Advanced Prediction
Models



Today’s Outline

* Unsupervised Learning Landscape
* Autoencoders and Variational Autoencoders (VAE)

* Generative Adversarial Networks (GAN)



Unsupervised Learning
Landscape



Unsupervised Learning

* Supervised learning
* Involves feature and label pairs as training data

* Goal is to find a map from feature to label /value

* Unsupervised learning
* Involves only feature vectors
* Example: images
* Goalis to learn some patterns of data
* There is no objective measure of success

TReference: CS231n (Stanford, Spring 17)



Unsupervised Learning Tasks

* Clustering

* Association rules

* Dimensionality reduction
* Density estimation

* Embedding ;
* Sampling

K-means clustering

TReference: CS231n (Stanford, Spring 17)



Unsupervised Learning Tasks

* Clustering
* Association rules
* Dimensionality reduction
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Unsupervised Learning Tasks

* Clustering
e Association rules

* Dimensionality reduction

original data space

* Density estimation

component space

SV 0 Iar -

* Embedding

* Sampling

PC1

2-d

TReference: CS231n (Stanford, Spring 17)



Unsupervised Learning Tasks

* Clustering
e Association rules

* Dimensionality reduction

* Density estimation

. Embedding B /\

* Sampling 1-d density estimation
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TReference: CS231n (Stanford, Spring 17)



Unsupervised Learning Tasks

* Clustering
e Association rules

* Dimensionality reduction
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'Reference: CS231n (Stanford, Spring 17)



Unsupervised Learning Tasks

* Clustering
* Association rules
* Dimensionality reduction

* Density estimation

* Embedding ﬂ“é Enﬂ“
Semelns g L 1 W Y B
B

'Reference: https:/ /www.youtube.com/watch2v=rs3al7bACGc




Learning a Distribution

* Given (large amount of) data drawn from P, we
want to estimate P,, such that samples from P,,, are as
similar as possible to samples from P,

* Two approaches:
* Explicit
* |f we construct P, explicitly, we can address all
the other tasks mentioned
* Implicit
* We can directly generate a sample from B,
without explicitly defining it!

TReference: lan Goodfellow (NIPS 2016 Tutorial)



Explicit and Implicit Approaches
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TReference: lan Goodfellow (NIPS 2016 Tutorial)



Explicit and Implicit Approaches

* When would we be okay with an implicit approach
* Simulate possible futures for planning

* When samples themselves are useful for other
tasks...

TReference: lan Goodfellow (NIPS 2016 Tutorial)
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Explicit and Implicit Approaches

* When would we be okay with an implicit approach
* Simulate possible futures for planning

* When samples themselves are useful for other
tasks...

original bicubic SRResNet SRGAN
(21.59dB/0.6423) (23.44dB/0.7777)

14
TReference: lan Goodfellow (NIPS 2016 Tutorial), Ledig et al. 2016



Explicit and Implicit Approaches

* When would we be okay with an implicit approach
* Simulate possible futures for planning

* When samples themselves are useful for other
tasks...

Input Ground truth

Labels to Street Scene Y

ial
1 /‘ ¢
N

TReference: lan Goodfellow (NIPS 2016 Tutorial)



Explicit and Implicit Approaches

* We will look at one model under each approach and
work with image data

* Explicit: Variational Autoencoders (VAE)

* Implicit: Generative Adversarial Networks (GAN)

* Both use neural networks as a core object

TReference: lan Goodfellow (NIPS 2016 Tutorial)
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More than Memorization

* Either model (VAE or GAN) will essentially build the
yellow box below:

~ generated distribution true data distribution
A
p(x)
unit gaussiar/
generative
Q model .
2 || (neural net) N e

\ image space image space

TReference: https://blog.openai.com/generative-models/



Questions?



Today’s Outline

* Unsupervised Learning Landscape
* Autoencoders and Variational Autoencoders (VAE)

* Generative Adversarial Networks (GAN)

19



Autoencoders and
Variational Autoencoders



Neural Net as a Transformation Map

* NN is a function that maps an input to output
* Here is a decenvelutional /transposed-convolutional

network
3
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TReference: http:/ /kvfrans.com/variational-autoencoders-explained /



Neural Net as a Transformation Map

* Transposed convolution is also a linear map
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'Reference: http://deeplearning.net/software /theano_versions/dev /tutorial /conv_arithmetic.html#transposed-convolution-arithmetic



Transformation from a Single Vector

* For example, set inputs to all ones

* Train network to reduce MSE between its output and
target image

* Then information related to image is captured in
network parameters

3@ A o v, ,"
~ AN J & 4‘,,'
\ deconv \ dleconv _
layer ayer =
vector of ones target image

TReference: http:/ /kvfrans.com/variational-autoencoders-explained /



Transformation from Multiple Vectors

* Do the same with multiple input vectors (e.g., one hot
encoded)

* These input vectors are called codes. The network is
called a decoder.

* |n an autoencoder, we also have an ‘encoder’ that
takes original images and ‘codes’ them

e Encoder Decoder
Network — — Decoder
(conv) (deconv)

latent vector / variables

24

TReference: http:/ /kvfrans.com/variational-autoencoders-explained /



Autoencoder: The Obijective

* Captures information in training data

* The latent variable z (also called code) can be
thought of as embedding

* Keep the dimension of z smaller than input X,
otherwise we have a trivial solution

* If we choose a larger dimension, add noise to x
during training (this is called a denoising

autoencoder) Reconstructed %
input data A
Decoder
Features A
)
Encoder
Input data €T

TReference: http:/ /kvfrans.com/variational-autoencoders-explained /



Autoencoder: The Architecture

* No labels are needed here

L2 Loss function:

|z —2|* <

!

Reconstructed 7
input data
I Decoder
Features A
I Encoder
£

Input data

TReference: CS231n (Stanford, Spring 2017)
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Autoencode

r: Uses

Encoder can be
used to initialize a
supervised model

Predicted Label

A

Loss function
(Softmax, etc)

ZAN

Classifier

Features

4

A

Encoder

Input data

i

Fine-tune
encoder
jointly with
classifier

\

4

* Reduction in dimension achieved by the encoder is useful
* Just like PCA
* Captures meaningful variations in the data via the

embeddings

* Named ‘autoencoder’ because it attempts to reconstructs

original data

* Cannot generate new samples yet!

TReference: CS231n (Spring 2017)



Variational Autoencoder

* Probabilistic extension of autoencoding
* The intuitive idea is to make Z random, and in
particular make P, a Gaussian

* |If we can manage this, then we can sample from P,
and generate new images

* Two high level changes needed
* Architecture
* Loss function

TReference: http:/ /kvfrans.com/variational-autoencoders-explained /



Variational Autoencoder: Loss

e lLoss will be sum of two losses
e Reconstruction loss

* Latent loss (how far from Gaussian the distribution
obtained from encoder is)

* Measured using KL divergence

* Encoder generates the mean and covariance of
the Gaussian

* We will look at the math behind this shortly

TReference: http:/ /kvfrans.com/variational-autoencoders-explained /



Variational Autoencoder: Architecture

* Architecture involves a sampling in between

mean vector

sampled
latent vector

A

Encoder e Decoder

Network Network
N -

(conv) (deconv)

standard deviation
vector

TReference: http:/ /kvfrans.com/variational-autoencoders-explained /

30



Variational Autoencoder: Architecture

* Architecture involves a sampling in between

* Can still backprop given realized sample

mean vector
sampled
latent vector

” N
Encoder N Decoder
Network Network

N ~
(conv) (deconv)

standard deviation
vector
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TReference: http:/ /kvfrans.com/variational-autoencoders-explained /



Variational Autoencoder: Generalization

* This sampling allows for generalization
* Gaussian noise ensures we are not remembering
only the training data

* Once we have trained, we can sample from o
Gaussian and pass it through the decoder to get a
new image

TReference: http:/ /kvfrans.com/variational-autoencoders-explained /



Variational Autoencoder: Samples

* Experiments on MNIST

* Samples generated during training (left, center)

and original data
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TReference: http:/ /kvfrans.com/variational-autoencoders-explained /



VAE: Derivation

e Assume a model as below

* Variable x represents image, Z represents the latent
variable

* We want to estimate 8

Sample from

true conditional "
po-( | 2% ) t
Sample from

true prior >
po=(2)

34
TReference: CS321n (Stanford, Spring 2017)



VAE: Derivation

* Let P, be Gaussian
* Let P(x|z) be a neural network: decoder

* We can ’rroin by quimizing likelihood of training

data pg(x fpg 2)pg(x|z)dz
Sample from
true conditional "
po-( | 2% ) t
Sample from
true prior >
po=(2)

TReference: CS321n (Stanford, Spring 2017)



VAE: Derivation

* Let P, be Gaussian
* Let P(x|z) be a neural network: decoder

* We can ’rroin by quimizing likelihood of training

data pg(x fpg 2)pg(x|z)dz
Sample from
true conditional "
po-( | 2% ) t
Sample from
true prior >
po=(2)

36
TReference: CS321n (Stanford, Spring 2017)



VAE: Derivation

* We will also make the encoder probabilistic

Sample z from z|:1: ~ N(uz|x, 2z|m) Sample x|z from :U|z ~ N(Ma:|z, Zm|z)
Uz|m zla: Ij’m|z fl?lz
Encoder network Decoder network
po(z|2)
(parameters ¢) (parameters 0)

37
TReference: CS321n (Stanford, Spring 2017)



Aside: Notion of Information

* Information: —log P(x)
* Entropy: — ), P(x)log P(x)

* KL divergence:

* A notion of dissimilarity between two distributions

P
+ Dy (pllg) = L P(x)log

TReference: lan Goodfellow (NIPS 2016 Tutorial)



VAE: Derivation

log pg(z?) = E, qs(zlz®) [logpg(a:(i))] (po(z'?) Does not depend on z)

39
TReference: CS321n (Stanford, Spring 2017)



VAE: Derivation

log pg(z?) = E, qs(zlz®) [logpg(a:(i))] (po(z'?) Does not depend on z)

po(zV) | 2)po(2)
po(z | @)

=B, {log ] (Bayes’ Rule)

TReference: CS321n (Stanford, Spring 2017)
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VAE: Derivation

log po(z(?) = E, g, (zz®) [logpg(a:(i))] (pe(x?) Does not depend on 2)

po(zV) | 2)po(2)
po(z | @)
po(zV) | 2)py(2)

= E, |log

-

] (Bayes” Rule)

gs(z | z¥)

=E, |log :
po(z | z)

TReference: CS321n (Stanford, Spring 2017)

qs(z | 1))

] (Multiply by constant)

41



VAE: Derivation

log pg(z'")) = E, g, (zz®) [lngg(ZE(i))] (pe(x?) Does not depend on 2)

Pe(l‘(i) | 2)pa(2)
po(z | (™)
po(z) | 2)pe(2) qs(z | )

po(z | @) gg(z | z®)

= E, |log

-

] (Bayes” Rule)

=E, |log ] (Multiply by constant)

- , (2) (2)
=E, |logpg(z® | z)] —E, [log 4z | 2 )] +E, [log 4z | 2 : )] (Logarithms)
- pe(2) po(z | z®)

42
TReference: CS321n (Stanford, Spring 2017)



VAE: Derivation

log pg(z'")) = E, g, (zz®) [lngg(Cl)(i))] (pe(x?) Does not depend on 2)

[ (2)
=E. |log po(z™ | z)pg(z)] (Bayes” Rule)
_ po(z | )

po(z™ | 2)pe(2) gy (2 | ™)
po(z | x@)  gqg(z | @)

=E, |log ] (Multiply by constant)

- , (2) (2)
=E. |logpe(z? | z)] —E, [log 4z | 2 )] +E, [log 4z | 2 : )] (Logarithms)
- pe(2) po(z | z®)

= E. [logps(z? | 2)| — Drer(ao(2 | 29) [|po(2)) + Drcr(a6(z | 2?) | po(z | 29))

43
TReference: CS321n (Stanford, Spring 2017)



VAE: Derivation

e The first two terms constitute a lower bound for the

data likelihood that we can maximize tractably

—E. [logpe(ar“)IZ)} Dkr(gs(z | 29) || po(z ))+DKL(qo(Z|fL’ ) llpo(z | 21))

N

E(x(z), 6, 0)

log pe(z™) > Lz, 0, ¢)
Variational lower bound (“ELBO”)

* The first term of L is essentially reconstruction error

* The second term of L is making the encoder network

close to Gaussian prior

TReference: CS321n (Stanford, Spring 2017)
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VAE: Derivation

* |n summary,

Sample x|z from £U|Z ~ N(uw|z, Zm|z)

A

i

N

Hz|z

lez

Decoder network

po(z|2)

Sample z from z|a: ~ N(uz|a,-, Zzlm)

Encoder network

94(2|7)

Input Data

TReference: CS321n (Stanford, Spring 2017)
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VAE: Samples

* We can create new samples!

A

£

Sample x|z from CE|Z ~ N(Mx|z, Eaz:|z)

N

Hz|z

Z:1:|2:

Decoder network

po(z|2) \/

Z

Sample z from z ~ N(0, I)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

TReference: CS321n (Stanford, Spring 2017)
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: Experiments

VAE

* Some generated samples

dz

Data manifold for 2-
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Further reading
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TReference: CS321n (Stanford, Spring 2017)



Questions?



Today’s Outline

* Unsupervised Learning Landscape
* Autoencoders and Variational Autoencoders (VAE)

* Generative Adversarial Networks (GAN)
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Generative Adversarial
Networks



GANs: Two Scenarios

* Overall Idea: Instead of working with an explicit
density function, GANs take an ‘adversarial’ or
‘game-theoretic’ approach

TReference: lan Goodfellow (NIPS 2016 Tutorial)
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GANs: Two Scenarios

D(x) tries to be
near 1

D tries to make
D(G(z)) near 0,
G tries to make

D(G(z)) near 1

*

Differentiable
function D

?

.-

data

)

. ( z sampled from

x sampled from
model

T

Differentiable
function G

f

Y YaYa Yo

Input noise z

TReference: lan Goodfellow (NIPS 2016 Tutorial)
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The Generator and the Discriminator

* Assume X = G@g(Z)

e Differentiable

* Dg,(X) takes values in {0,1}

Discriminator Data
\ : .', Model
------------ A/distribution

L]
.

LJ L
~.

JIN

TReference: lan Goodfellow (NIPS 2016 Tutorial)
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The Generator and the Discriminator

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

Dlscnmlnator Network

Fake Images
(from generator) |

Generator Network
} After training, use generator network to

generate new images

Real Images
(from training set)

Random noise z

TReference: CS231n (Stanford, Spring 2017)



The Generator and the Discriminator

Real world
images

N

—

Sample

Generator

G(z2)

Differentiable module

Real D(x)

Discriminator

y
Y
$S07

Sample

Latent random variable
OO

k/ Differentiable module

Fake D(G(Z))
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'Reference: https://www.slideshare.net/xavigiro /deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



The Objectives

* The generator and the discriminator are playing o
minimax game.

* J(D) = —Ep,logD(x) — Ep, log(1 — D(x))
* Where B, (x) is the derived distribution using
G(z) and P,

* J(G) = —J(D)

TReference: lan Goodfellow (NIPS 2016 Tutorial)
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The Objectives

* The optimal strategy for the discriminator at
equilibrium is

. _ Pg(x)
D(x) = 5 o+rmem

TReference: lan Goodfellow (NIPS 2016 Tutorial)
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The Objectives

* The optimal strategy for the discriminator at
equilibrium is

. _ Pg(x)
D(x) = 5 o+rmem

* The optimal strategy for the generator is to find
parameters such that

* Py = Py

TReference: lan Goodfellow (NIPS 2016 Tutorial)
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The Training Procedure

* Create a minibatch of real data

* Create a minibatch of generated data
* Score the discriminator

* Backprop to update the parameter 6,
* Score the generator

* Backprop to update the parameter 6,

TReference: lan Goodfellow (NIPS 2016 Tutorial)



The Training Procedure

Minimax objective function:
min max [Eprdata log Dod (w) + IEsz(z) log(l _ ng (Geg (z)))]

0, 6a

Alternate between:
1. Gradient ascent on discriminator

max []anpdam log Dy, () + E;p(z) log(1 — Dy, (G, (z)))]
d

2. Gradient descent on generator

minE, () log(1 ~ Dp,(G, (=)

60
TReference: lan Goodfellow (NIPS 2016 Tutorial)



The Training Procedure

Realworld ——
images

Real
L O =
Discriminator > ‘ - 9
w
Fake
Generator

Backprop error to
update discriminator
weights

Latent random variable
OO0

61
'Reference: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



The Training Procedure

Latent random variable

'Reference

Generator
-

OO0

Sample

Discriminator

Real

'
O
y

SSO07

Fake

Backprop error to
update generator
weights
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: https:/ /www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



Example Generator Architecture

* DCGAN

256
r—%
512 N
|
10,24 ' 16 Stride 2
I 1 — 1
4 5
100 z = i i
Code Project and Stride 2

TReference: lan Goodfellow (NIPS 2016 Tutorial)

Deconv 2

(2
J

Deconv 3

Stride 2

N
Deconv 4 |

Image
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GAN Properties: Latent Space

* Consider Deep Convolutional Generative Adversarial

Network (DCGAN)

* You can walk from one point to another in the
bedroom latent quce (e d. 6”‘ omd 10™ rows)

64
"References: http://arxiv.org/abs/1511.06434 and https://github.com/Newmu/dcgan_code



http://arxiv.org/abs/1511.06434

GAN Properties: Latent Space Arithmetic as
a Byproduct

sl B 0

Woman

Wlth glasses

Woman with Glasses

65
TReference: lan Goodfellow (NIPS 2016 Tutorial)



GAN Properties: Mode Collapse Issue

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

TReference: lan Goodfellow (NIPS 2016 Tutorial)
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GAN: Experiments

* Experiments on CIFAR-10 (only generated images below)

* Code: https:/ /github.com /kvfrans /generative-adversial

67
'Reference: http://kvfrans.com/generative-adversial-networks-explained /



Questions?



VAE and GAN

* VAEs
* Are generative models that use regularized log
likelihood to approximate performance score

* Tend to achieve higher likelihoods of data, but the
generated samples don’t have real-world
properties like sharpness

* Can compare generated images with original
images, which is not possible with GANs

* Part of graphical models with principled theory



VAE and GAN

* GANs

* Are generative models that use a supervised learning
classifier to approximate performance score

* No constraint that a ‘bed’ should look like a ‘bed’

* Try to solve an intractable game, vastly more difficult
to train

* Tend to have sharper image samples

 Start with latent variables and transform them
deterministically

* There is no Markov chain style of sampling required

* They are asymptotically consistent (will converge to
P;), whereas VAEs are not

* Many many variations have been proposed in the past
3 years (>150I)

TReference: lan Goodfellow (NIPS 2016 Tutorial)



VAE and GAN

VAE

v : Given an X easy to find z.
v : Interpretable probability P(X)

Encoder z Decoder — é

X: Usually outputs blurry Images

GAN

z Generator
v : Very sharp images i

Discriminator

X: Given an X difficult A

i OO
to find z. (;\Jeed to ;',g%gsg\
backprop.

LLRALXRR
L0
'.'::0:::‘.

v IX: No explicit P(X).
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Summary

* Both models are recent (VAEs from 2013, GANs from
2014) and have initiated very exciting new directions
in machine learning and Al

* Useful in many applications such as

* Image denoising

* Image Super-resolution
* Reinforcement learning
* Generating embeddings
* Artistic help

* Eventually help the computer understand the world
better

TReference: https://blog.openai.com/generative-models/



Appendix



Sample Exam Questions

* What are the uses of generative models?

* What is the difference between a regular
autoencoder and a variational autoencoder?

* What is the qualitative objective of the discriminator
in a GAN? What is the qualitative objective of the
generator?

e Describe some differences between a VAE model and

a GAN.



Maximum Likelihood Estimation |

TReference: lan Goodfellow (NIPS 2016 Tutorial)
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Maximum Likelihood Estimation |l

Step 1: observe a set of samples Step 2: assume a GMM model

40

30 - p($|6 Zﬂ-’& x‘:u’&? )
20 *

10

Step 3: perform maximum likelihood learning

o . "t > logp(dlzt?))

max
-10 A

x(J) €Dataset

_20 T T T T
=20 -10 0 10 20 30

76
TReference: ICCV 2017 GAN Tutorial, Ming-Yu et al.



KL Divergence

q" = argmingDkw(p||q) ¢" = argming Dkw(q||p)
— p(z) ,‘\ — p(=)
> >
= - q"(z) % | - q(z)
- - \
) )
- -
iy Z
2 Z
@ 4v)
o) Q
2 2
ol Ay

Maximum likelihood Reverse KL
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TReference: lan Goodfellow (NIPS 2016 Tutorial)



