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Today’s Outline

• Unsupervised Learning Landscape
• Autoencoders and Variational Autoencoders (VAE)
• Generative Adversarial Networks (GAN)
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Unsupervised Learning 
Landscape
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Unsupervised Learning
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• Supervised learning
• Involves feature and label pairs as training data
• Goal is to find a map from feature to label/value

• Unsupervised learning
• Involves only feature vectors
• Example: images

• Goal is to learn some patterns of data
• There is no objective measure of success

1Reference: CS231n (Stanford, Spring 17) 



Unsupervised Learning Tasks

5
1Reference: CS231n (Stanford, Spring 17) 

• Clustering
• Association rules
• Dimensionality reduction
• Density estimation
• Embedding
• Sampling
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1Figure:mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/42541/versions/3/screenshot.jpg
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Unsupervised Learning Tasks
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• Clustering
• Association rules
• Dimensionality reduction
• Density estimation
• Embedding
• Sampling

1Reference: https://www.youtube.com/watch?v=rs3aI7bACGc



Learning a Distribution

11
1Reference: Ian Goodfellow (NIPS 2016 Tutorial)

• Given (large amount of) data drawn from 𝑃" , we 
want to estimate 𝑃# such that samples from 𝑃# are as 
similar as possible to samples from 𝑃"

• Two approaches:
• Explicit
• If we construct 𝑃# explicitly, we can address all 

the other tasks mentioned
• Implicit
• We can directly generate a sample from 𝑃#

without explicitly defining it!



Explicit and Implicit Approaches
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1Reference: Ian Goodfellow (NIPS 2016 Tutorial)



Explicit and Implicit Approaches
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• When would we be okay with an implicit approach
• Simulate possible futures for planning
• When samples themselves are useful for other 

tasks…

1Reference: Ian Goodfellow (NIPS 2016 Tutorial)



Explicit and Implicit Approaches
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• When would we be okay with an implicit approach
• Simulate possible futures for planning
• When samples themselves are useful for other 

tasks…

1Reference: Ian Goodfellow (NIPS 2016 Tutorial), Ledig et al. 2016



Explicit and Implicit Approaches
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• When would we be okay with an implicit approach
• Simulate possible futures for planning
• When samples themselves are useful for other 

tasks…

1Reference: Ian Goodfellow (NIPS 2016 Tutorial)



Explicit and Implicit Approaches
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• We will look at one model under each approach and 
work with image data

• Explicit: Variational Autoencoders (VAE)

• Implicit: Generative Adversarial Networks (GAN)

• Both use neural networks as a core object

1Reference: Ian Goodfellow (NIPS 2016 Tutorial)



More than Memorization

• Either model (VAE or GAN) will essentially build the 
yellow box below:
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1Reference: https://blog.openai.com/generative-models/



Questions?
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Autoencoders and 
Variational Autoencoders
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Neural Net as a Transformation Map

21
1Reference: http://kvfrans.com/variational-autoencoders-explained/

• NN is a function that maps an input to output
• Here is a deconvolutional/transposed-convolutional 

network



Neural Net as a Transformation Map
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1Reference: http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html#transposed-convolution-arithmetic

• Transposed convolution is also a linear map

16-dim vec = *4-dim vec



Transformation from a Single Vector

23

• For example, set inputs to all ones
• Train network to reduce MSE between its output and 

target image
• Then information related to image is captured in 

network parameters

1Reference: http://kvfrans.com/variational-autoencoders-explained/



Transformation from Multiple Vectors
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• Do the same with multiple input vectors (e.g., one hot 
encoded)

• These input vectors are called codes. The network is 
called a decoder.

• In an autoencoder, we also have an ‘encoder’ that 
takes original images and ‘codes’ them

1Reference: http://kvfrans.com/variational-autoencoders-explained/



Autoencoder: The Objective
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• Captures information in training data
• The latent variable 𝑧 (also called code) can be 

thought of as embedding
• Keep the dimension of 𝑧 smaller than input 𝑥, 

otherwise we have a trivial solution
• If we choose a larger dimension, add noise to 𝑥

during training (this is called a denoising
autoencoder)

1Reference: http://kvfrans.com/variational-autoencoders-explained/



Autoencoder: The Architecture
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• No labels are needed here

1Reference: CS231n (Stanford, Spring 2017)



Autoencoder: Uses
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• Reduction in dimension achieved by the encoder is useful
• Just like PCA
• Captures meaningful variations in the data via the 

embeddings
• Named ‘autoencoder’ because it attempts to reconstructs 

original data
• Cannot generate new samples yet!

1Reference: CS231n (Spring 2017)



Variational Autoencoder
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• Probabilistic extension of autoencoding
• The intuitive idea is to make 𝑧 random, and in 

particular make 𝑃& a Gaussian
• If we can manage this, then we can sample from 𝑃&

and generate new images

• Two high level changes needed
• Architecture
• Loss function

1Reference: http://kvfrans.com/variational-autoencoders-explained/



Variational Autoencoder: Loss
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• Loss will be sum of two losses
• Reconstruction loss
• Latent loss (how far from Gaussian the distribution 

obtained from encoder is)
• Measured using KL divergence
• Encoder generates the mean and covariance of 

the Gaussian

• We will look at the math behind this shortly

1Reference: http://kvfrans.com/variational-autoencoders-explained/



Variational Autoencoder: Architecture
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• Architecture involves a sampling in between

1Reference: http://kvfrans.com/variational-autoencoders-explained/



Variational Autoencoder: Architecture
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• Architecture involves a sampling in between
• Can still backprop given realized sample

1Reference: http://kvfrans.com/variational-autoencoders-explained/



Variational Autoencoder: Generalization
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• This sampling allows for generalization
• Gaussian noise ensures we are not remembering 

only the training data
• Once we have trained, we can sample from a 

Gaussian and pass it through the decoder to get a 
new image

1Reference: http://kvfrans.com/variational-autoencoders-explained/



Variational Autoencoder: Samples
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• Experiments on MNIST
• Samples generated during training (left, center) 

and original data

1Reference: http://kvfrans.com/variational-autoencoders-explained/



VAE: Derivation
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• Assume a model as below
• Variable 𝑥 represents image, 𝑧 represents the latent 

variable 
• We want to estimate 𝜃∗

1Reference: CS321n (Stanford, Spring 2017)



VAE: Derivation
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• Let 𝑃& be Gaussian
• Let 𝑃(𝑥|𝑧) be a neural network: decoder
• We can train by maximizing likelihood of training 

data

1Reference: CS321n (Stanford, Spring 2017)



VAE: Derivation
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1Reference: CS321n (Stanford, Spring 2017)



VAE: Derivation
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• We will also make the encoder probabilistic

1Reference: CS321n (Stanford, Spring 2017)



Aside: Notion of Information
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• Information: − log𝑃(𝑥)
• Entropy: −∑𝑃 𝑥 log 𝑃(𝑥)
• KL divergence:
• A notion of dissimilarity between two distributions

• 𝐷23(𝑝| 𝑞 = ∑𝑃 𝑥 log 7 8
9(8)

1Reference: Ian Goodfellow (NIPS 2016 Tutorial)



VAE: Derivation
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1Reference: CS321n (Stanford, Spring 2017)



VAE: Derivation
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1Reference: CS321n (Stanford, Spring 2017)



VAE: Derivation
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1Reference: CS321n (Stanford, Spring 2017)



VAE: Derivation
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1Reference: CS321n (Stanford, Spring 2017)



VAE: Derivation

43
1Reference: CS321n (Stanford, Spring 2017)



VAE: Derivation
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1Reference: CS321n (Stanford, Spring 2017)

• The first two terms constitute a lower bound for the 
data likelihood that we can maximize tractably

• The first term of ℒ is essentially reconstruction error
• The second term  of ℒ is making the encoder network 

close to Gaussian prior



VAE: Derivation

45
1Reference: CS321n (Stanford, Spring 2017)

• In summary,



VAE: Samples

46
1Reference: CS321n (Stanford, Spring 2017)

• We can create new samples!



VAE: Experiments

47
1Reference: CS321n (Stanford, Spring 2017)

• Some generated samples

Further reading: https://arxiv.org/pdf/1606.05908.pdf



Questions?
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Today’s Outline

• Unsupervised Learning Landscape
• Autoencoders and Variational Autoencoders (VAE)
• Generative Adversarial Networks (GAN)

49



Generative Adversarial 
Networks

50



GANs: Two Scenarios
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1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 

• Overall Idea: Instead of working with an explicit 
density function, GANs take an ‘adversarial’ or 
‘game-theoretic’ approach



GANs: Two Scenarios
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1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



The Generator and the Discriminator

• Assume 𝑋 = 𝐺=>(𝑧)
• Differentiable

• 𝐷=?(𝑋) takes values in {0,1}

53
1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



The Generator and the Discriminator
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1Reference: CS231n (Stanford, Spring 2017) 



The Generator and the Discriminator
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1Reference: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



The Objectives

• The generator and the discriminator are playing a 
minimax game.

• 𝐽 𝐷 = −𝐸7? log𝐷 𝑥 − 𝐸7G log(1 − 𝐷(𝑥))
• Where 𝑃# 𝑥 is the derived distribution using 
𝐺(𝑧) and 𝑃&

• 𝐽(𝐺) = −𝐽(𝐷)

56
1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



The Objectives

• The optimal strategy for the discriminator at 
equilibrium is

• 𝐷 𝑥 = 7? 8
7? 8 H7G 8

• The optimal strategy for the generator is to find 
parameters such that
• 𝑃" = 𝑃#

• Caveat: Other variations of GANs are non minimax in 
nature and often times work better
• Example: no saturation issue

57
1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 
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1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



The Training Procedure

• Create a minibatch of real data
• Create a minibatch of generated data
• Score the discriminator
• Backprop to update the parameter 𝜃"
• Score the generator
• Backprop to update the parameter 𝜃I

59
1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



The Training Procedure
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1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



The Training Procedure
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1Reference: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



The Training Procedure
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1Reference: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



Example Generator Architecture
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• DCGAN

1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



GAN Properties: Latent Space
• Consider Deep Convolutional Generative Adversarial 

Network (DCGAN)
• You can walk from one point to another in the 

bedroom latent space (e.g., 6th and 10th rows)

64
1References: http://arxiv.org/abs/1511.06434 and https://github.com/Newmu/dcgan_code

http://arxiv.org/abs/1511.06434


GAN Properties: Latent Space Arithmetic as 
a Byproduct

65
1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



GAN Properties: Mode Collapse Issue
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1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



GAN: Experiments

67
1Reference: http://kvfrans.com/generative-adversial-networks-explained/

• Experiments on CIFAR-10 (only generated images below)
• Code: https://github.com/kvfrans/generative-adversial



Questions?
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VAE and GAN

• VAEs 
• Are generative models that use regularized log 

likelihood to approximate performance score
• Tend to achieve higher likelihoods of data, but the 

generated samples don’t have real-world 
properties like sharpness

• Can compare generated images with original 
images, which is not possible with GANs

• Part of graphical models with principled theory

69



VAE and GAN

• GANs
• Are generative models that use a supervised learning 

classifier to approximate performance score
• No constraint that a ‘bed’ should look like a ‘bed’

• Try to solve an intractable game, vastly more difficult 
to train

• Tend to have sharper image samples
• Start with latent variables and transform them 

deterministically
• There is no Markov chain style of sampling required
• They are asymptotically consistent (will converge to 
𝑃"), whereas VAEs are not

• Many many variations have been proposed in the past 
3 years (>150!)

70
1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



VAE and GAN
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Summary

• Both models are recent (VAEs from 2013, GANs from 
2014) and have initiated very exciting new directions 
in machine learning and AI 

• Useful in many applications such as
• Image denoising
• Image Super-resolution
• Reinforcement learning
• Generating embeddings
• Artistic help

• Eventually help the computer understand the world 
better

72
1Reference: https://blog.openai.com/generative-models/



Appendix
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Sample Exam Questions

• What are the uses of generative models?
• What is the difference between a regular 

autoencoder and a variational autoencoder?
• What is the qualitative objective of the discriminator 

in a GAN? What is the qualitative objective of the 
generator?

• Describe some differences between a VAE model and 
a GAN.
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Maximum Likelihood Estimation I
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1Reference: Ian Goodfellow (NIPS 2016 Tutorial)



Maximum Likelihood Estimation II
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1Reference: ICCV 2017 GAN Tutorial, Ming-Yu et al.



KL Divergence

77
1Reference: Ian Goodfellow (NIPS 2016 Tutorial)


