Advanced Prediction Models

Today's Outline

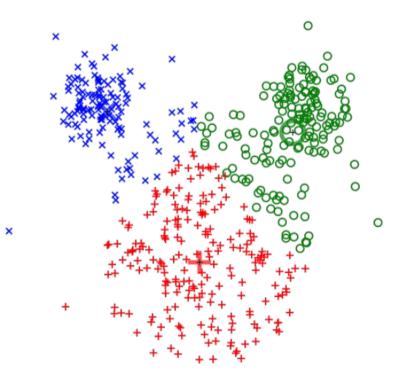
- Unsupervised Learning Landscape
- Autoencoders and Variational Autoencoders (VAE)
- Generative Adversarial Networks (GAN)

Unsupervised Learning Landscape

Unsupervised Learning

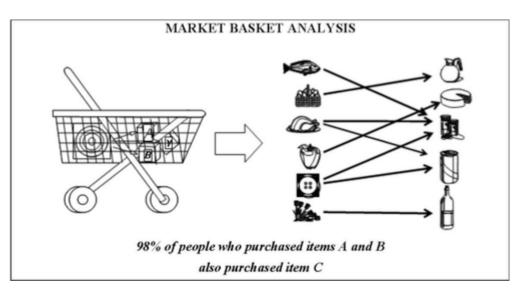
- Supervised learning
 - Involves feature and label pairs as training data
 - Goal is to find a map from feature to label/value
- Unsupervised learning
 - Involves only feature vectors
 - Example: images
 - Goal is to learn some patterns of data
 - There is no objective measure of success

- Clustering
- Association rules
- Dimensionality reduction
- Density estimation
- Embedding
- Sampling



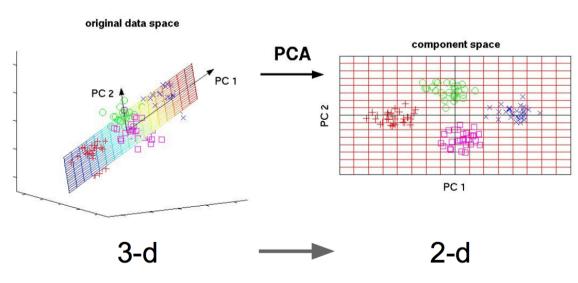
K-means clustering

- Clustering
- Association rules
- Dimensionality reduction
- Density estimation
- Embedding
- Sampling



¹Figure:mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/42541/versions/3/screenshot.jpg

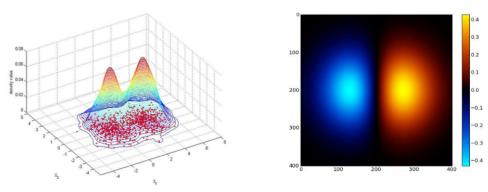
- Clustering
- Association rules
- Dimensionality reduction
- Density estimation
- Embedding
- Sampling



- Clustering
- Association rules
- Dimensionality reduction
- Density estimation
- Embedding
- Sampling

Figure copyright Ian Goodfellow, 2016. Reproduced with permission.

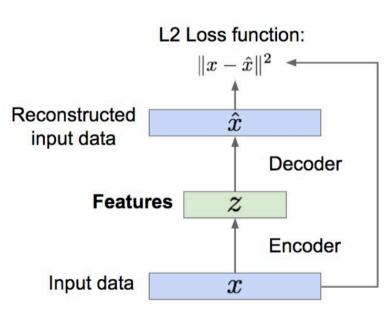
1-d density estimation



2-d density estimation

¹Reference: CS231n (Stanford, Spring 17)

- Clustering
- Association rules
- Dimensionality reduction
- Density estimation
- Embedding
- Sampling



Reconstructed data

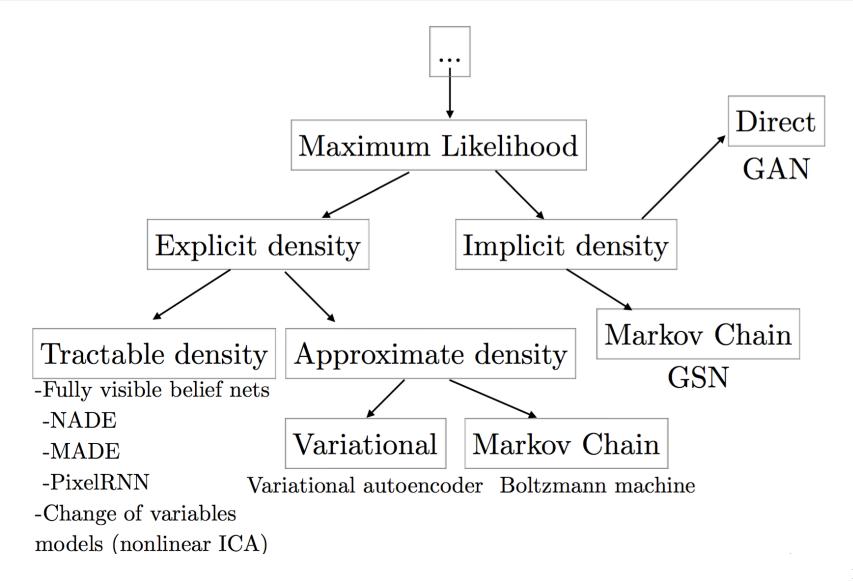
Encoder: 4-layer conv Decoder: 4-layer upconv

- Clustering
- Association rules
- Dimensionality reduction
- Density estimation
- Embedding
- Sampling

¹Reference: https://www.youtube.com/watch?v=rs3al7bACGc

Learning a Distribution

- Given (large amount of) data drawn from P_d , we want to estimate P_m such that samples from P_m are as similar as possible to samples from P_d
- Two approaches:
 - Explicit
 - If we construct P_m explicitly, we can address all the other tasks mentioned
 - Implicit
 - We can directly generate a sample from P_m without explicitly defining it!

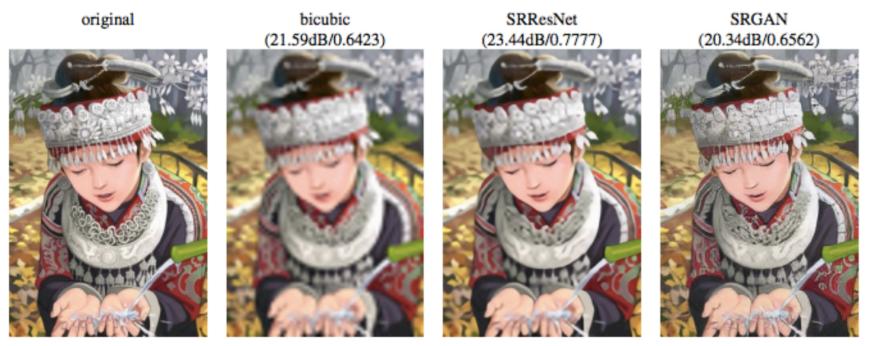


¹Reference: Ian Goodfellow (NIPS 2016 Tutorial)

- When would we be okay with an implicit approach
 - Simulate possible futures for planning
 - When samples themselves are useful for other tasks...

¹Reference: Ian Goodfellow (NIPS 2016 Tutorial)

- When would we be okay with an implicit approach
 - Simulate possible futures for planning
 - When samples themselves are useful for other tasks...



- When would we be okay with an implicit approach
 - Simulate possible futures for planning
 - When samples themselves are useful for other tasks...

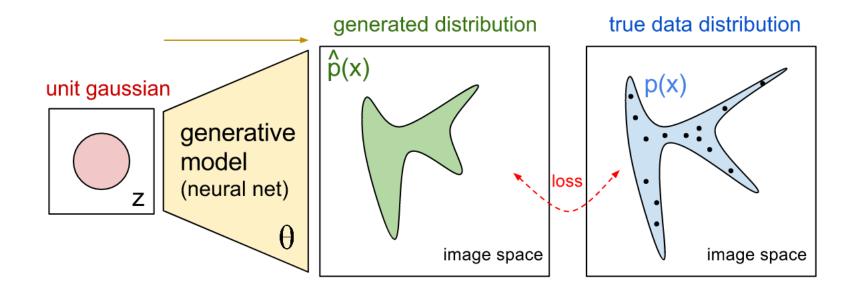
¹Reference: Ian Goodfellow (NIPS 2016 Tutorial)

- We will look at one model under each approach and work with image data
 - Explicit: Variational Autoencoders (VAE)
 - Implicit: Generative Adversarial Networks (GAN)
- Both use neural networks as a core object

¹Reference: Ian Goodfellow (NIPS 2016 Tutorial)

More than Memorization

• Either model (VAE or GAN) will essentially build the yellow box below:



Questions?

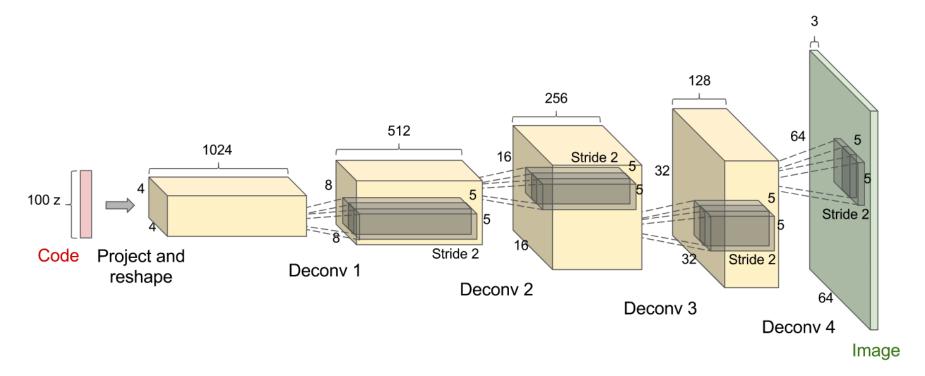
Today's Outline

- Unsupervised Learning Landscape
- Autoencoders and Variational Autoencoders (VAE)
- Generative Adversarial Networks (GAN)

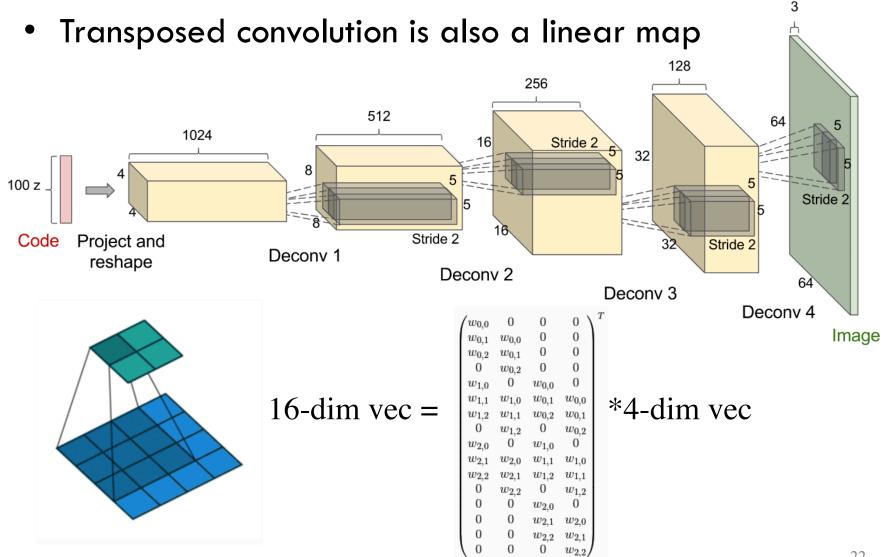
Autoencoders and Variational Autoencoders

Neural Net as a Transformation Map

- NN is a function that maps an input to output
- Here is a deconvolutional/transposed-convolutional network



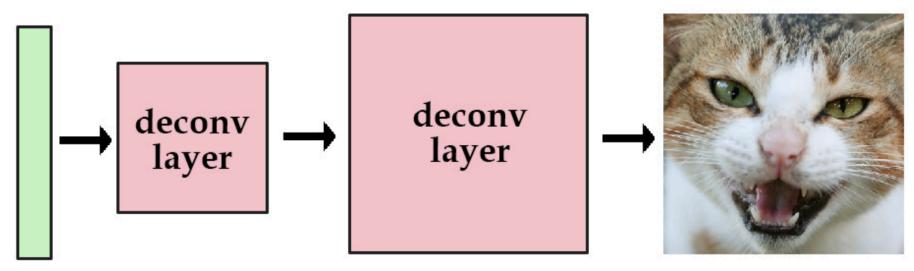
Neural Net as a Transformation Map



¹Reference: http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html#transposed-convolution-arithmetic

Transformation from a Single Vector

- For example, set inputs to all ones
- Train network to reduce MSE between its output and target image
- Then information related to image is captured in network parameters



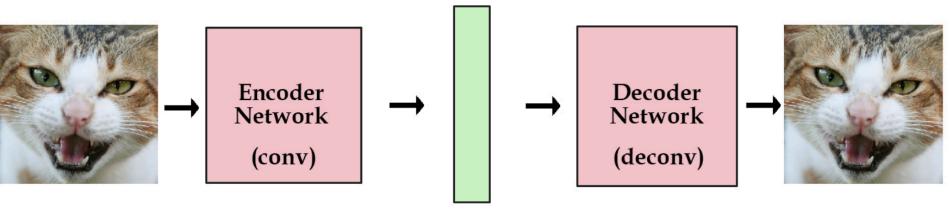
vector of ones

target image

¹Reference: http://kvfrans.com/variational-autoencoders-explained/

Transformation from Multiple Vectors

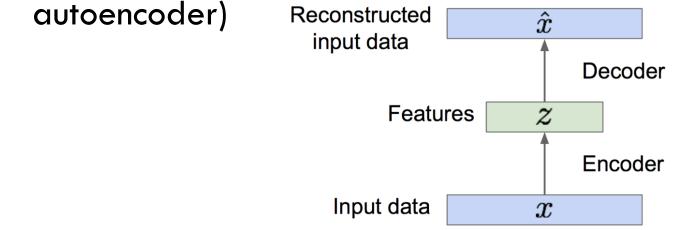
- Do the same with multiple input vectors (e.g., one hot encoded)
- These input vectors are called codes. The network is called a decoder.
- In an autoencoder, we also have an 'encoder' that takes original images and 'codes' them



latent vector / variables

Autoencoder: The Objective

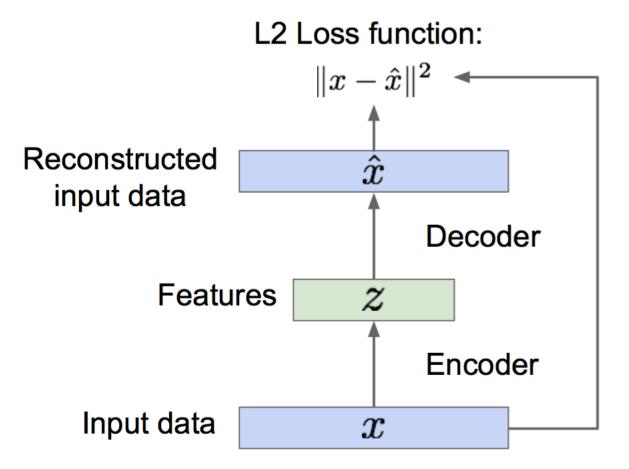
- Captures information in training data
- The latent variable z (also called code) can be thought of as embedding
- Keep the dimension of z smaller than input x, otherwise we have a trivial solution
 - If we choose a larger dimension, add noise to x during training (this is called a denoising



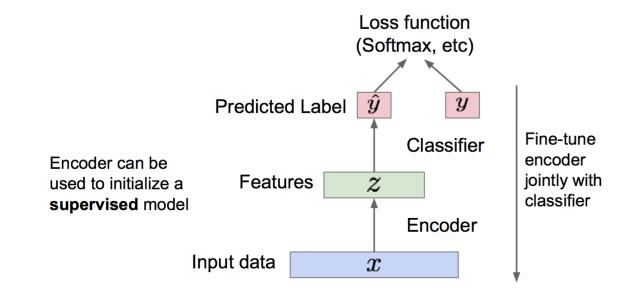
¹Reference: http://kvfrans.com/variational-autoencoders-explained/

Autoencoder: The Architecture

• No labels are needed here



Autoencoder: Uses



- Reduction in dimension achieved by the encoder is useful
 - Just like PCA
 - Captures meaningful variations in the data via the embeddings
- Named 'autoencoder' because it attempts to reconstructs original data

Cannot generate new samples yet!

¹Reference: CS231n (Spring 2017)

Variational Autoencoder

- Probabilistic extension of autoencoding
- The intuitive idea is to make z random, and in particular make P_z a Gaussian
 - If we can manage this, then we can sample from ${\cal P}_{\!Z}$ and generate new images
- Two high level changes needed
 - Architecture
 - Loss function

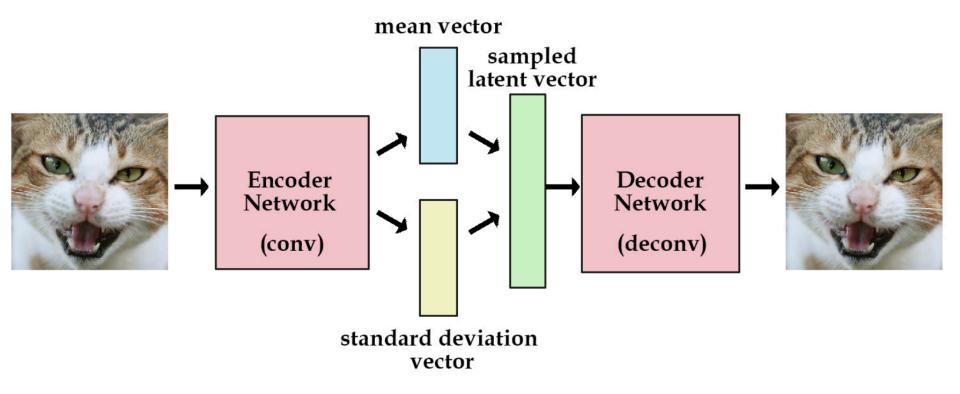
¹Reference: http://kvfrans.com/variational-autoencoders-explained/

Variational Autoencoder: Loss

- Loss will be sum of two losses
 - Reconstruction loss
 - Latent loss (how far from Gaussian the distribution obtained from encoder is)
 - Measured using KL divergence
 - Encoder generates the mean and covariance of the Gaussian
- We will look at the math behind this shortly

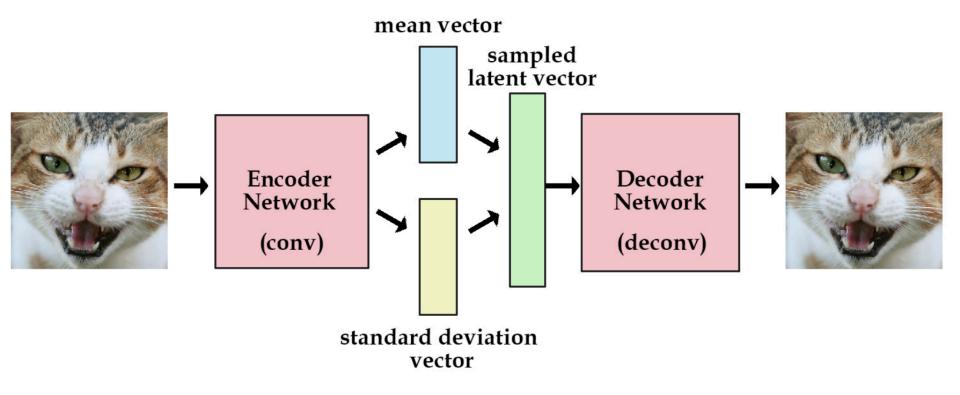
Variational Autoencoder: Architecture

• Architecture involves a sampling in between



Variational Autoencoder: Architecture

- Architecture involves a sampling in between
- Can still backprop given realized sample



Variational Autoencoder: Generalization

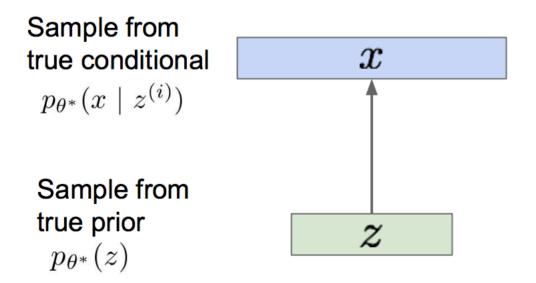
- This sampling allows for generalization
 - Gaussian noise ensures we are not remembering only the training data
- Once we have trained, we can sample from a Gaussian and pass it through the decoder to get a new image

Variational Autoencoder: Samples

- Experiments on MNIST
 - Samples generated during training (left, center) and original data

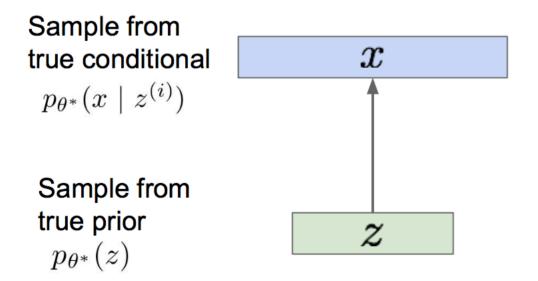
VAE: Derivation

- Assume a model as below
- Variable *x* represents image, *z* represents the latent variable
- We want to estimate $heta^*$



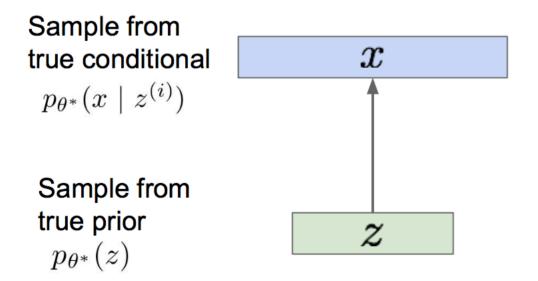
VAE: Derivation

- Let P_z be Gaussian
- Let P(x|z) be a neural network: decoder
- We can train by maximizing likelihood of training data $p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$

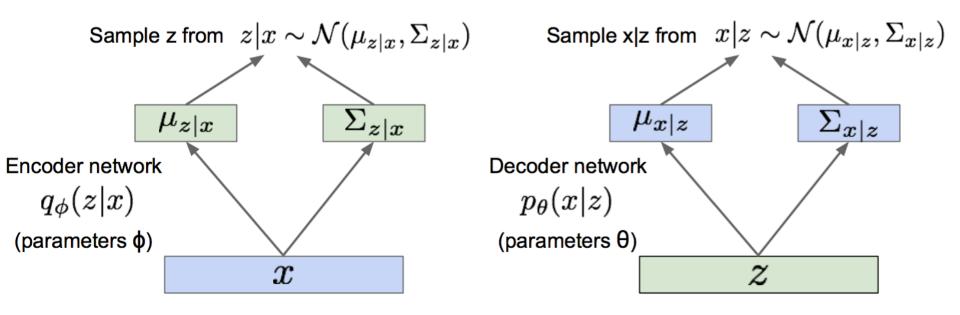


VAE: Derivation

- Let P_z be Gaussian
- Let P(x|z) be a neural network: decoder
- We can train by maximizing likelihood of training data $p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$



• We will also make the encoder probabilistic



Aside: Notion of Information

- Information: $-\log P(x)$
- Entropy: $-\sum P(x) \log P(x)$
- KL divergence:
 - A notion of dissimilarity between two distributions
 - $D_{KL}(p||q) = \sum P(x) \log \frac{P(x)}{Q(x)}$

 $\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$

¹Reference: CS321n (Stanford, Spring 2017)

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$
$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule})$$

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$
$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule})$$
$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant})$$

$$\begin{split} \log p_{\theta}(x^{(i)}) &= \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule}) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant}) \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Logarithms}) \end{split}$$

$$\begin{split} \log p_{\theta}(x^{(i)}) &= \mathbf{E}_{z \sim q_{\phi}(z \mid x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule}) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant}) \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Logarithms}) \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z)) + D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z \mid x^{(i)})) \end{split}$$

• The first two terms constitute a lower bound for the data likelihood that we can maximize tractably

$$= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid |p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)} + \underbrace{D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid |p_{\theta}(z \mid x^{(i)}))}_{> 0} \right]}_{> 0}$$

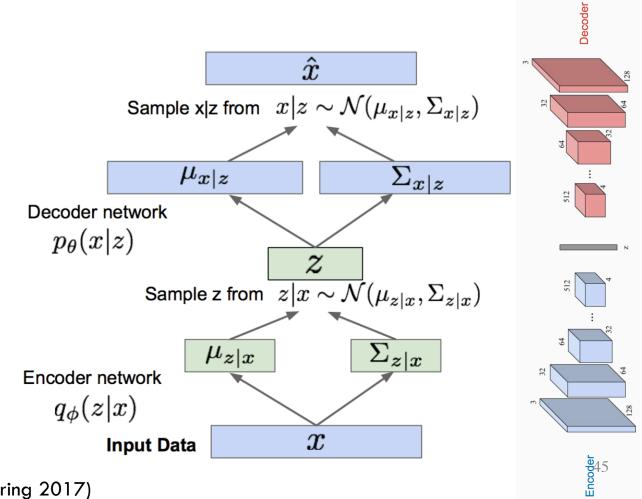
$$\frac{\mathcal{L}(x^{(i)}, \theta, \phi)}{(\mathbf{relbo''})} = \mathcal{L}(x^{(i)}, \theta, \phi)$$

$$\theta^{*}, \phi^{*} = \arg \max_{\theta, \phi} \sum_{i=1}^{N} \mathcal{L}(x^{(i)}, \theta, \phi)$$

$$\mathsf{Training: Maximize lower bound}$$

- The first term of ${\mathcal L}$ is essentially reconstruction error
- The second term of ${\mathcal L}$ is making the encoder network close to Gaussian prior

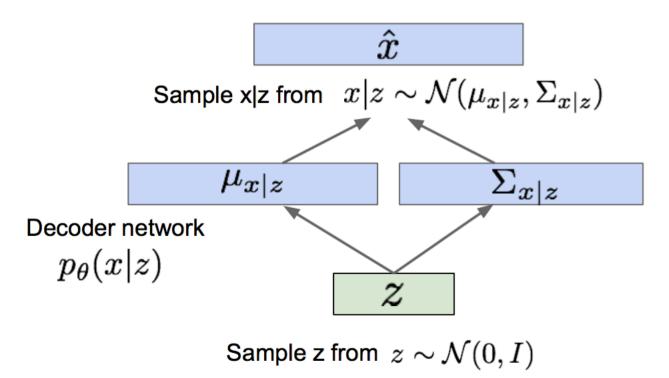
In summary,



¹Reference: CS321n (Stanford, Spring 2017)

VAE: Samples

• We can create new samples!

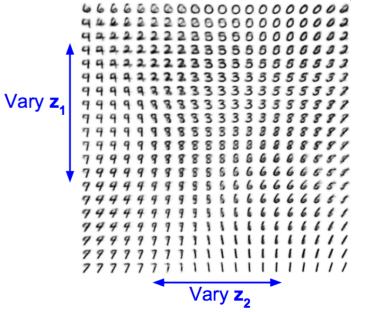


Kingma and Welling, "Auto-Encoding Variational Bayes", ICLR 2014

VAE: Experiments

• Some generated samples

Data manifold for 2-d z



32x32 CIFAR-10

Labeled Faces in the Wild

Further reading: https://arxiv.org/pdf/1606.05908.pdf

¹Reference: CS321n (Stanford, Spring 2017)

Questions?

Today's Outline

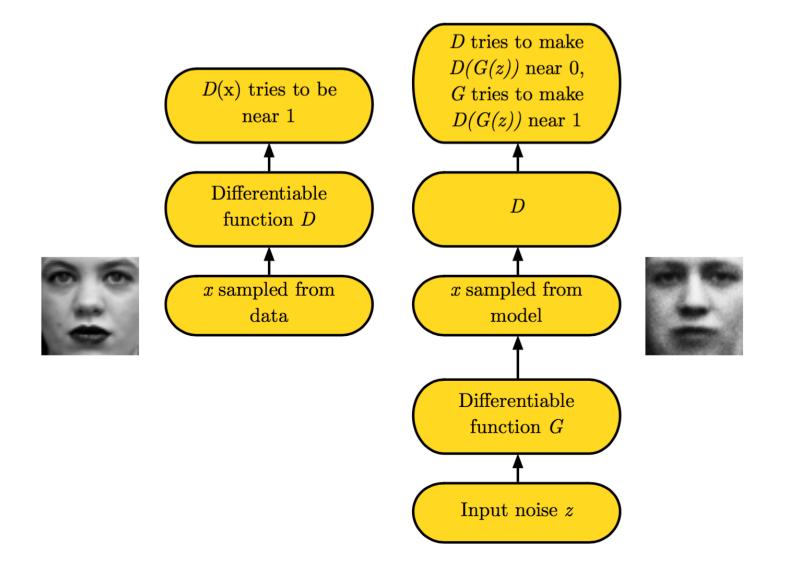
- Unsupervised Learning Landscape
- Autoencoders and Variational Autoencoders (VAE)
- Generative Adversarial Networks (GAN)

Generative Adversarial Networks

GANs: Two Scenarios

 Overall Idea: Instead of working with an explicit density function, GANs take an 'adversarial' or 'game-theoretic' approach

GANs: Two Scenarios



¹Reference: Ian Goodfellow (NIPS 2016 Tutorial)

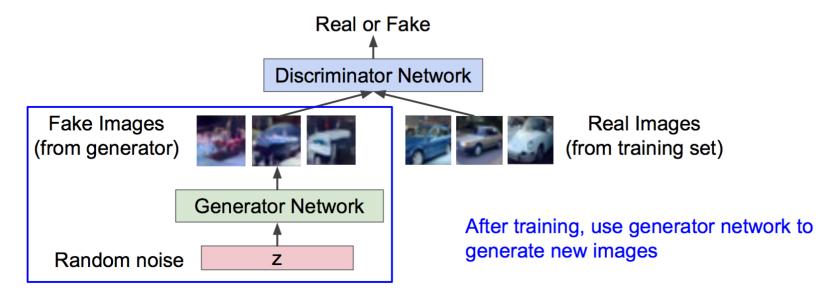
The Generator and the Discriminator

• Assume
$$X = G_{\theta_g}(z)$$

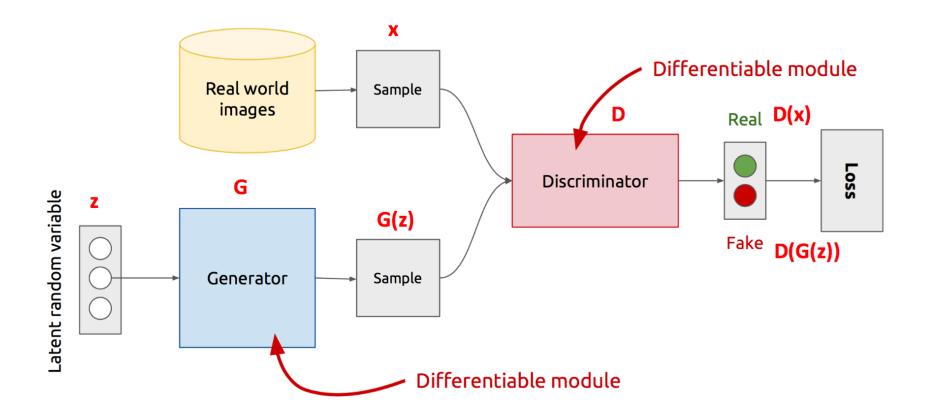
- Differentiable
- $D_{\theta_d}(X)$ takes values in {0,1} Discriminator Data Model distribution

The Generator and the Discriminator

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images



The Generator and the Discriminator



¹Reference: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

• The generator and the discriminator are playing a minimax game.

•
$$J(D) = -E_{P_d} \log D(x) - E_{P_m} \log(1 - D(x))$$

- Where $P_m(x)$ is the derived distribution using G(z) and P_z
- J(G) = -J(D)

¹Reference: Ian Goodfellow (NIPS 2016 Tutorial)

The Objectives

• The optimal strategy for the discriminator at equilibrium is

•
$$D(x) = \frac{P_d(x)}{P_d(x) + P_m(x)}$$

The Objectives

• The optimal strategy for the discriminator at equilibrium is

•
$$D(x) = \frac{P_d(x)}{P_d(x) + P_m(x)}$$

• The optimal strategy for the generator is to find parameters such that

•
$$P_d = P_m$$

The Training Procedure

- Create a minibatch of real data
- Create a minibatch of generated data
- Score the discriminator
- Backprop to update the parameter θ_d
- Score the generator
- Backprop to update the parameter $heta_g$

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

1. Gradient ascent on discriminator

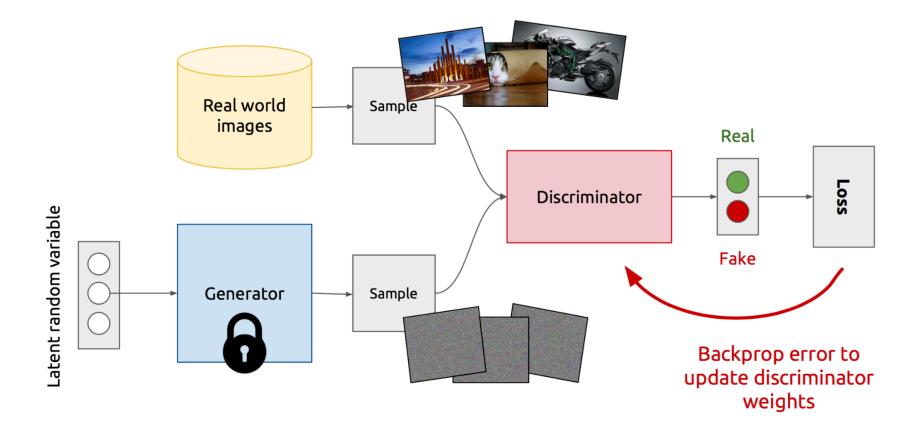
$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

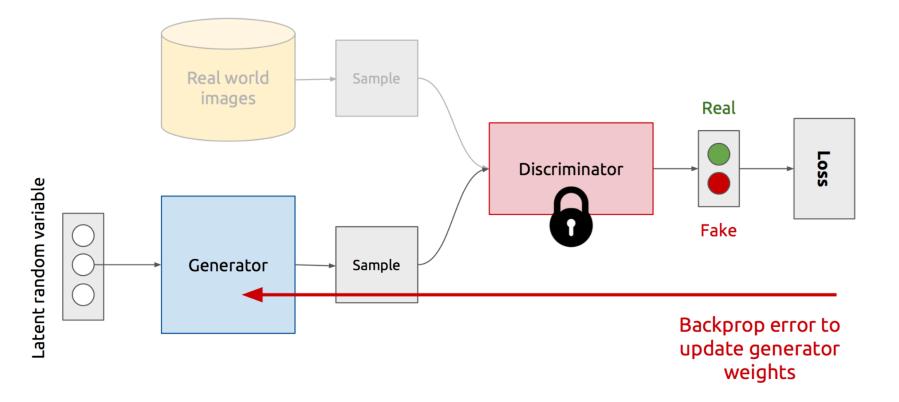
¹Reference: Ian Goodfellow (NIPS 2016 Tutorial)

The Training Procedure



61

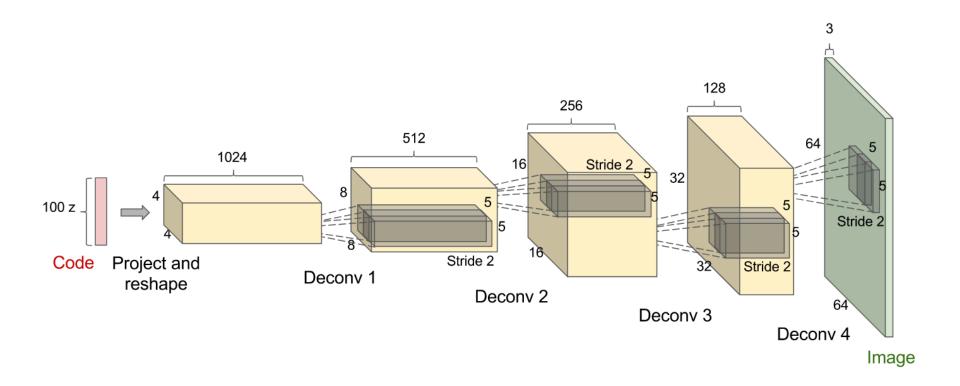
The Training Procedure



62

Example Generator Architecture

DCGAN



GAN Properties: Latent Space

- Consider Deep Convolutional Generative Adversarial Network (DCGAN)
 - You can walk from one point to another in the bedroom latent space (e.g., 6th and 10th rows)

¹References: <u>http://arxiv.org/abs/1511.06434</u> and https://github.com/Newmu/dcgan_code

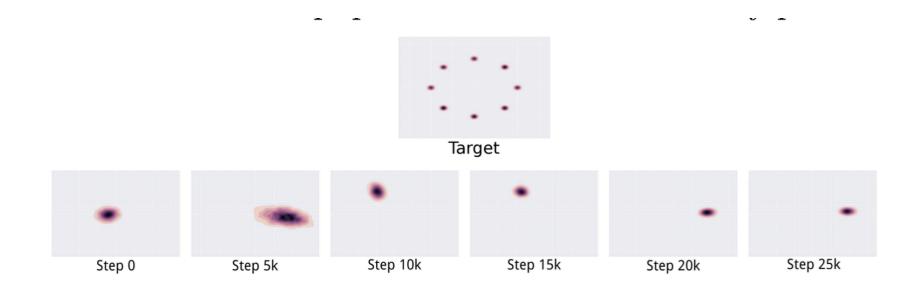
GAN Properties: Latent Space Arithmetic as <u>a Byproduct</u>

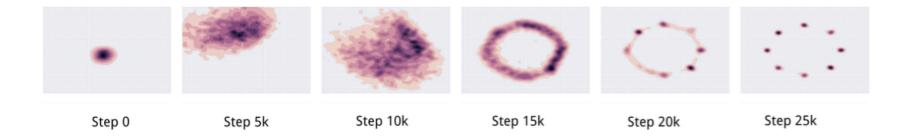
Man Man Woman with glasses

Woman with Glasses

¹Reference: Ian Goodfellow (NIPS 2016 Tutorial)

GAN Properties: Mode Collapse Issue





¹Reference: Ian Goodfellow (NIPS 2016 Tutorial)

GAN: Experiments

- Experiments on CIFAR-10 (only generated images below)
 - Code: https://github.com/kvfrans/generative-adversial

¹Reference: http://kvfrans.com/generative-adversial-networks-explained/

Questions?

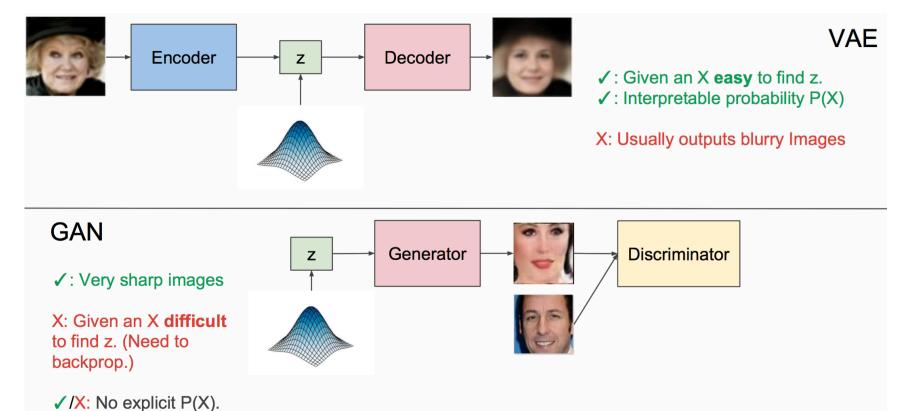
VAE and GAN

- VAEs
 - Are generative models that use regularized log likelihood to approximate performance score
 - Tend to achieve higher likelihoods of data, but the generated samples don't have real-world properties like sharpness
 - Can compare generated images with original images, which is not possible with GANs
 - Part of graphical models with principled theory

VAE and GAN

- GANs
 - Are generative models that use a supervised learning classifier to approximate performance score
 - No constraint that a 'bed' should look like a 'bed'
 - Try to solve an intractable game, vastly more difficult to train
 - Tend to have sharper image samples
 - Start with latent variables and transform them deterministically
 - There is no Markov chain style of sampling required
 - They are asymptotically consistent (will converge to P_d), whereas VAEs are not
 - Many many variations have been proposed in the past 3 years (>150!)

VAE and GAN



Summary

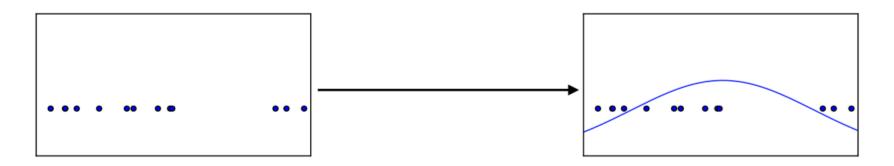
- Both models are recent (VAEs from 2013, GANs from 2014) and have initiated very exciting new directions in machine learning and AI
- Useful in many applications such as
 - Image denoising
 - Image Super-resolution
 - Reinforcement learning
 - Generating embeddings
 - Artistic help
- Eventually help the computer understand the world better

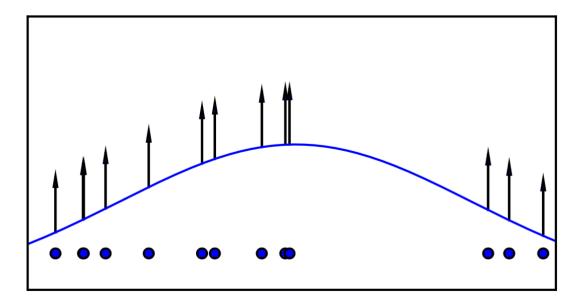
Appendix

Sample Exam Questions

- What are the uses of generative models?
- What is the difference between a regular autoencoder and a variational autoencoder?
- What is the qualitative objective of the discriminator in a GAN? What is the qualitative objective of the generator?
- Describe some differences between a VAE model and a GAN.

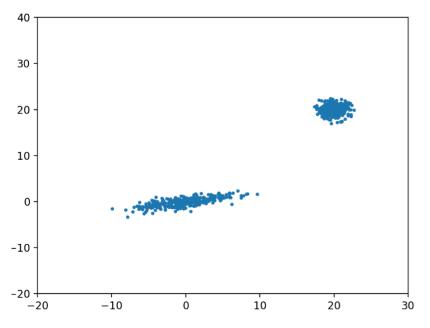
Maximum Likelihood Estimation I





Maximum Likelihood Estimation II

Step 1: observe a set of samples



Step 2: assume a GMM model

$$p(x|\theta) = \sum_{i} \pi_{i} \mathcal{N}(x|\mu_{i}, \Sigma_{i})$$

Step 3: perform maximum likelihood learning

¹Reference: ICCV 2017 GAN Tutorial, Ming-Yu et al.

KL Divergence

