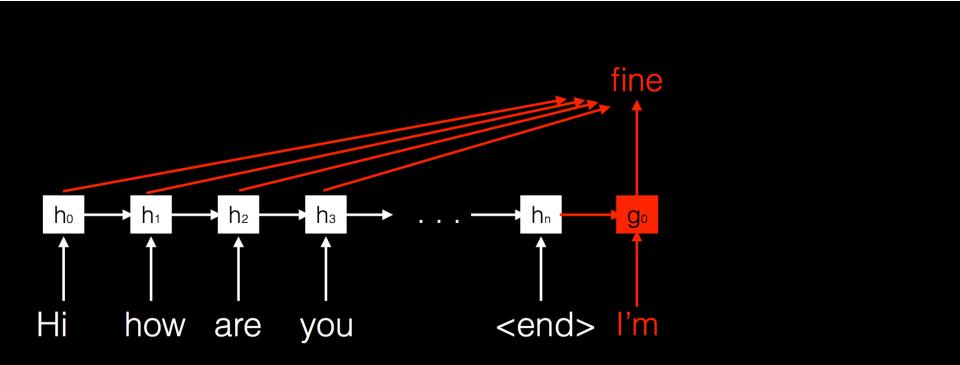
Tensorflow Seq2Seq/RNN Models

 For sequence to sequence modeling nuances, especially about how to deal with variable length training input and output data, see <u>https://www.tensorflow.org/tutorials/seq2seq/</u>

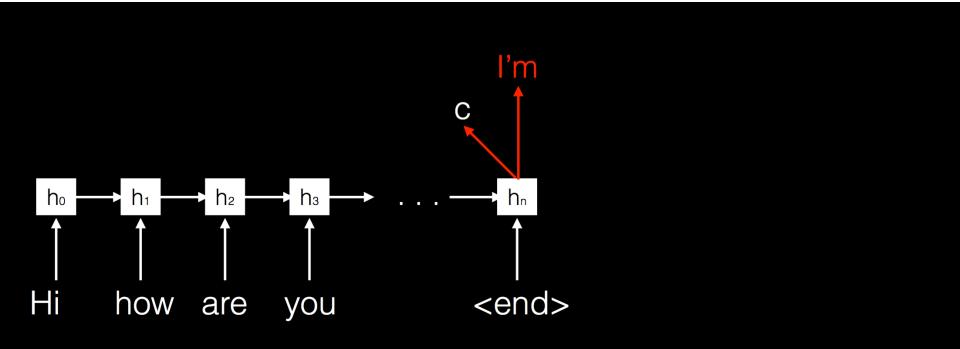
- Third version: Attention Mechanism
- Ideally output could consider 'attention' to parts of history



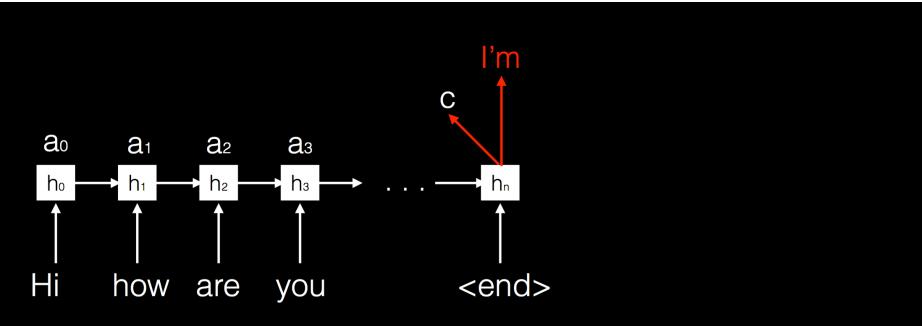
• Could look at every state in the past



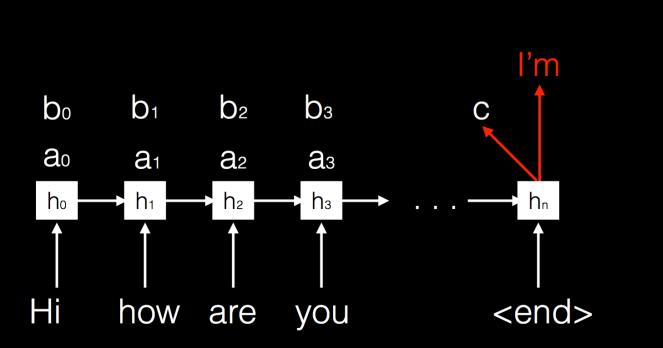
• So instead of returning a word, output the current state



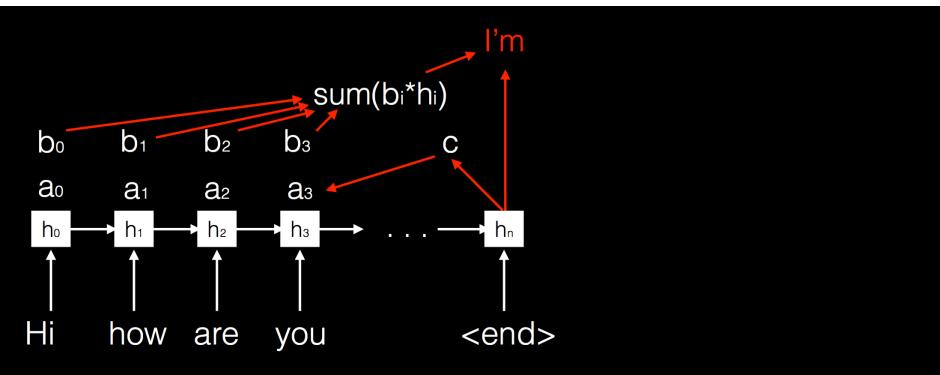
• Take inner products with previous states



• Take inner products with previous states

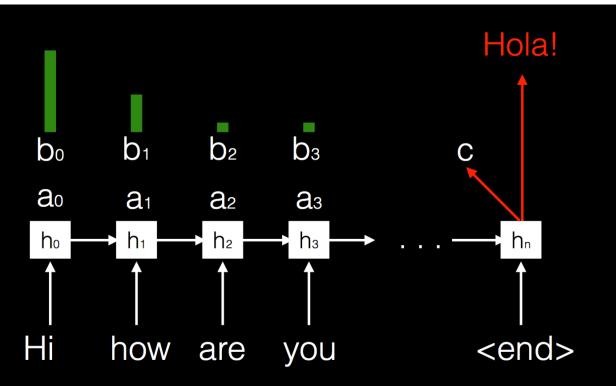


• Pass through a neural net layer to predict final word

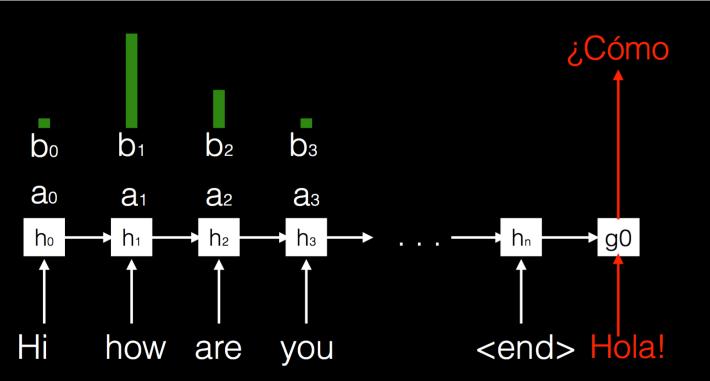


Example III (Extension): Same with Translation!

• Same principle also applies for translation. The first prediction learns to focus on certain part of the input

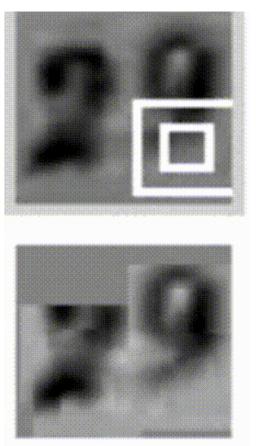


• The second prediction learns to focus on certain part of the input



Example V: Object Recognition with Visual Attention

• Even if we do not have sequences, we can still use RNNs to process the single fixed input in a sequence



¹Figure: <u>http://karpathy.github.io/2015/05/21/rnn-effectiveness/</u> ²Reference: http://arxiv.org/abs/1412.7755