Advanced Prediction Models

Beyond Prediction

- Recall from the introductory class
 - We discussed complex prediction problems and addressed them using
 - Deep learning architectures
 - Graphical models
 - We also discussed complex decisions, especially in the presence of feedback
- A way to make data-driven decisions: we will look at
 - Online machine learning (this lecture)
 - Reinforcement learning (next)
 - Deep reinforcement learning (next to next)

Examples of Complex Decisions

Inventory Management

- Observations: current inventory levels
- Actions: number of units of each item to purchase
- Rewards: profit
- Resource allocation: who to provide customer service to first
- Routing problems: in management of shipping fleet, which trucks / truckers to assign to which cargo

Reinforcement Learning: The Next Frontier in Data Science

https://www.technologyreview.com/s/603501/10-breakthrough-technologies-2017-reinforcement-learning/

MIT Technology Review Past Lists+ Topics+ **Top Stories 10 Breakthrough Technologies** The List × Years + **Reversing Paralysis Self-Driving Trucks Paying with Your Face Practical Quantum Computers** March/April 2017 Issue The 360-Degree Selfie **Hot Solar Cells Gene Therapy 2.0 The Cell Atlas** Reinforcement **Botnets of Things** By experimenti **Reinforcement Learning** figuring out how no programmer could teach them.

¹Reference: technologyreview.com/s/603501/10-breakthrough-technologies-2017-reinforcement-learning/

Reinforcement Learning: The Next Frontier in Data Science

¹Figure: Defazio Graepel, Atari Learning Environment

Reinforcement Learning: The Next Frontier in Data Science

¹Reference: DeepMind, March 2016

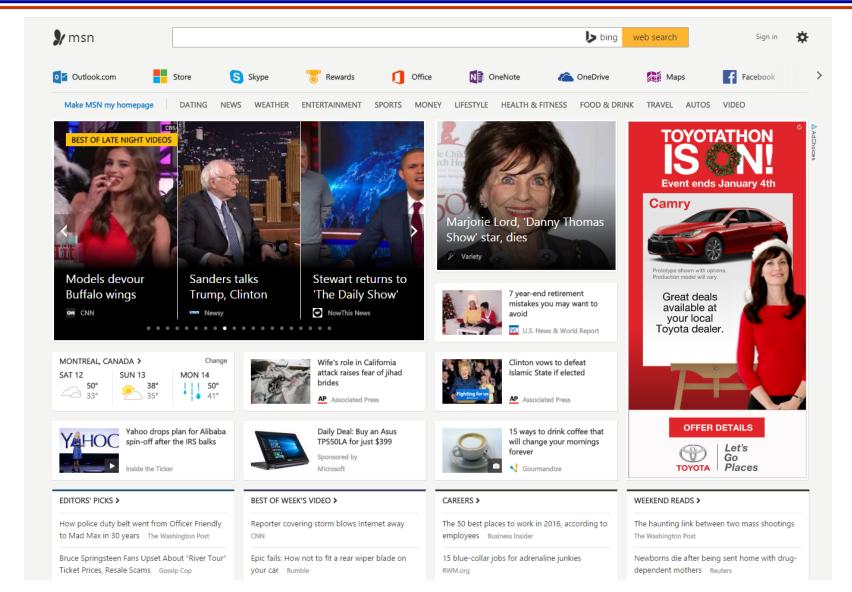
Today's Outline

- Online Machine Learning
- A/B Testing
- Multi-armed bandits
- Contextual bandits

Online Machine Learning

The Gist of Online (Machine) Learning

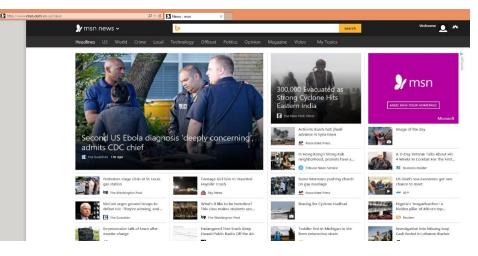
- 1. (Optionally) observe the state of the world (aka context)
- 2. Choose an action
- 3. Obtain feedback on the chosen action
- Repeat

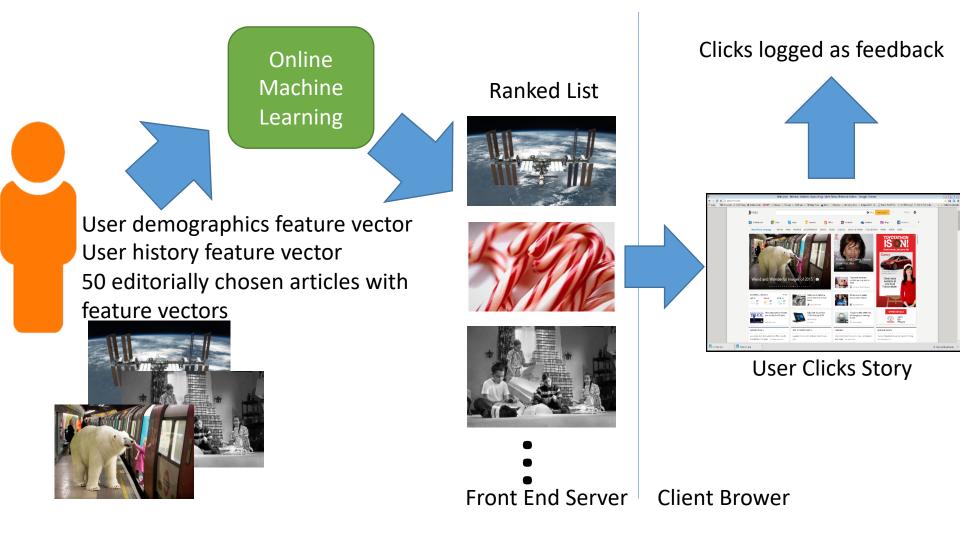

The Gist of Online (Machine) Learning

- 1. (Optionally) observe the state of the world (aka context)
- 2. Choose an action
- 3. Obtain feedback on the chosen action

Repeat

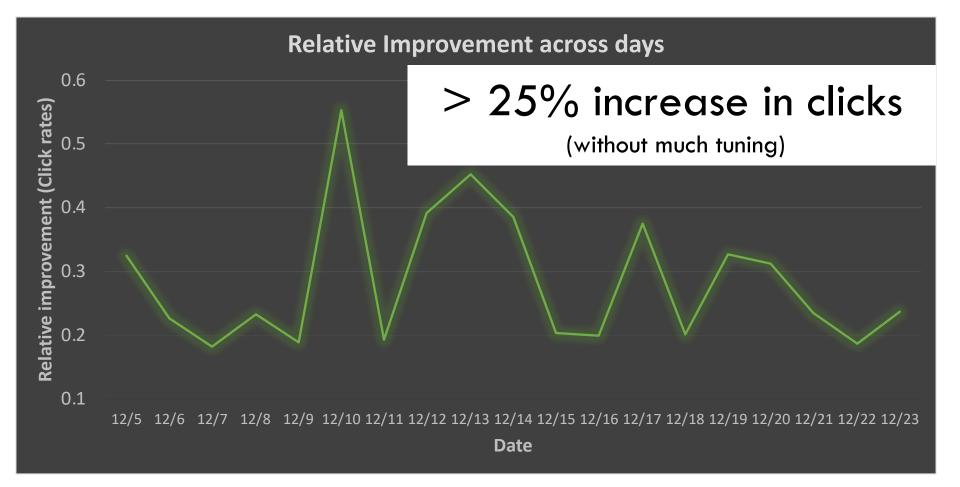
Goal: Optimize feedback (e.g. maximize reward) for chosen actions


Assumption: Agent's actions do not influence future contexts

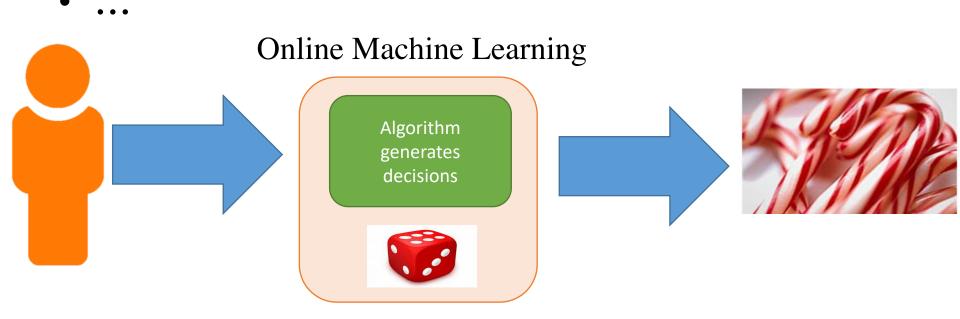

Loop:

- 1. User **arrives** at MSN with browsing history, user account, previous visits,...
- 2. Microsoft **chooses** news stories, ...

3. User **responds** to content (clicks, navigation, etc)


Goal: Choose content to yield desired user behavior **Assumption:** Recommendations to one user do not affect other users

- 10 million+ users
- 1000s of requests per second
- 5% overhead on front end machines
- 10s of servers for training
- 5 minute model update frequency



Relative gains observed

Multitude of Applications

- Content Recommendation: Apps, Movies, Books, ...
- Personalization of search results
- Customer churn prevention
- Adaptive UI personalization

Questions?

Today's Outline

- Online Machine Learning
- A/B Testing
- Multi-armed bandits
- Contextual bandits

A/B Testing

Motivation for A/B Tests

- Typical business scenario
 - Say there is a meeting to decide on how to improve a product or service
 - Multiple competing ideas emerge
 - Want to make this decision after making some field observations.
 - How to pick one?

Use A/B testing (this is related to two-sample hypothesis testing)

Motivation for A/B Tests

- Full time companies such as Optimizely, Apptimize, APT, Monetate, etc. provide A/B testing services
- Extensively used at
 - Microsoft for Bing.com (see http://exp-platform.com)
 - Google, Facebook, Amazon, Airbnb, Linkedin ...
- Marketing tools
- Clinical trials (\$11b+ market)

Example with Two Solutions

• Which page has a higher conversion rate?

Doctor FootCare"		菁 Shopping Cart	Doctor FootCare"				₹ s	菁 Shopping Cart	
Home Products Learn More Tips Te	stimonials FAQ About Us Cont	tact Us 1-866-211-9733	Home Products	s Learn Hore Tips '	Testimonials F	AQ About Us	Contact Us	1-856-211-9733	
	ay, hassle-free Returns ssure your Privacy		Shop With Con	uaranteed 🗹 30	-day, hassle-free Re assure your Privacy				
100% Secured Checkout			100% Secured Checkout				> Proceed To Checkout		
100% Secured Checkout	Continue Shopping	Proceed To Checkout	Item Name	Item Number	Quantity	Remove	Unit Price	Subtotal	
Item Name Item Number	Quantity Remove Unit I	Price Subtotal	Trial Kit	FFCS	1	m	\$0.00	\$0.00	
rial Kit FFCS	1 💼 \$0.	00 \$0.00					Discount	\$0.00 \$0.00	
	Update	Total: \$0.00			Enter Coupon	Code			
	Select Shipping Method Stan	dard (\$5.95)			Select Shippi	ng Method	Standard (\$5.35)	×	
100% Secured Checkout Continue Shopping > Proceed To Check		Proceed To Checkout	🔒 100% Secured (heckout Recalc	ulate Co	ntinue Shopping	> Procee	d To Checkout	
Nome Products Learn More Tips 1 Cart	Testimonials FAQ About Us C	ontact Us Shopping	Home Product	ts Learn More Tips Te	stimonials FAQ	About Us Co	ontact.Us Shop	ping Cart	
	А				В		Ku	mar et al.	

Example with Two Solutions

• Which page has a higher conversion rate?

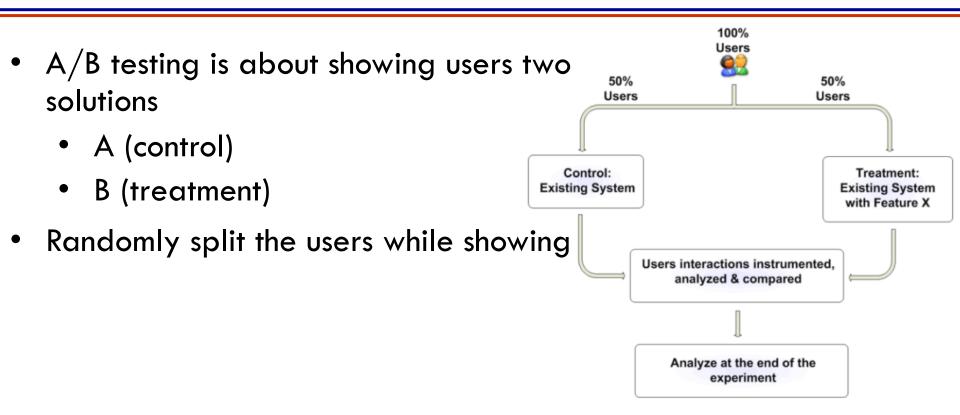
Doctor FootCare		Shopping Cart	Doctor FootCare"			R	異 Shopping Cart		
Home Products Learn More Tips	Testimonials FAQ About Us Contact Us	1-866-211-9733	Home Product	ts Learn Hore Tips	Testimonials FAQ Ab	out Us Contact Us	1-866-211-9733		
	D-day, hassle-free Returns e assure your Privacy		Shop With Co Satisfaction G Satisfaction Safe, S	Buaranteed of 1	30-day, hassle-free Returns We assure your Privacy				
- Andrew Andr		3 100% Secured (heckout	» Proce	> Proceed To Checkout				
100% Secured Checkout	Continue Shopping > Proc	eed To Checkout	Item Name	Item Number	Quantity Remove	Unit Price	Subtotal		
Item Name Item Number	Quantity Remove Unit Price	Subtotal	Trial Kit	FFCS	1 🔟	\$0.00	\$0.00		
rial Kit FFCS	1 💼 \$0.00	\$0.00				Discount	\$0.00		
	Update	Total: \$0.00			Enter Coupon Code				
	Select Shipping Method Standard (\$	5.95)			Select Shipping Method	Standard (\$5.3	o) 💌		
100% Secured Checkout	Continue Shopping > Proc	eed To Checkout	a 100% Secured	Checkout Reca	Iculate Continue Sh	opping > Proces	ed To Checkout		
Home Products Learn More Tips Cart	<u>Testimonials</u> <u>FAQ</u> <u>About.Us</u> <u>Contact.</u>	ls Shapping	Home Produc	ts Learn More Tips)	Testimonials FAQ About (is <u>Contact Us</u> Sho	pping_Cart		
	A				В	K	umar et al. 2		

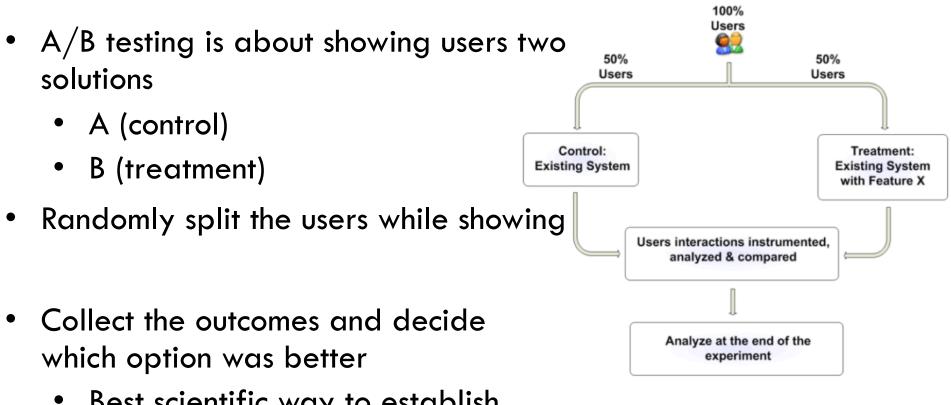
• With B, site lost 90% of revenue: users want to find coupons to reduce price

¹Reference: Bruno Ribeiro, CS57300 (2016)

- First we will ignore the online aspect of the problem
- That is, we will ignore instantaneous feedback
- We will only use these feedbacks at the end of a period
- In particular,
 - They will be used to decide on good recommendation policies

A/B Testing Setup


• A/B testing is about showing users two solutions


• And figuring out if solution A is different than solution B

¹Reference: http://hbx.hbs.edu/blog/post/word-of-the-week-ab-testing

A/B Testing Setup

A/B Testing Setup

- Best scientific way to establish cause-effect relationship
- Compared to offline data analysis (error prone)

A/B Testing is Two Sample Testing

- A/B testing is about collecting statistics across two groups
- Randomized assignment of the two solutions to each user is a key requirement
 - Eliminates biases and confounding

- Say each group of users has true mean effect μ_1 and μ_2
- From data, we want to infer weather
 - These are different (statistical significance)?
 - Same?
 - Which is larger?

¹Reference: Bruno Ribeiro, CS57300 (2016)

Types of Hypothesis Tests

- Fisher
 - Reject H_0 (no acceptance as such)
 - More data typically leads to rejection
- Neyman-Pearson
 - Compare H_0 to H_1
 - Find likelihood ratio $P(Data|H_0)/P(Data|H_1)$
- Bayesian
 - Compute $P(H_0|Data)/P(H_1|Data)$
 - Similar to Neyman-Pearson when $P(H_0) = P(H_1)$

A/B Testing Pros

• Very intuitive setup and conclusions

- Field experiment decides the worth of a feature/offering, not gut instinct
- Most used in industry! (compared to bandit techniques)
 - Also called split or bucket testing
- Need not be a one time process
 - Can repeat if you think users have changed in terms of their preferences

A/B Testing Cons

- Has many bells and whistles to make it work
 - Especially because most treatment effects show small incremental improvement
 - See http://exp-platform.com for an extensive list of issues that affect A/B testing

- What if we can change who sees what treatment (action) dynamically?
 - Leads to Multi-Armed Bandit problems.
- What if we want to optimize over several options dynamically depending on context?
 - Leads to Contextual Bandit problems.

Questions?

Today's Outline

- Online Machine Learning
- A/B Testing
- Multi-armed bandits
- Contextual bandits

Bandit Problems

The Multi-armed Bandit Problem

• Multi-armed bandit (MAB) problem involves the following in each interaction

- pulling an arm = making a choice (which ad/color to display)
- reward/regret = measure of success (user-click, item-buy)

Problem Formulation

- Consider *K* arms (actions) each correspond to an unknown distribution $\{\nu_k\}_{k=1}^{K}$ with values bounded in [0, 1].
 - At each time *t*, the agent pulls an arm $I_t \in \{1, ..., K\}$ and observes a reward $x_t \sim \nu_{I_t}$ (i.i.d. sample from ν_{I_t}).
 - The objective is to maximize the expected sum of rewards.

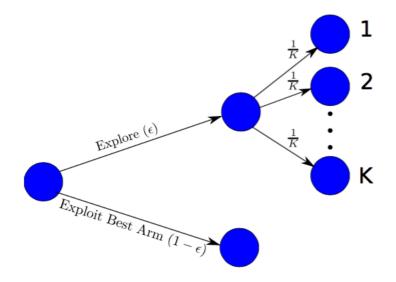
Notations

- mean of each arm:
- mean of the best arm:

$$\mu_k = \mathbb{E}_{X \sim \nu_k}[X]$$

 $\mu^* = \max_k \mu_k$

MAB Performance


- It is an online problem.
- We need to come up with algorithms/strategies.
 - Example:
 - a round-robin strategy
 - A constant strategy (bad idea!)

To evaluate the performance of a strategy

Cumulative Regret $R_n = n\mu^* - \sum_{t=1}^n x_t$

Objective: find a strategy with small *expected cumulative* regret $\mathbb{E}[R_n]$

The Epsilon-Greedy Algorithm

Strategy = ϵ ·Scientist +(1 - ϵ)·Businessman

At each time t

- With probability 1ϵ , pick the subjectively best arm
- With probability $\frac{\epsilon}{K}$, pick a random arm

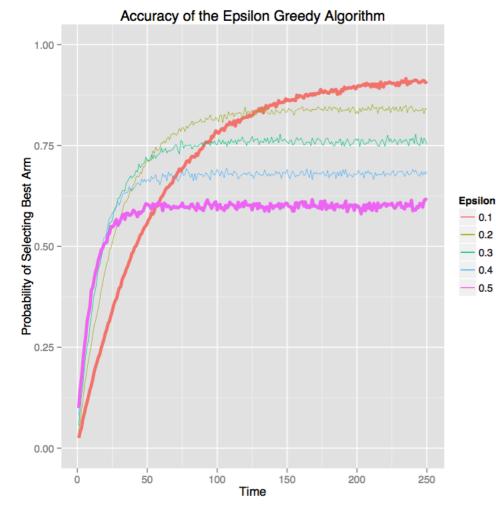
The Epsilon-Greedy Algorithm Intuition

How can we do well? We need to explore the arms.
We also need to exploit what we have learned so far.

Scientist View

Explore new ideas

Businessman View


Exploit best idea found so far

Epsilon-Greedy Synthetic Experiment

5 Bernoulli arms with reward probabilities 0.1, 0.1, 0.1, 0.1, 0.9

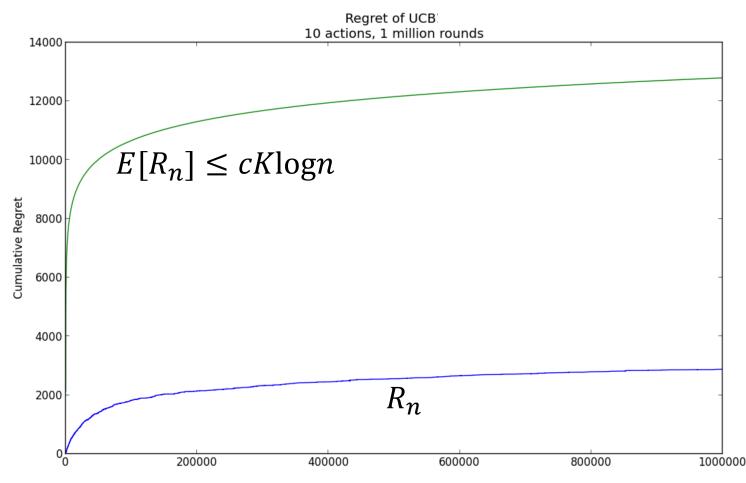
0.1 - 0.2

 $\epsilon = 0.1$ (Businessman)

- Learns slowly
- Does well at the end
- 0.3 $\epsilon = 0.5$ (Scientist) 0.4 0.5
 - Learns quickly
 - Doesn't exploit at the end

The Upper Confidence Bound (UCB) Algorithm

Lets look at a slightly more involved algorithm: UCB


Upper confidence bound (UCB) strategy selects an arm at time t that

$$I_t = \arg \max_k B_{t,T_k(t-1)}(k)$$
, $B_{t,s}(k) = \hat{\mu}_{k,s} + \sqrt{\frac{2\log t}{s}}$

 $\hat{\mu}_{k,s} = \frac{1}{s} \sum_{i=1}^{s} x_{k,i}$ is the empirical mean of arm k at time s

UCB Synthetic Experiment

- 10 actions, 10^6 interactions (is this realistic?)
- Reward for each action has mean $0.5/k \ (5 \le k \le 15)$

¹Reference: https://jeremykun.files.wordpress.com/2013/10/ucb1-simple-example.png

The Thompson Sampling Algorithm

• A Bayesian algorithm for MAB problems is as follows

In Thompson [1933] the following strategy was proposed for the case of Bernoulli distributions:

- Assume a uniform prior on the parameters $\mu_i \in [0, 1]$.
- Let $\pi_{i,t}$ be the posterior distribution for μ_i at the t^{th} round.
- Let $\theta_{i,t} \sim \pi_{i,t}$ (independently from the past given $\pi_{i,t}$).
- $I_t \in \operatorname{argmax}_{i=1,\ldots,K} \theta_{i,t}$.

A family of prior distribution

$$\mathcal{P}_{\mathcal{A}} = \{ p_{\alpha}(\theta) \mid \alpha \in \mathcal{A} \}$$

is said to be **conjugate** to a model \mathcal{P}_{Θ} , if, for a sample

$$X^{(1)},\ldots,X^{(n)}\stackrel{ ext{i.i.d.}}{\sim} p_ heta \qquad ext{with} \qquad p_ heta\in\mathcal{P}_\Theta,$$

the distribution q defined by

$$q(heta) = p(heta|x^{(1)}, \dots, x^{(n)}) = rac{p_lpha(heta) \prod_i p_ heta(x^{(i)})}{\int p_lpha(heta) \prod_i p_ heta(x^{(i)}) d heta}$$

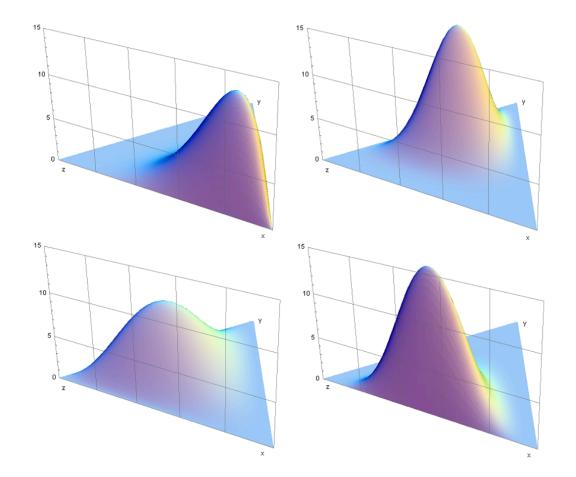
is such that

$$q \in \mathcal{P}_A$$
.

¹Reference: http://imagine.enpc.fr/%7Eobozinsg/stats_review.html

We say that $\theta = (\theta_1, \dots, \theta_K)$ follows the Dirichlet distribution and note $\theta \sim \text{Dir}(\alpha)$ for θ in the simplex $\triangle_K = \{\mathbf{u} \in \mathbb{R}_+^K \mid \sum_{k=1}^K u_k = 1\}$ and We say that $\theta = (\theta_1, \ldots, \theta_K)$ follows the Dirichlet distribution and note

 $oldsymbol{ heta} \sim \mathsf{Dir}(lpha)$


for θ in the simplex $\triangle_{\kappa} = \{ \mathbf{u} \in \mathbb{R}_{+}^{\kappa} \mid \sum_{k=1}^{\kappa} u_{k} = 1 \}$ and admitting the density

$$p(\boldsymbol{\theta}; \boldsymbol{\alpha}) = \frac{\Gamma(\alpha_0)}{\prod_k \Gamma(\alpha_k)} \, \theta_1^{\alpha_1 - 1} \dots \theta_K^{\alpha_K - 1}$$

$$\alpha_0 = \sum_k \alpha_k$$
 and $\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt$

¹Reference: http://imagine.enpc.fr/%7Eobozinsg/stats_review.html

Thompson Sampling: Conjugate Priors

¹Reference: http://imagine.enpc.fr/%7Eobozinsg/stats_review.html

Thompson Sampling: Categorical-Dirichlet Conjugacy

Consider the simple Bayesian Dirichlet-Multinomial model with

- A Dirichlet prior on the parameter of the multinomial: $heta \sim {\sf Dir}(lpha)$
- A multinomial random variable $\mathbf{z} \sim \mathcal{M}(1, \boldsymbol{ heta})$

$$p(oldsymbol{ heta}) \propto \prod_{k=1}^{K} heta_k^{lpha_k - 1}$$
 and $p(\mathbf{z}|oldsymbol{ heta}) = \prod_{k=1}^{K} heta_k^{z_k}$

Thompson Sampling: Categorical-Dirichlet Conjugacy

Consider the simple Bayesian Dirichlet-Multinomial model with

- A Dirichlet prior on the parameter of the multinomial: $heta \sim {\sf Dir}(lpha)$
- A multinomial random variable $\mathbf{z} \sim \mathcal{M}(1, \boldsymbol{ heta})$

$$p(oldsymbol{ heta}) \propto \prod_{k=1}^{K} heta_k^{lpha_k - 1} \qquad ext{and} \qquad p(oldsymbol{z}|oldsymbol{ heta}) = \prod_{k=1}^{K} heta_k^{z_k}$$

Let $\mathbf{z}^{(1)}, \ldots, \mathbf{z}^{(N)}$ be an i.i.d. sample distributed like \mathbf{z} . We have

$$p(\boldsymbol{\theta}|\mathbf{z}^{(1)},\ldots,\mathbf{z}^{(N)}) = \frac{p(\boldsymbol{\theta})\prod_{n}p(\mathbf{z}^{(n)}|\boldsymbol{\theta})}{p(\mathbf{z}^{(1)},\ldots,\mathbf{z}^{(N)})}$$

Consider the simple Bayesian Dirichlet-Multinomial model with

- A Dirichlet prior on the parameter of the multinomial: $heta \sim {\sf Dir}(lpha)$
- A multinomial random variable $\mathbf{z} \sim \mathcal{M}(1, oldsymbol{ heta})$

$$p(oldsymbol{ heta}) \propto \prod_{k=1}^{K} heta_k^{lpha_k - 1} \qquad ext{and} \qquad p(oldsymbol{z}|oldsymbol{ heta}) = \prod_{k=1}^{K} heta_k^{z_k}$$

Let $\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(N)}$ be an i.i.d. sample distributed like \mathbf{z} . We have

$$p(\boldsymbol{\theta}|\mathbf{z}^{(1)},\ldots,\mathbf{z}^{(N)}) = \frac{p(\boldsymbol{\theta})\prod_{n}p(\mathbf{z}^{(n)}|\boldsymbol{\theta})}{p(\mathbf{z}^{(1)},\ldots,\mathbf{z}^{(N)})} \propto \prod_{k}\theta_{k}^{\alpha_{k}+\sum_{n}z_{nk}-1}$$

So that $(\theta|(Z)) \sim \text{Dir}((\alpha_1 + N_1, \dots, \alpha_K + N_K))$ with $N_k = \sum_n z_{nk}$ 50

Non-Probabilistic Setting

- Why do we need to assume that the rewards are i.i.d.?
- Can we drop the stochastic assumptions on the rewards?

- Reason #1: These rewards may be the output of a complex process
- Reason #2: These rewards may be generated by an 'adversary' (someone who is not random)

Non-Probabilistic Setting

• We can in fact drop the probabilistic reward assumption!

- Template
 - Adversary selects rewards $x_t(1), \ldots, x_t(K)$, which are not known to the player (us)
 - Player selects arm I_t
 - In full information, player sees $x_t(1), ..., x_t(K)$
 - In bandit information setup, player only sees $x_t(I_t)$

Initialization: $w_1(k) = 1$ for all k = 1, ..., K

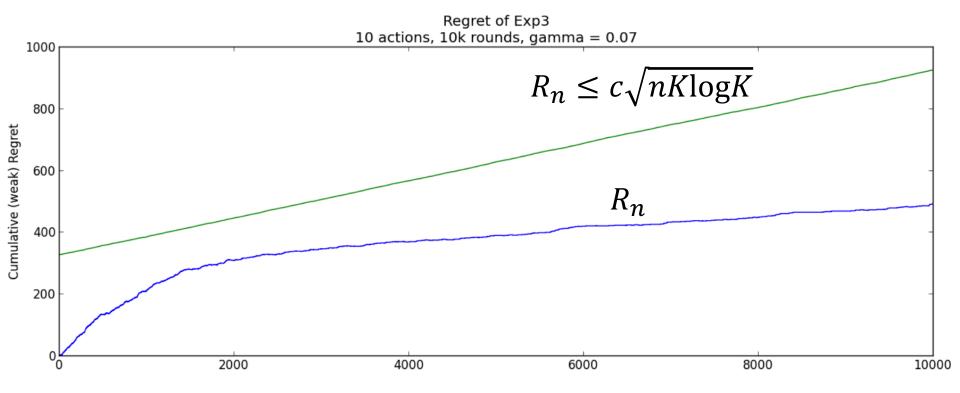
Initialization: $w_1(k) = 1$ for all k = 1, ..., K

At each time t = 1, ..., n: the player selects an arm $I_t \sim p_t$, where

$$p_t(k) = (1 - \gamma) \frac{w_t(k)}{\sum_{i=1}^K w_t(i)} + \frac{\gamma}{K}$$

Initialization: $w_1(k) = 1$ for all k = 1, ..., K

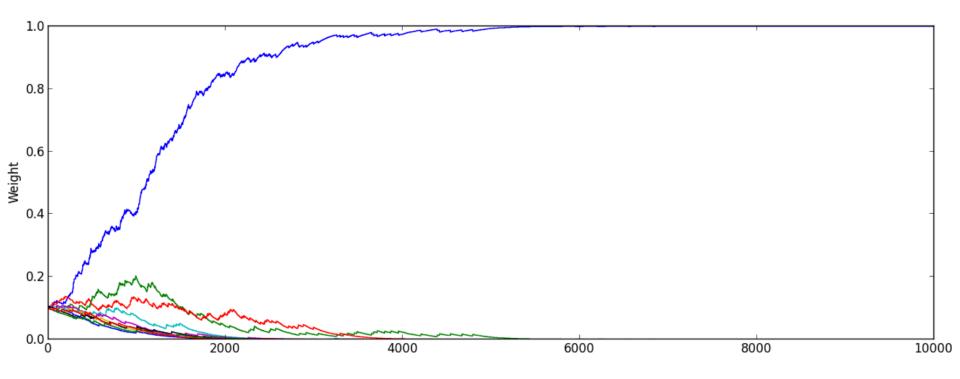
At each time t = 1, ..., n: the player selects an arm $I_t \sim p_t$, where


$$p_t(k) = (1 - \gamma) \frac{w_t(k)}{\sum_{i=1}^K w_t(i)} + \frac{\gamma}{K}$$

with $w_t(k) = e^{\eta \sum_{s=1}^{t-1} \tilde{x}_s(k)}$, where $\tilde{x}_s(k) = \frac{x_s(k)}{p_s(k)} \mathbf{1}\{I_s = k\}$.

 $\eta > 0$ and $\gamma > 0$ are the parameters of the algorithm.

Exp3 Synthetic Experiment


- 10 actions, 10^3 interactions
- Reward for each action is Bernoulli with means 1/k (2 ≤ k < 12)

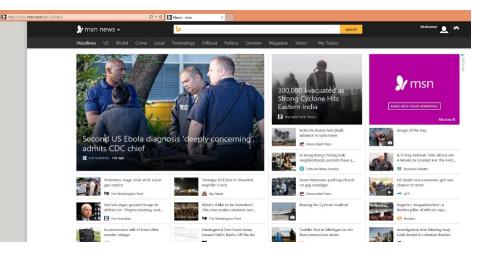
¹Reference: https://jeremykun.files.wordpress.com/2013/11/exp3-regret-graph.png

Exp3 Synthetic Experiment

- 10 actions, 10^3 interactions
- Reward for each action is Bernoulli with means 1/k ($2 \le k < 12$)

¹Reference: https://jeremykun.files.wordpress.com/2013/11/exp3-regret-graph.png

Questions?


Bandits with Contexts

Recall: MSN Deployment for Personalized News

Loop:

- 1. User **arrives** at MSN with browsing history, user account, previous visits,...
- 2. Microsoft **chooses** news stories, ...

3. User **responds** to content (clicks, navigation, etc)

Goal: Choose content to yield desired user behavior **Assumption:** Recommendations to one user do not affect other users

¹Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966

Previous Bandit Models are not Enough

- No context!
- No-carry over effect from one interaction to the next
 - Say users can change behavior by seeing recommendations
 - Can be captured by Reinforcement Learning

The Contextual Bandit Problem

- In the Contextual Bandit problem,
 - Every round, we get context
 - We want to find the best policy (what to do in each context)
 - May not see the same context twice!
- Different from MAB setting because in MAB problems
 - No context
 - We were finding a single best action

Benefit of Context

• Say we have 5 ads

- $a_1 =$ "buy pet lizards"
- $a_2 =$ "1-800-petunias"
- $a_3 =$ "cheap mp3 players"
- $a_4 =$ "find local florists"
- $a_5 =$ "affordable dragon souls".

- Say we have 4 policies
 - These map context to ads

- Now, lets look at one round of Exp3
 - For Exp3, it is as if it has 4 "arms" (one per policy)

¹Reference: http://courses.cs.washington.edu/courses/cse599s/12sp/scribes/lecture13.pdf

- In round t say the policies recommend the following:
 - e_1 chose a_2 e_2 chose a_2 e_3 chose a_4 e_4 chose a_4 $a_1 = "buy pet lizards"$ $<math>a_2 = "1-800$ -petunias" $a_3 = "cheap mp3 players"$ $<math>a_4 = "find local florists"$ $<math>a_5 = "affordable dragon souls"$

- Say Exp3 chose "arm" e_1 by sampling from weights
- And, say e_1 's ad choice a_2 was clicked

¹Reference: http://courses.cs.washington.edu/courses/cse599s/12sp/scribes/lecture13.pdf

Benefit of Context

Can we do better?

- Exp3 assigns reward $\tilde{x}_s(e_1) = \frac{x_s(e_1)}{p_s(e_1)}$
- Rest of the arms all get reward 0

- e_1 chose a_2
- e_2 chose a_2
- e_3 chose a_4
- e_4 chose a_4
- Yes! e_2 also was recommending a_2
- We should better estimate reward of e_2

¹Reference: http://courses.cs.washington.edu/courses/cse599s/12sp/scribes/lecture13.pdf

For each t = 1, 2, ...:

1. Observe x_t and let for $a = 1, \ldots, K$

$$p_t(a) = \frac{\sum_{\pi} \mathbf{1}[\pi(x_t) = a] w_t(\pi)}{\sum_{\pi} w_t(\pi)}$$

For each t = 1, 2, ...:

1. Observe x_t and let for $a = 1, \ldots, K$

$$p_t(a) = rac{\sum_{\pi} \mathbf{1}[\pi(x_t) = a] w_t(\pi)}{\sum_{\pi} w_t(\pi)} + p_{\min},$$

For each t = 1, 2, ...:

1. Observe x_t and let for $a = 1, \ldots, K$

$$p_t(a) = (1 - Kp_{\min}) rac{\sum_{\pi} \mathbf{1}[\pi(x_t) = a] w_t(\pi)}{\sum_{\pi} w_t(\pi)} + p_{\min},$$

For each t = 1, 2, ...:

1. Observe x_t and let for $a = 1, \ldots, K$

$$p_t(a) = (1 - \mathcal{K}p_{\min})rac{\sum_{\pi} \mathbf{1}[\pi(x_t) = a] w_t(\pi)}{\sum_{\pi} w_t(\pi)} + p_{\min},$$

where $p_{\min} = \sqrt{\frac{\ln |\Pi|}{KT}}$.

For each t = 1, 2, ...:

1. Observe x_t and let for $a = 1, \ldots, K$

$$p_t(a) = (1 - Kp_{\min}) rac{\sum_{\pi} \mathbf{1}[\pi(x_t) = a] w_t(\pi)}{\sum_{\pi} w_t(\pi)} + p_{\min},$$

where $p_{\min} = \sqrt{\frac{\ln |\Pi|}{\kappa T}}$.

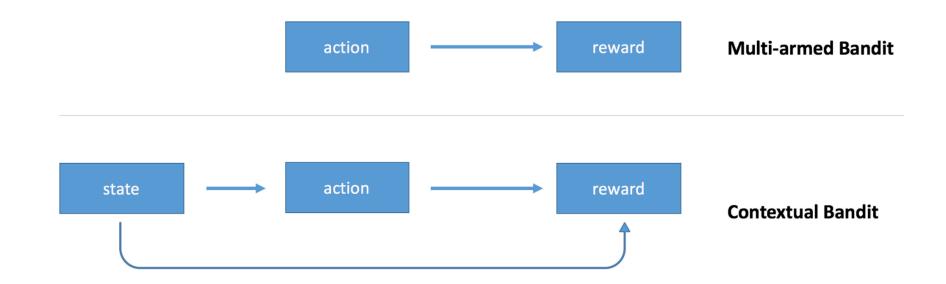
2. Draw a_t from p_t , and observe reward $r_t(a_t)$.

For each t = 1, 2, ...:

1. Observe x_t and let for $a = 1, \ldots, K$

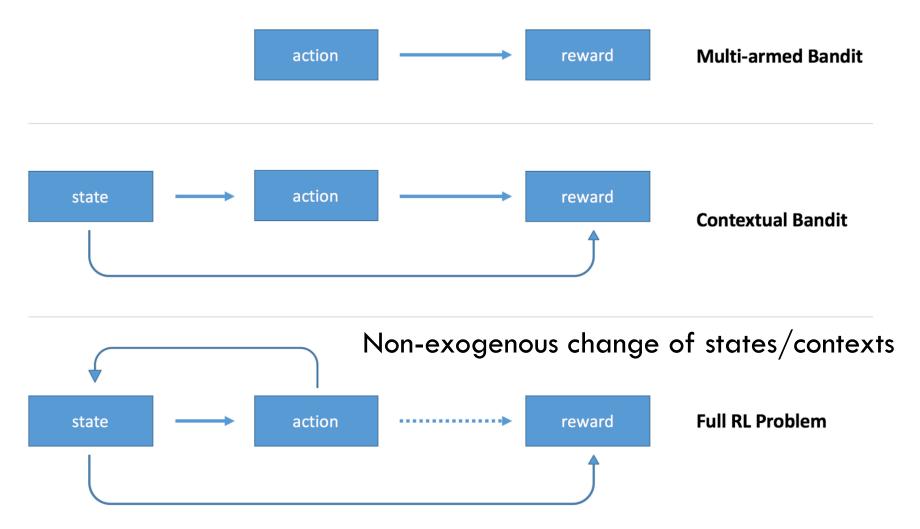
$$p_t(a) = (1 - Kp_{\min})rac{\sum_{\pi} \mathbf{1}[\pi(x_t) = a] w_t(\pi)}{\sum_{\pi} w_t(\pi)} + p_{\min},$$

where $p_{\min} = \sqrt{\frac{\ln |\Pi|}{\kappa T}}$.


- 2. Draw a_t from p_t , and observe reward $r_t(a_t)$.
- 3. Update for each $\pi \in \Pi$

$$w_{t+1}(\pi) = \begin{cases} w_t(\pi) \exp\left(p_{\min}\frac{r_t(a_t)}{p_t(a_t)}\right) & \text{if } \pi(x_t) = a_t \\ w_t(\pi) & \text{otherwise} \end{cases}$$

¹Reference: John Langford (2011)


Questions?

Reinforcement Learning: Because Contextual Bandit Formulation is not Enough

73

Reinforcement Learning: Because Contextual Bandit Formulation is not Enough

¹Reference: https://medium.com/@awjuliani/simple-reinforcement-learning-with-tensorflow-part-1-5-contextual-bandits-bff01d1aad9c

Summary

- We looked at A/B testing as a way to introduce enhancements in a business product/service
 - May need a lot of examples
 - Is based on the idea of randomized control trials
- We also looked at two new online ML problems
 - Multi-Armed Bandits
 - Contextual Bandits
- Contextual bandits are a special case of reinforcement learning, which we will study next time.

Appendix

Sample Exam Questions

- What is the difference between A/B testing and Multi-armed bandits?
- Can we do A/B testing when we have more than two options?
- What is the role of exploration in the Bandit problems?
- Can Exp3 be used in a stochastic setting?
- How does the contextual problem differ from the noncontextual problem?

Online ML is Difficult to Deploy

- Separate teams for each part of the process
- Faulty logging
 - Logging just choice, not probabilities
 - Features not logged and change in time
- Runtime behavior incompatible with the ML
 - Business logic overriding randomization
 - Using the probability as feature for downstream ML
- Subtle errors that are difficult to find in complex systems!

Repeatedly:

1. A user comes to Yahoo! (with history of previous visits, IP address, data related to his Yahoo! account)

Repeatedly:

- 1. A user comes to Yahoo! (with history of previous visits, IP address, data related to his Yahoo! account)
- 2. Yahoo! chooses information to present (from urls, ads, news stories)

Repeatedly:

- 1. A user comes to Yahoo! (with history of previous visits, IP address, data related to his Yahoo! account)
- 2. Yahoo! chooses information to present (from urls, ads, news stories)
- 3. The user reacts to the presented information (clicks on something, clicks, comes back and clicks again, et cetera)

Repeatedly:

- 1. A user comes to Yahoo! (with history of previous visits, IP address, data related to his Yahoo! account)
- 2. Yahoo! chooses information to present (from urls, ads, news stories)
- 3. The user reacts to the presented information (clicks on something, clicks, comes back and clicks again, et cetera)

Yahoo! wants to interactively choose content and use the observed feedback to improve future content choices.

¹Reference: John Langford (2011)

Repeatedly:

- 1. A patient comes to a doctor with symptoms, medical history, test results
- 2. The doctor chooses a treatment
- 3. The patient responds to it

The doctor wants a policy for choosing targeted treatments for individual patients.

Additional Resources

- Course at UWash:
 - <u>http://courses.cs.washington.edu/courses/cse599s/12sp/scribes.html</u> (lectures 13,14)
- Course at UCSD:
 - <u>http://cseweb.ucsd.edu/~kamalika/teaching/CSE291W11/</u> (lecture5)
- Tutorial by Bygelzimer and Langford:
 - <u>http://hunch.net/~exploration_learning/</u>
- Course at UAlberta:
 - <u>https://sites.ualberta.ca/~szepesva/CMPUT654/</u>

Note: These are optional. May be slightly theoretical in nature.