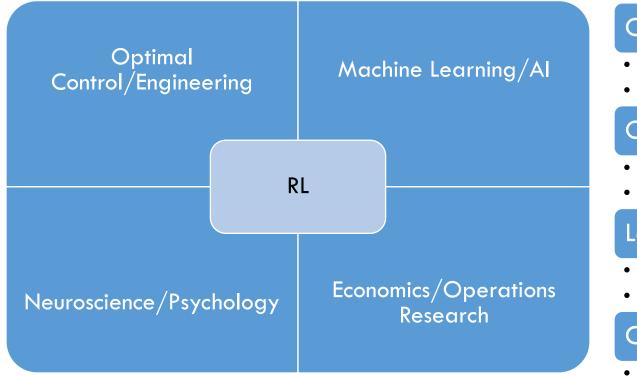
# Advanced Prediction Models

### Today's Outline

- Complex Decisions
- Reinforcement Learning Basics
  - Markov Decision Process
  - (State Action) Value Function
- Q Learning Algorithm

## Complex Decisions

#### Complex Decisions Making is Everywhere



#### Control

- Fly drones
- Autonomous driving

#### **Operations**

- Retain customers, UX
- Inventory management

#### Logistics

- Schedule transportation
- Resource allocation

#### Games

· Chess, Go, Atari

#### Complex Decisions Making is Everywhere

Computer Go



Brain computer interface



Medical trials



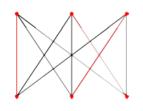
Packets routing



Ads placement



Dynamic allocation



Credit: Sebastien Bubeck

#### Control

- Fly drones
- Autonomous driving

#### **Operations**

- Retain customers, UX
- Inventory management

#### Logistics

- Schedule transportation
- Resource allocation

#### Games

Chess, Go, Atari

### Playing Atari Using RL (2013)



<sup>1</sup>Figure: Defazio Graepel, Atari Learning Environment

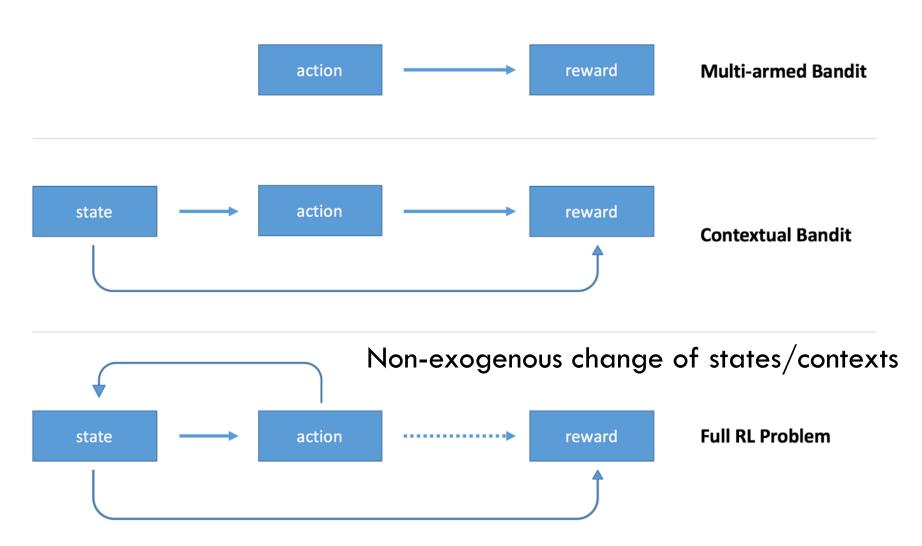
### AlphaGo Conquers Go (2016)





<sup>1</sup>Reference: DeepMind, March 2016

### Need for Reinforcement Learning



#### **RL Overview**

- Reinforcement Learning (RL) addresses a version of the problem of sequential decision making
- Ingredients:
  - There is an environment
  - Within which, an agent takes actions
  - This action influences the future
  - Agent gets a (potentially delayed) feedback signal

- How to select actions to maximize total reward?
- RL provides several sound answers to this question

#### The Environment

- Sees Agent's action  $A_t$  and generates an observation  $S_{t+1}$  and a reward  $R_{t+1}$
- Subscript t indexes time. Current observation  $S_t$  is called state

• Assume the future (at times  $t+1,t+2,\ldots$ ) is independent of the past  $(\ldots,t-2,t-1)$  given the present (t): this is called the Markov assumption

$$P(S_{t+1}|S_t) = P(S_{t+1}|S_1, S_2, ... S_t)$$

Assume everything relevant is observed

### The Agent

• Agent observes  $R_{t+1}$ ,  $S_{t+1}$  and these are not i.i.d. across time

• Agent's objective is to maximize expected total future reward  $E[R_{t+1} + \gamma R_{t+2} + \cdots]$ 

- Agent's actions affect what it sees in the future  $(S_{t+1})$
- Maybe better to trade off current reward  $R_{t+1}$  to gain more rewards in the future

#### The Reward

- $\blacksquare$  A reward  $R_t$  is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximise cumulative reward

Reinforcement learning is based on the reward hypothesis

#### Definition (Reward Hypothesis)

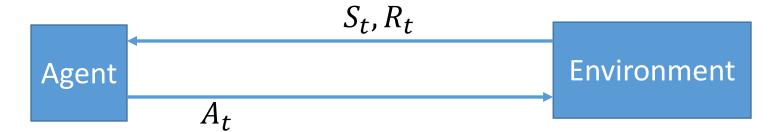
All goals can be described by the maximisation of expected cumulative reward

#### The Goal

- Goal: select actions to maximise total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward
- Examples:
  - A financial investment (may take months to mature)
  - Refuelling a helicopter (might prevent a crash in several hours)
  - Blocking opponent moves (might help winning chances many moves from now)

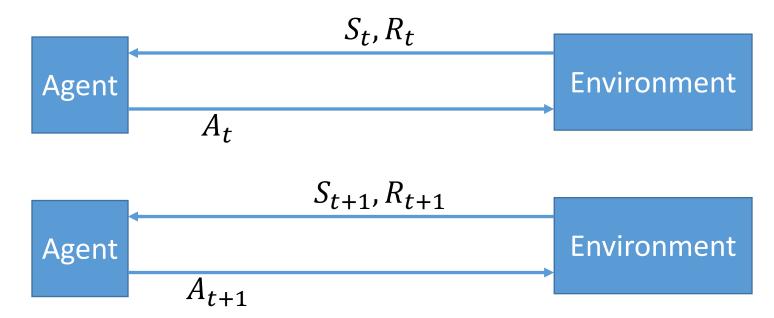
#### The Interactions

Pictorially



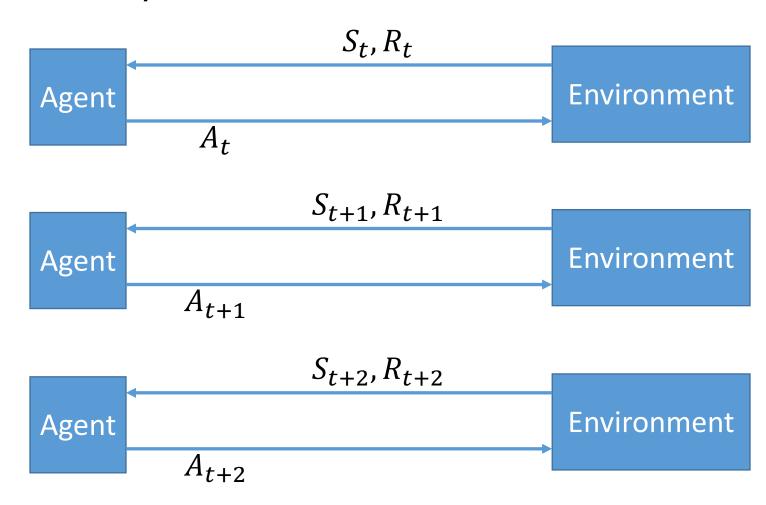
#### The Interactions

Pictorially

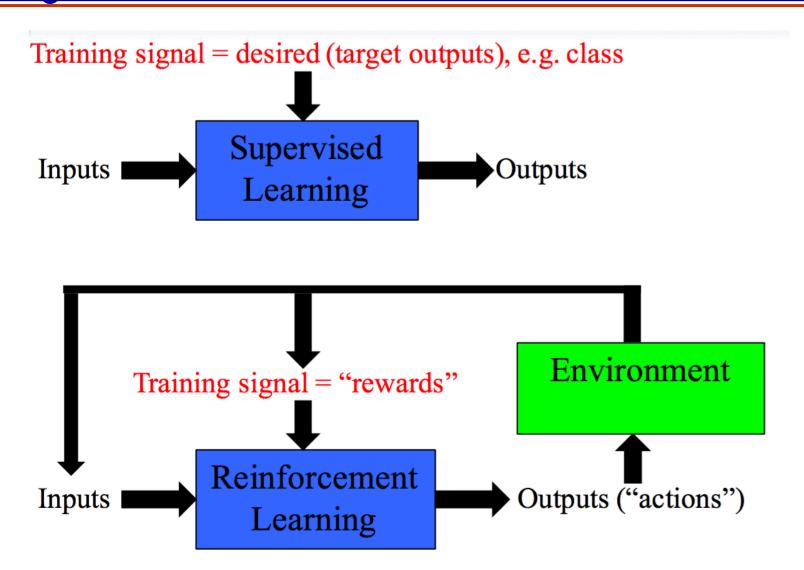


#### The Interactions

Pictorially



# RL versus other Machine Learning Settings



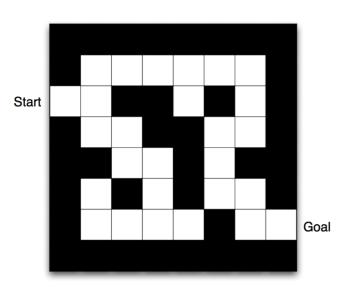
### Components of an RL Agent

- An RL agent may include one or more of these components:
  - Policy: agent's behaviour function
  - Value function: how good is each state and/or action
  - Model: agent's representation of the environment

### Components of RL: Policy

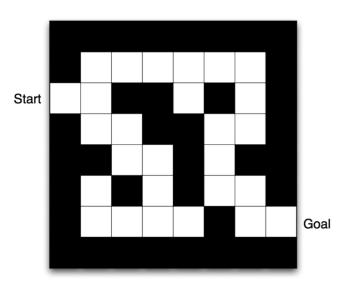
- A policy is the agent's behaviour
- It is a map from state to action, e.g.
- Deterministic policy:  $a = \pi(s)$
- Stochastic policy:  $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$

### Components of RL: Policy

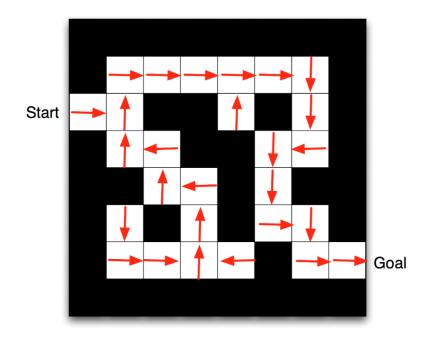


- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent's location

### Components of RL: Policy



- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent's location



<sup>1</sup>Reference: David Silver, 2015

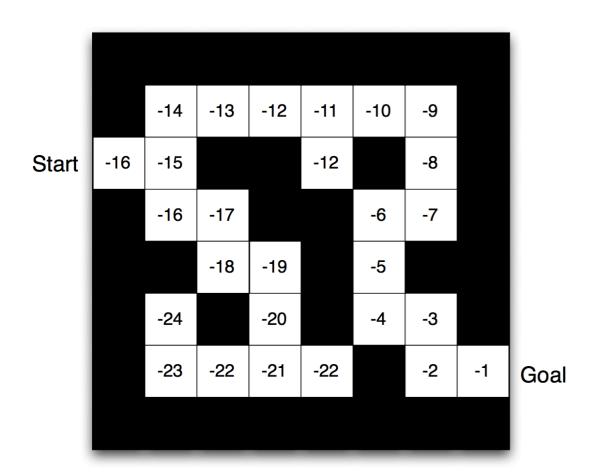
• Arrows represent policy  $\pi(s)$  for each state s

### Components of RL: Value Function

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And therefore to select between actions, e.g.

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[ R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... \mid S_t = s \right]$$

### Components of RL: Value Function



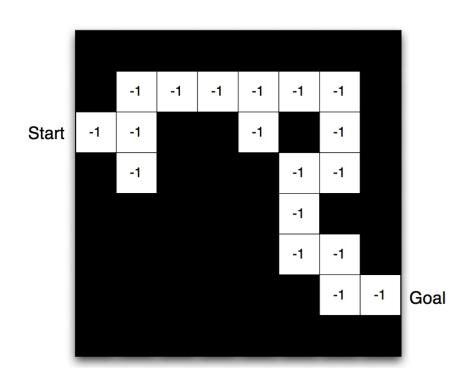
Numbers represent value  $v_{\pi}(s)$  of each state s

#### Components of RL: Model

- A model predicts what the environment will do next
- lacksquare P predicts the next state
- R predicts the next (immediate) reward, e.g.

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_{t} = s, A_{t} = a]$$
  
 $\mathcal{R}_{s}^{a} = \mathbb{E}[R_{t+1} \mid S_{t} = s, A_{t} = a]$ 

### Components of RL: Model



- Dynamics: how actions change the state
- Rewards: how much reward from each state

- Grid layout represents transition model  $\mathcal{P}_{ss'}^a$
- Numbers represent immediate reward  $\mathcal{R}_s^a$  from each state s (same for all a)

### Questions?

### Today's Outline

- Complex Decisions
- Reinforcement Learning Basics
  - Markov Decision Process
  - (State Action) Value Function
- Q Learning Algorithm

#### Components of RL: MDP Framework

- We will now revisit these components formally
  - Policy  $\pi(a|s)$
  - Value function  $v_{\pi}(s)$
  - Model  $\mathcal{P}^a_{ss'}$  and  $\mathcal{R}^a_s$

In the framework of Markov Decision Processes

• And then we will address the question of optimizing for the best  $\pi$  in realistic environments

#### Towards a Markov Decision Process

MDPs are a useful way to describe the RL problem

- MDPs can be understood via the following progression
  - Start with a Markov Chain
    - State transitions happen autonomously
  - Add Rewards
    - Becomes a Markov Reward Process
  - Add Actions that influences state transitions
    - Becomes a Markov Decision Process

### Markov Chain/Process

For a Markov state s and successor state s', the state transition probability is defined by

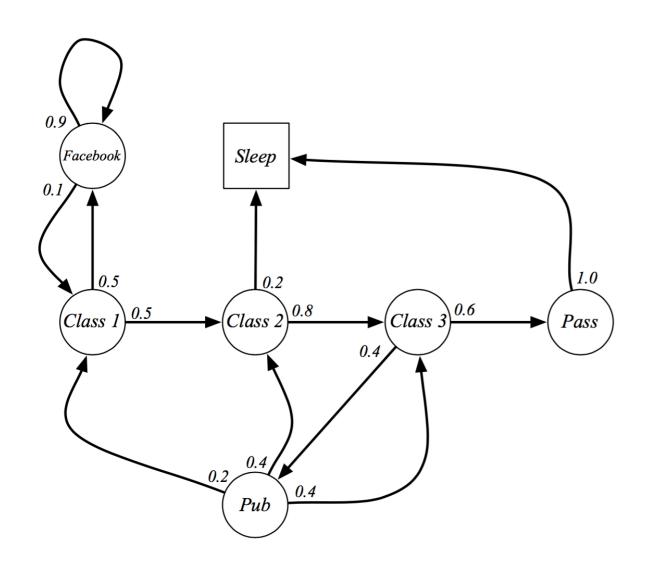
$$\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$$

State transition matrix P defines transition probabilities from all states s to all successor states s',

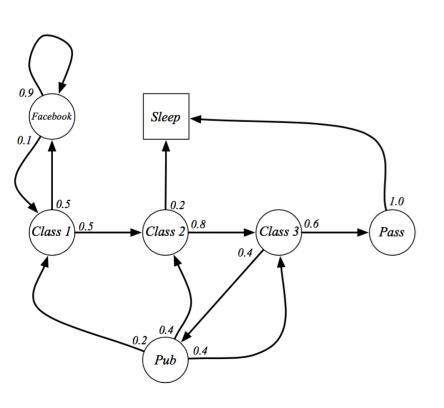
$$\mathcal{P}$$
 = from  $egin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \ dots & & & \ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix}$ 

where each row of the matrix sums to 1.

### **Example Markov Chain**



### **Example Markov Chain**

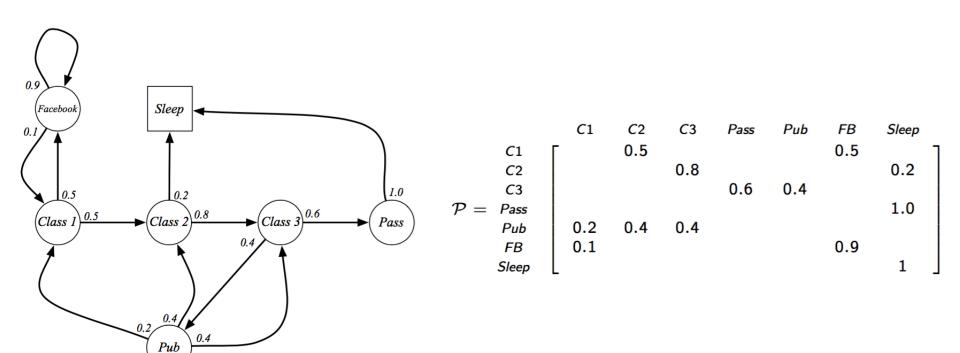


Sample episodes for Student Markov Chain starting from  $S_1 = C1$ 

$$S_1, S_2, ..., S_T$$

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 C3 Pub C2 Sleep

### **Example Markov Chain**



#### Markov Chain with Rewards

A Markov reward process is a Markov chain with values.

#### **Definition**

A Markov Reward Process is a tuple  $\langle \mathcal{S}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ 

- ullet  $\mathcal{S}$  is a finite set of states
- $\mathcal{P}$  is a state transition probability matrix,  $\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$
- $\mathcal{R}$  is a reward function,  $\mathcal{R}_s = \mathbb{E}\left[R_{t+1} \mid S_t = s\right]$
- lacksquare  $\gamma$  is a discount factor,  $\gamma \in [0,1]$

#### Markov Chain with Rewards

#### **Definition**

The return  $G_t$  is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

#### Markov Chain with Rewards

#### **Definition**

The return  $G_t$  is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

The value function v(s) gives the long-term value of state s

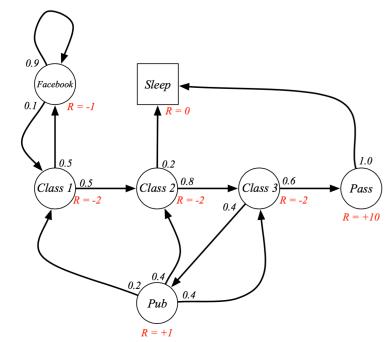
#### Definition

The state value function v(s) of an MRP is the expected return starting from state s

$$v(s) = \mathbb{E}\left[G_t \mid S_t = s\right]$$

## **Example Markov Reward Process**

Sample returns for Student MRP: Starting from  $S_1 = C1$  with  $\gamma = \frac{1}{2}$ 



$$G_1 = R_2 + \gamma R_3 + ... + \gamma^{T-2} R_T$$

$$\begin{vmatrix} v_1 = -2 - 2 * \frac{1}{2} - 2 * \frac{1}{4} + 10 * \frac{1}{8} & = -2.25 \\ v_1 = -2 - 1 * \frac{1}{2} - 1 * \frac{1}{4} - 2 * \frac{1}{8} - 2 * \frac{1}{16} & = -3.125 \\ v_1 = -2 - 2 * \frac{1}{2} - 2 * \frac{1}{4} + 1 * \frac{1}{8} - 2 * \frac{1}{16} \dots & = -3.41 \\ v_1 = -2 - 1 * \frac{1}{2} - 1 * \frac{1}{4} - 2 * \frac{1}{8} - 2 * \frac{1}{16} \dots & = -3.20 \end{vmatrix}$$

#### Recursions in Markov Reward Process

The value function can be decomposed into two parts:

- $\blacksquare$  immediate reward  $R_{t+1}$
- discounted value of successor state  $\gamma v(S_{t+1})$

$$v(s) = \mathbb{E} [G_t \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... \mid S_t = s]$$

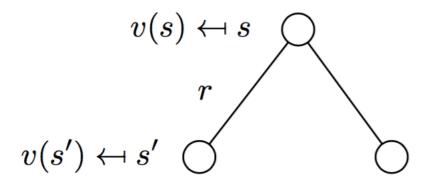
$$= \mathbb{E} [R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + ...) \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$

$$= \mathbb{E} [R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s]$$

#### Recursions in Markov Reward Process

$$v(s) = \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s\right]$$



$$v(s) = \mathcal{R}_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'} v(s')$$

#### Markov Decision Process

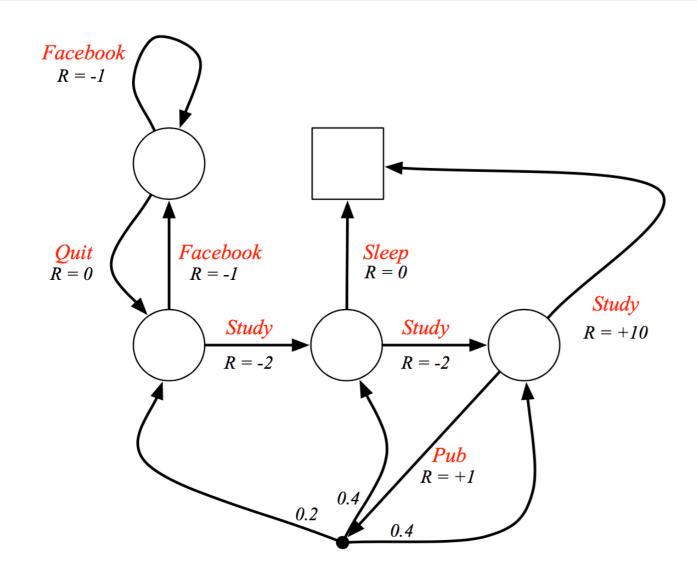
A Markov decision process (MDP) is a Markov reward process with decisions. It is an *environment* in which all states are Markov.

#### **Definition**

A Markov Decision Process is a tuple  $\langle S, A, P, R, \gamma \rangle$ 

- ullet S is a finite set of states
- $\blacksquare$  A is a finite set of actions
- $\mathcal{P}$  is a state transition probability matrix,  $\mathcal{P}_{ss'}^{a} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s, A_t = a\right]$
- $lacksquare{\mathbb{R}}$  is a reward function,  $\mathcal{R}_s^a = \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = a\right]$
- ullet  $\gamma$  is a discount factor  $\gamma \in [0,1]$ .

#### **Example Markov Decision Process**



#### Markov Decision Process: Policy

 Now that we have introduced actions, we can discuss policies again

Recall

#### **Definition**

A policy  $\pi$  is a distribution over actions given states,

$$\pi(a|s) = \mathbb{P}\left[A_t = a \mid S_t = s\right]$$

A policy fully defines the behaviour of an agent

## MDP is an MRP for a Fixed Policy

- Given an MDP  $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$  and a policy  $\pi$
- The state sequence  $S_1, S_2, ...$  is a Markov process  $\langle \mathcal{S}, \mathcal{P}^{\pi} \rangle$
- The state and reward sequence  $S_1, R_2, S_2, ...$  is a Markov reward process  $\langle S, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$

<sup>&</sup>lt;sup>1</sup>Reference: David Silver, 2015

## MDP is an MRP for a Fixed Policy

- Given an MDP  $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$  and a policy  $\pi$
- The state sequence  $S_1, S_2, ...$  is a Markov process  $\langle \mathcal{S}, \mathcal{P}^{\pi} \rangle$
- The state and reward sequence  $S_1, R_2, S_2, ...$  is a Markov reward process  $\langle S, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$
- where

$$egin{aligned} \mathcal{P}^{\pi}_{s,s'} &= \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{P}^{a}_{ss'} \ \mathcal{R}^{\pi}_{s} &= \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{R}^{a}_{s} \end{aligned}$$

# Markov Decision Process: Value Function

We can also talk about the value function(s)

#### **Definition**

The state-value function  $v_{\pi}(s)$  of an MDP is the expected return starting from state s, and then following policy  $\pi$ 

$$v_{\pi}(s) = \mathbb{E}_{\pi}\left[G_t \mid S_t = s\right]$$

## Markov Decision Process: Value Function

We can also talk about the value function(s)

#### **Definition**

The state-value function  $v_{\pi}(s)$  of an MDP is the expected return starting from state s, and then following policy  $\pi$ 

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[ G_t \mid S_t = s \right]$$

#### **Definition**

The action-value function  $q_{\pi}(s, a)$  is the expected return starting from state s, taking action a, and then following policy  $\pi$ 

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}\left[G_t \mid S_t = s, A_t = a\right]$$

#### Recursions in MDP

#### \*Also called the Bellman Expectation Equations

The state-value function can again be decomposed into immediate reward plus discounted value of successor state,

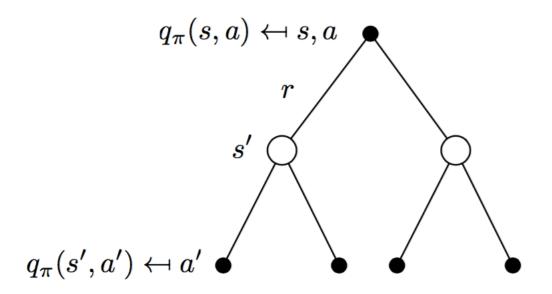
$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[ R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s \right]$$

The action-value function can similarly be decomposed,

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[ R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a \right]$$

#### Recursions in MDP

#### \*Also called the Bellman Expectation Equations



$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s', a')$$

#### Markov Decision Process: Objective

The optimal state-value function  $v_*(s)$  is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

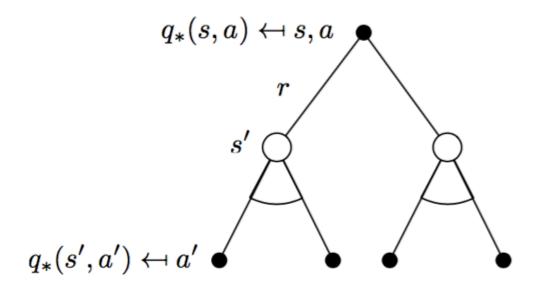
The optimal action-value function  $q_*(s, a)$  is the maximum action-value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

<sup>&</sup>lt;sup>1</sup>Reference: David Silver, 2015

#### Markov Decision Process: Objective

\*Also called the Bellman Optimality Equation



$$q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \max_{a'} q_*(s', a')$$

#### Markov Decision Process: Optimal Policy

An optimal policy can be found by maximising over  $q_*(s, a)$ ,

$$\pi_*(a|s) = \left\{ egin{array}{ll} 1 & ext{if } a = ext{argmax } q_*(s,a) \ & a \in \mathcal{A} \ 0 & otherwise \end{array} 
ight.$$

## Questions?

## Today's Outline

- Complex Decisions
- Reinforcement Learning Basics
  - Markov Decision Process
  - (State Action) Value Function
- Q Learning Algorithm

## Finding the Best Policy

- Need to be able to do two things ideally
  - Prediction:
    - For a given policy, evaluate how good it is
      - Compute  $q_{\pi}(s, a)$
  - Control:
    - And make an improvement from  $\pi$
- We will focus on the Q Learning algorithm
  - It does prediction and control 'simultaneously'

- Initialize Q, which is a table of size #states $\times \#$ actions
- Start at state  $S_1$

- Initialize Q, which is a table of size #states $\times \#$ actions
- Start at state S<sub>1</sub>
- For t = 1,2,3,...
  - ullet Take  $A_t$  chosen uniformly at random with probability  $\epsilon$

**Explore** 

- Initialize Q, which is a table of size #states $\times \#$ actions
- Start at state S<sub>1</sub>
- For t = 1,2,3,...
  - ullet Take  $A_t$  chosen uniformly at random with probability  $\epsilon$
  - Take  $\underset{a \in A}{\operatorname{argmax}} Q(S_t, a)$  with probability  $1 \epsilon$

**Explore** 

Exploit

- Initialize Q, which is a table of size #states $\times \#$ actions
- Start at state S<sub>1</sub>
- For t = 1,2,3,...
  - Take  $A_t$  chosen uniformly at random with probability  $\epsilon$

Explore

• Take  $\operatorname{argmax}_{a \in A} Q(S_t, a)$  with probability  $1 - \epsilon$ 

**Exploit** 

• Update Q:

• 
$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha_t(R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) - Q(S_t, A_t))$$

Temporal difference error

- Initialize Q, which is a table of size #states $\times \#$ actions
- Start at state S<sub>1</sub>
- For t = 1,2,3,...
  - Take  $A_t$  chosen uniformly at random with probability  $\epsilon$

Explore

• Take  $\operatorname{argmax}_{a \in A} Q(S_t, a)$  with probability  $1 - \epsilon$ 

**Exploit** 

- Update Q:
  - $Q(S_t, A_t) = Q(S_t, A_t) + \alpha_t (R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) Q(S_t, A_t))$

Temporal difference error

- Parameter  $\epsilon$  is the exploration parameter
- Parameter  $\alpha_t$  is the learning rate

- Initialize Q, which is a table of size #states $\times \#$ actions
- Start at state  $S_1$
- For t = 1,2,3,...
  - Take  $A_t$  chosen uniformly at random with probability  $\epsilon$

Explore

• Take  $\operatorname{argmax}_{a \in A} Q(S_t, a)$  with probability  $1 - \epsilon$ 

Exploit

- Update Q:
  - $Q(S_t, A_t) = Q(S_t, A_t) + \alpha_t(R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) Q(S_t, A_t))$

Temporal difference error

- Parameter  $\epsilon$  is the exploration parameter
- Parameter  $\alpha_t$  is the learning rate
- Under appropriate assumptions<sup>1</sup>,  $\lim_{t \to \infty} Q = Q^*$

<sup>&</sup>lt;sup>1</sup>Reference: Christopher J. C. H. Watkins and Peter Dayan, 1992

## The Q Learning Algorithm: Notation

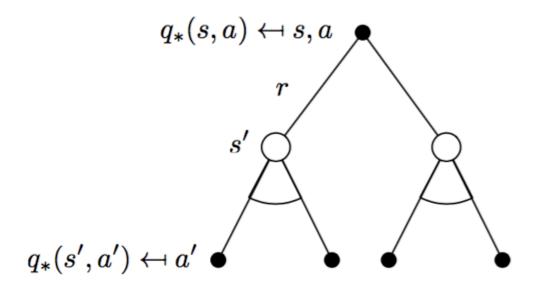
- Bellman Optimality Equation gives rise to the Q-Value Iteration algorithm
- Making this algorithm incremental, sampled and adding  $\epsilon$ -greedy exploration gives Q Learning Algorithm

Q-Value Iteration | Q-Learning | Q(s, a) 
$$\leftarrow \mathbb{E}\left[R + \gamma \max_{a' \in \mathcal{A}} Q(S', a') \mid s, a\right] \mid Q(S, A) \overset{\alpha}{\leftarrow} R + \gamma \max_{a' \in \mathcal{A}} Q(S', a')$$

where 
$$x \stackrel{\alpha}{\leftarrow} y \equiv x \leftarrow x + \alpha(y - x)$$

#### Q-Value Iteration

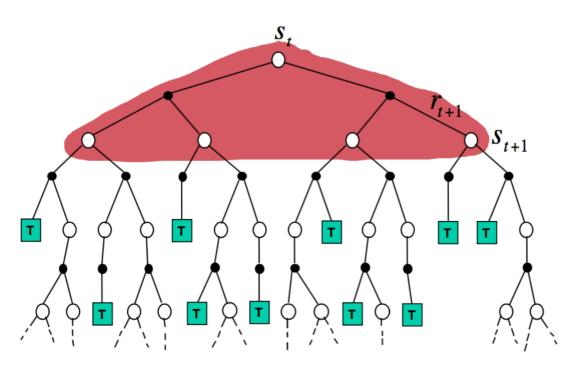
- If we know the model
  - Turn the Bellman Optimality Equation into an iterative update
  - Replace the equality with the 'arrow' sign below



$$q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \max_{a'} q_*(s', a')$$

#### Q-Value Iteration

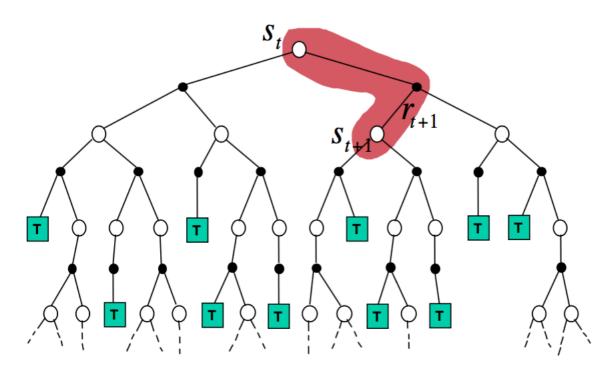
$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[ R_{t+1} + \gamma V(S_{t+1}) \right]$$



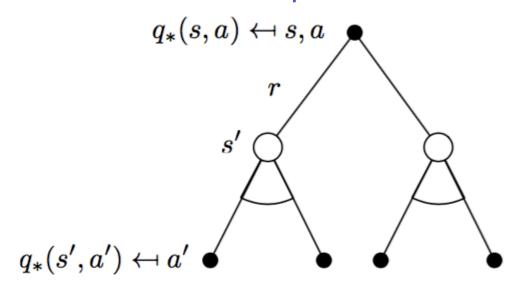
$$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma \max_{a' \in \mathcal{A}} Q(S', a') \mid s, a\right]$$

#### Q-Value Iteration

$$V(S_t) \leftarrow V(S_t) + \alpha \left( R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

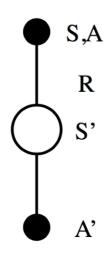


- If we do not know the model
  - Do sampling to get an incremental iterative update
  - Choose next actions to ensure exploration



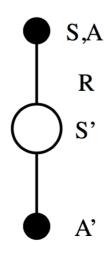
$$q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \max_{a'} q_*(s', a')$$

- If we do not know the model
  - Do sampling to get an incremental iterative update
  - Choose next actions to ensure exploration



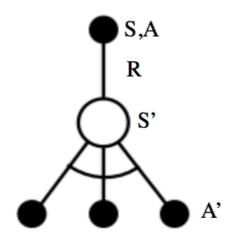
$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A)\right)$$

- If we do not know the model
  - Do sampling to get an incremental iterative update
  - Choose next actions to ensure exploration



$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A)\right)$$

- If we do not know the model
  - Do sampling to get an incremental iterative update
  - Choose next actions to ensure exploration



$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma \max_{a'} Q(S',a') - Q(S,A)\right)$$

## Questions?

## Summary

- RL is a great framework to make agents intelligent
- Specify goals and provide feedback
- Many challenges still remain: exciting opportunity to contribute towards next generation of artificially intelligent and autonomous agents.
- In the next lecture, we will see that deep learning function approximation based RL agents show promise in large complex tasks: representations matter!
  - Applications such as
    - Self-driving cars
    - Intelligent virtual agents

## Appendix

#### Sample Exam Questions

- What is the difference between a Markov Chain and a Markov Reward Process?
- What is the difference between a Markov Chain and a Markov Decision Process?
- Why is exploration needed in the reinforcement learning setting?
- What does the optimal state-action value function signify?
- What are the two objects (distributions) of an RL model?
- What is the difference between supervised learning and reinforcement learning?

#### Additional Resources

- An Introduction to Reinforcement Learning by Richard Sutton and Andrew Barto
  - http://incompleteideas.net/sutton/book/the-book.html
- Course on Reinforcement Learning by David Silver at UCL (includes video lectures)
  - http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
- Research Papers
  - Deep RL collection: <a href="https://github.com/junhyukoh/deep-reinforcement-learning-papers">https://github.com/junhyukoh/deep-reinforcement-learning-papers</a>
  - [MKSRVBGRFOPBSAKKWLH2015] Mnih et al. Human-level control through deep reinforcement learning. Nature, 518:529–533, 2015.
  - [SHMGSDSAPLDGNKSLLKGH2016] Silver et al. Mastering the game of Go with deep neural networks and tree search. Nature, 529: 484–489, 2016.

#### Cons of RL

- Reinforcement Learning requires experiencing the environment many many times
- This is because it is a trial and error based approach

- Impractical for many complex tasks
- Unless one has access to simulators where an RL agent can practice a billon times

# RL versus other Machine Learning Settings

- There is a notion of exploration and exploitation, similar to Multi-armed bandits and Contextual bandits
  - Exploration finds more information about the environment
  - Exploitation exploits known information to maximise reward
  - It is usually important to explore as well as exploit

- Key difference: actions influence future contexts
  - Reinforcement learning is like trial-and-error learning
  - The agent should discover a good policy
  - From its experiences of the environment
  - Without losing too much reward along the way

# RL versus other Sequential Decision Making Settings

Two fundamental problems in sequential decision making

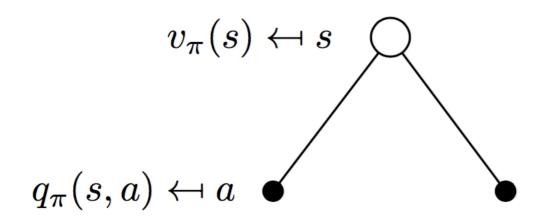
- Reinforcement Learning:
  - The environment is initially unknown
  - The agent interacts with the environment
  - The agent improves its policy
- Planning:
  - A model of the environment is known
  - The agent performs computations with its model (without any external interaction)
  - The agent improves its policy
  - a.k.a. deliberation, reasoning, introspection, pondering, thought, search

## Types of RL Agents

- There are many ways to design them, so we roughly categorize then as below:
- Value Based
  - No Policy (Implicit)
  - Value Function
- Policy Based
  - Policy
  - No Value Function
- Actor Critic
  - Policy
  - Value Function

- Model Free
  - Policy and/or Value Function
  - No Model
- Model Based
  - Policy and/or Value Function
  - Model

#### Relating the Two Value Functions I



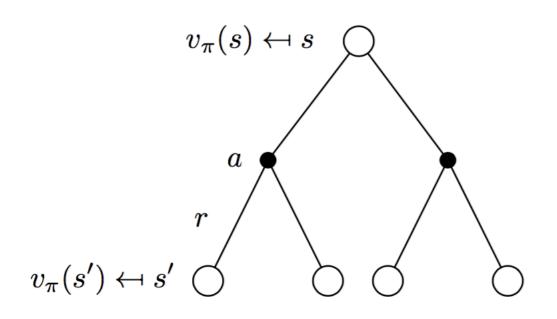
$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s,a)$$

## Relating the Two Value Functions II



$$q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s')$$

# Recursion in MDP: Value Function Version



$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left( \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right)$$

#### Relating Policy and Value Function

An optimal policy can be found by maximising over  $q_*(s, a)$ ,

$$\pi_*(a|s) = \left\{ egin{array}{ll} 1 & ext{if } a = ext{argmax } q_*(s,a) \ & a \in \mathcal{A} \ 0 & otherwise \end{array} 
ight.$$