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Attention in Seq2Seq



What does attention mean?

* Attend to certain steps/parts of the input sequence while
deciding /predicting the current output (of the output sequence)

* By ‘attend’, we just mean that the prediction of the current output
depends on specific parts of the input sequence.

* Next, we will revisit the attention mechanism in a neural machine
translation sequence to sequence modelling setting.

TReference: N



Sequence to Sequence Modeling

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION
Encoding Decoding

Attention

En;r: :er Decoder
RNN

Je suis étudiant

'Reference: https:/ /jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-

with-attention/



Sequence to Sequence Modeling

Neural Machine Translation
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Sequence to Sequence Modeling

Neural Machine Translation
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Sequence to Sequence Modeling

Collect the hidden layer outputs from all RNN steps

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encoding Stage
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'Reference: https:/ /jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-
with-attention/



Sequence to Sequence Modeling

Neural Machine Translation
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Sequence to Sequence Modeling
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Sequence to Sequence Modeling

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION
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Sequence to Sequence Modeling

While decoding happens sequentially, each RNN
step involves attention!

| am a student

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encoding Decoding

E d Encod Encod Attention Attention Attention Attention
n;r:Ner ;':Ner F;::Ner Decoder Decoder Decoder Decoder
RNN RNN RNN RNN

'Reference: https:/ /jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-
with-attention/



Attention in Seq2Seqg

1. Prepare inputs

2. Score each hidden state

3. Softmax the scores

4. Multiply each vector by
its softmaxed score

5. Sum up the weighted
vectors
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A combination of encoder vectors is

concatenated with the decoder hidden vector

Attention at time step 4

Encoder Decoder hidden
hidden state at time step 4
states

scores

Attention weights for
decoder time step #4

softmax scores

Context vector for
decoder time step #4

Recall that score generating
function has its own parameters
and uses the decoder hidden
vector

TReference: https://jalammar.github.io /visualizing-neural-machine-translation-mechanics-of-seq2seq-models-

with-attention /



Attention in Seq2Seqg

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION
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'Reference: https:/ /jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-
with-attention/



Attention in Seq2Seqg

Because the attention mechanism spans across encoder and decoder, we will
refer to it as encoder-decoder attention

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encoding Stage Attention Decoding Stage

Rinit

'Reference: https:/ /jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-
with-attention/



Attention in Seq2Seqg

An example illustrating the attention scores: in this example, the attention scores seem
quite natural

Encoder

hidden l am a student

state

J e hidden

state #1

hidden
state #1

hidden
state #2

su is hidden

state #2

étudiant [P

state #3

hidden
state #3

'Reference: https:/ /jalammar.github.io /visualizing-neural-machine-translation-mechanics-of-seq2seq-models-
with-attention/ . Also see https://github.com /tensorflow /nmt



Attention in Seg2Seq

An example illustrating the attention scores: in this :]E) c

example, the attention scores for ‘European Economic . 3 § 3 2 B
Area’ capture the non-triviality [ 2 - § 85 29 3
F ©® o s ww<< =nmh £ - vV

L

Attention visualization — acc:::

example of the alignments la

between source and target zone

économique

sentences européenne

a

été

signé

en

ao(t

1992

<end>

1Reference: Bahdanau et al., 2015
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Transformer Architecture and
Self-Attention

20



Transformer

Is a new model/architecture (from 2017) that we will look at that can also be used

for sequence to sequence modelling

Attention (same idea as before, but a slightly different take) is a core component of
this model

Lets start again with neural machine translation as the running application.

~

THE
TRANSFORMER

S T

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer
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ENCODERS

\S

DECODERS

'Reference: https:/ /jalammar.github.io/illustrated-transformer /



Transformer

Lets now see the insides of both the encoder and the decoder in order.

DUTPUT | | am a student
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'Reference: https:/ /jalammar.github.io/illustrated-transformer /




Transformer : Encoder

In particular, lets focus on one encoder unit.

The number of such units is fixed and does not depend on the input sequence
length (thanks to parallel treatment of all input elements/words, as we will
see later).

Feed Forward Neural Network

Self-Attention

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Encoder

The encoder units don’t share weights.
Have two sub-layers: self-attention followed by a fully connected /feed forward (FF) layer.
All words will be input at the same time. So the FF layer’s weights are reused across words

(Decoder has self-attention as well as the classical encoder-decoder attention)

t
( )
Feed Forward
? \_ _J
i
1 h 4 h
Feed Forward Encoder-Decoder Attention
. y, \_ )
4 pr— 4
( Y ( )
Self-Attention Self-Attention
. y, . y,

t t

Self-attention helps ‘transform’ inputs taking other inputs into consideration

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Encoder

Lets start with vector embeddings of words (fix some max length say 20) at the
lowest /starting layer. Say the embedding size is 512.
In other layers, its not embeddings but vector outputs of previous encoder units

i i i

Feed Forward

Self-Attention

Each word has its own path till the end

L L] LT LT

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Encoder

Transformation of each word depends on transformations of other words in each encoding unit
E.g.: z; depends on x; and x5,

_ J

T 1
LTI .

Feed Forward Feed Forward
Neural Network Neural Network
_ _

Self-Attention

X1 v | X2
Thinking Machines

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Self-Attention

Self-attention: while processing the word ‘it’ below, attend to words related to it
P g ’

Layer:| 5 §|Attention: Input - Input =

The_ The_
animal_ animal_
didn_ didn_
t_ t_
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ it_
was_ was_
too_ too_
tire tire

d d

Self-attention: helps better encode the word ‘it’. Analogous to cell state changes in LSTMs.

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Self-Attention

Create three vectors for each input: g, k and v using three matrices (that need to be learned)

Input

Embedding L[] HEEE

Queries o [ ] a2l T 11 Wa

Their dimension is typically chosen to be smaller, e.g., 64

Keys

The use of names query, key and value is for interpretation (just like in LSTMs)

Values D:D EDJ

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Self-Attention

After create the three vectors, a set of scores per input word are calculated.

Input

Embedding

Queries

Keys

Values

Score

"Reference: https://jalammar.github.io /illustrated-transformer /

Thinking

Machines




Transformer : Self-Attention

These scores are then normalized. They determine how much attention is needed on
itself and other words (e.g., Machines below).

Input

Embedding

Queries q1 g2

Keys

Values

Score qi®

|
e
B
|

Divide by 8 ( Vdy. )

Softmax

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Self-Attention

A score weighted sum of ‘value’ vectors is the output encoding of the input in this encoder unit

Input
Embedding (T 117 [T T 1]
Queries q1 D:D q2 l:l:l:‘
Keys [T 1] [T 1]
Values [T 1] [T 1]
Score qr e ki = g1 e ko =

Divide by 8 ( Vdy )

Softmax
Softmax
X [T 1]
Sum L[] (T[]

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Self-Attention

The computation of queries, keys and values actually happens via matrix multiplication.

wa Q

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Self-Attention

Similarly, the scores are also computed using matrix-matrix multiplications.

Q T

softmax

Vi

Exercise: This should seem similar to the encoder-decoder attention we saw in seq2seq models

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Multi-Headed Attention

Multi-headed attention: doing multiple attention computations in parallel.
Empirically validated.

How it might help: (a) model can better focus on multiple inputs, (b) get 'different’ representations
(basically we can get different ‘output embeddings’ due to random initializations)

ATTENTION HEAD #0 ATTENTION HEAD #1

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Multi-Headed Attention

Calculating attention separately in
eight different attention heads

v

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Multi-Headed Attention

Need to merge these vectors before passing onto the FF layer: concatenate and transform.

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

3) The result would be the © matrix that captures information
from all the attention heads. We can send this forward to the FFNN

- HH

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Multi-Headed Attention

1) This is our 2) We embed 3) Split into 8 heads.
input sentence* each word* We multiply X or
with weight matrices
W@
X 0

W, @
* In all encoders other than #0,
we don’t need embedding. W4V
We start directly with the output
of the encoder right below this one
W-Q

4) Calculate attention
using the resulting

Q/K/V matrices

Qo

: ujg

"Reference: https://jalammar.github.io /illustrated-transformer /

5) Concatenate the resulting ~ matrices,
then multiply with weight matrix to
produce the output of the layer




Transformer : Multi-Headed Attention

Two heads are focusing on two different related words. The orange head focuses on animal, the
green head focusses on tired.
Layer: 5 § Attention: Input - Input v

The_ The_
animal_ animal_
didn_ didn_
t_ t_
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ it
was_ was_
too_ too_
tire tire

d d

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Multi-Headed Attention

Visualizing all heads does not give an interpretation. But it works welll

Layer: 5 3| Attention: Input - Input s

The The_
animal_ animal_
didn_ didn_
t_ t_
Cross_ Cross_
the_ the_
street_ street_
because_ because_
it_ it_
was was_
too_ too_
B tire tire
d d

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Positional Encoding

We need to account for word ordering. We can do that by adding a ‘disambiguating vector’ to
each embedding.

( ENCODER #1 ' ' ' DECODER #1

A A A

( ENCODER #0

\ A I A

DECODER #0

EMBEDDING
WITH TIME

SIGNAL — xi [ [ [ [ ] e[ [ ] ] X3 [ ]
POSTIONAL | Ammn t [
EMBEDDINGS  x: [ [ ] x> [ x3 [N

INPUT e SUIS étudiant

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Positional Encoding

POSITIONAL 1 1 084 [PXOGN 054 1 G-I 0.0002| -0.42 [
ENCODING

- - -

EMBEDDINGS X1 X2 X3

INPUT Je Suis étudiant

'Reference: https:/ /jalammar.github.io/illustrated-transformer /



Transformer : Positional Encoding

Each row below is an example positional encoding vector (512 dimensional, from
Transformer2Transformer).

'Reference: https:/ /jalammar.github.io/illustrated-transformer /



Transformer : Positional Encoding

Each row below is an example positional encoding vector (64 dimensional).

0
1
2
3
4

5
6
7
8
9 I
0 10

'Reference: https:/ /jalammar.github.io/illustrated-transformer /

Token Position

30 40
Embedding Dimension

100

0.75

0.50

0.25

0.00

-0.50

-0.75



Transformer : Residual Connections

Each sub-layer has residual connections that skip it, and these get normalized with processed

vectors. * *
C( Add & Normalize
4

| 7
E . ( Feed Forward ) ( Feed Forward )
S| ez  SEECEECLLLLLPEPEE 3
> ,-»( Add & Normalize )

( Self-Attention )

[ |

K

I}

I

[ |

O
L T R E EFE EFE Ty T MM r" T T T T T " T " T T MMM M TN M MMM T MM TS

POSITIONAL
ENCODING

X1‘

|

|

|

|

'Reference: https:/ /jalammar.github.io/illustrated-transformer /
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Transformer : Residual Connections

A A
(,( Add & Normalize )\
. 4 I
. ( Feed Forward ) ( Feed Forward )
P e 4
z1 [ z>
A 4
w| ,» LayerNorm( + )
% 1
sl A '
THP - o
' ( Self-Attention )
: ) )
‘e XL I R L]
POSITIONAL é é
ENCODING
x+ BT x
Thinking Machines

'Reference: https:/ /jalammar.github.io/illustrated-transformer /



Transformer : Residual Connections

Layer Normalization

Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton

Download PDF

Training state-of-the-art, deep neural networks is computationally expensive. One way to reduce the training time
is to normalize the activities of the neurons. A recently introduced technique called batch normalization uses the
distribution of the summed input to a neuron over a mini-batch of training cases to compute a mean and variance
which are then used to normalize the summed input to that neuron on each training case. This significantly
reduces the training time in feed-forward neural networks. However, the effect of batch normalization is dependent
on the mini-batch size and it is not obvious how to apply it to recurrent neural networks. In this paper, we transpose
batch normalization into layer normalization by computing the mean and variance used for normalization from all of
the summed inputs to the neurons in a layer on a single training case. Like batch normalization, we also give each
neuron its own adaptive bias and gain which are applied after the normalization but before the non-linearity. Unlike
batch normalization, layer normalization performs exactly the same computation at training and test times. It is also
straightforward to apply to recurrent neural networks by computing the normalization statistics separately at each
time step. Layer normalization is very effective at stabilizing the hidden state dynamics in recurrent networks.
Empirically, we show that layer normalization can substantially reduce the training time compared with previously
published techniques.

'Reference: https:/ /arxiv.org/abs/1607.06450



Transformer : Residual Connections

A 2-layer transfer example is below. Layer-normalization is part of the decoder unit as well.

( Softmax )

4
( Linear )
& )
E IRELITPAN DECODER #2
S 4 4
= N .,-DC Add & Normalize )
‘E ( Feed Forward ) ( Feed Forward )
SRR, S 4
fa ',‘b( Add & Normalize )
- | L L
- ( Feed Forward ) ( Feed Forward ) "'":"( Encoder-Decoder Attention )
=3 T e Y REPEEELLT | IXECCLLILL L LT T
; '.>( Add & Normalize ) ,-»( Add & Normalize )
wl ) ) E ) %
E ( Self-Attention ) ' ( Self-Attention )
Ny Froiioiiiooooos 3

.
............................
POSITIONAL
ENCODING

X1 X2

Thinking Machines

'Reference: https:/ /jalammar.github.io/illustrated-transformer /



Transformer : Decoder

The outputs of the top encoder unit are transformed to keys and values. These will be used in all
encoder-decoder attention sub-layers.

Decoding time step:@Z 3456 OUTPUT

( )
Kencdec Vencdsc ( Linear + Softmax )
) (& )

( ENCODER X DECODER
- — o

4 4

) { ™

( ENCODER DECODER
k J . JJ

R CITT] HEEE EEEE
WITH TIME ‘
SIGNAT Decoder works sequentially

EMBEDDINGS [] [T [TT]

INPUT Je Suis étudiant

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Decoder

Decoder self-attention: can only attend to previous words. Achieved by masking

Decoding time step: 1@3 4 56 OUTPUT | am
( )
Kencdec Vencde ( Linear + Softmax )
ENCODERS DECODERS ]
\_ v,
EMBEDDING * * * *
WITH TIME CTTT] (ITT] (ITT] CILTT]
SIGNAL
EMBEDDINGS 1 OO O (117
e suis  étudiant PREVIOUS
il J OUTPUTS

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Decoder

Decoder’s encoder-decoder attention: queries are generated from below (sub)-layers.

Decoding time step: 1 2@4 56 OUTPUT | am a

?

Vencde ( Linear + Softmax

o :

ENCODERS DECODERS

e
k\_J UJ

EMBEDDING * * * * *
WITHTIME OO0 [T [OII0 [(TT1] (TT1
SIGNAL
EMBEDDINGS [ENEE [EEE [EEEE [T (OIT1
e suis étudiant PREVIOUS am
INPUT J OUTPUTS

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Decoder

Decoder outputs are fed back sequentially. They are also embedded and positional encoding is
added.

Decoding time step: 1 2 3@5 6 OUTPUT | am a student

f

Kencdec Vencdec ( Linear + Softmax

)
ENCODERS DECODERS ]
J

S
EMBEDDING * * * * *
WITH TIME (1111 CTTT] CITT] Illlllllll
SIGNAL
EMBEDDINGS CITT] CLTT] CLIT] LTI O et
INPUT Je suis  étudiant PREVIOUS am a

OUTPUTS

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Decoder

Decoding time step: 1 2 3 4@6 OUTPUT | am a student <end of sentence>
( )
Kencdec  Vencdec ( Linear + Softmax )
ENCODERS DECODERS ]
% S
EMBEDDING * * * * * * *
WITH TIME CITT] CITTT] CTTT] (LT O] OO 1
SIGNAL
EMBEDDINGS [ITTT] [TTT] [ITTT] (LT OO OOT 11 11
e suis  étudiant PREVIOUS am a student
INEST J OUTPUTS

'Reference: https:/ /jalammar.github.io/illustrated-transformer /



Transformer : Final Layer

Which word in our vocabulary -
is associated with this index?
Get the index of the cell

with the highest value
(argmax)

log_probs [(TTTTTTTTTTI T T T I [

912345 A .. vocab_size
( Softmax )
Y
logits HEEEEEEEE RN
0 12345 . Vvocab_size
I\
( Linear )
4
Decoder stack output LI 1]

'Reference: https:/ /jalammar.github.io/illustrated-transformer /



Transformer : Training

The output is compared to ground truth translation after the forward pass.
E.g.: Consider a 6 word vocabulary as shown below.

Output Vocabulary

WORD a am I thanks student

<eos>

INDEX 0 1 2 3 4

"Reference: https://jalammar.github.io /illustrated-transformer /




Transformer : Training

Output Vocabulary

WORD a am I thanks student <eos>

INDEX 0 1 2 3 4 5

One-hot encoding of the word “am”

1.0

"Reference: https://jalammar.github.io /illustrated-transformer /



Transformer : Training

Use cross-entropy loss, summed across all outputs.

Untrained Model Output

Correct and desired output

a am | thanks student <eos>

'Reference: https:/ /jalammar.github.io/illustrated-transformer /



Transformer : Training

Target Model Outputs

Output Vocabulary: a am I thanks student <eos>

position #1 EEXE 0.0 1.0 0.0

position #2 e 1.0

position #3 . . 0.0 0.0

position #5 X6 0.0 0.0 0.0

0.0 0.0

0.0 0.0

position #4 K¢ 0.0 0.0 0.0 0.0

0.0 1.0

a am | thanks student <eos>

'Reference: https:/ /jalammar.github.io/illustrated-transformer /



Transformer : Training

After training, output probabilities at each position should reflect the translated sentence’s word.
Do beam-search decoding, probabilistic decoding or greedy decoding as needed.

Trained Model Outputs

Output Vocabulary: a am I thanks student <eos>

position #1

position #2

SRR 0.001 0.001 0.001 0.002 0.001

position #4 0.002 0.001

SHILECN 0.01 0.01 0.001 0.001 0.001 gueAst

a am | thanks student <eos>

"Reference: https://jalammar.github.io /illustrated-transformer /
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Transfer Learning in NLP



Bidirectional Encoder Representations from
Transformers

Key idea: transfer learning

Similar to how we can use pre-trained models in vision, we
can use pre-trained models for language

We have seen this idea before:
* Word2Vec
* Glove
Since 2018, embeddings generated using transformer

based pre-trained models have further improved the state
of the art for multiple NLP tasks.

Lets first see how to use such a model (distilIBERT) in a
classification task.

* BERT stands for Bidirectional Encoder Representations
from Transformers

TReference: https://qithub.com/qoogle-research/bert and https://arxiv.org/abs/1910.01108 63



https://github.com/google-research/bert
https://arxiv.org/abs/1910.01108

Pre-trained BERT Embeddings

* BERT has been used in versatile products such as
Google Search.

e “...the biggest leap forward in the past five
years, and one of the biggest leaps forward in the
history of Search.”

* For us, we want to use BERT (or distillBERT) in o
specific NLP task.

* Lets pick a movie review classification task

1Reference: https://jalammar.qgithub.io /a-visual-quide-to-using-bert-for-the-first-time / and 64

https: / /www.blog.google /products /search /search-language-understanding-bert/



https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://www.blog.google/products/search/search-language-understanding-bert/

Pre-trained BERT Embeddings

“a visually stunning Movie Review pOSitiV@
Fumination on fove™ Sentiment Classifier
sentence label
a stirring , funny and finally transporting re imagining of beauty and the beast and 1930s horror films 1

apparently reassembled from the cutting room floor of any given daytime soap

o | O

they presume their audience won't sit still for a sociology lesson
this is a visually stunning rumination on love , memory , history and the war between art and commerce 1

jonathan parker 's bartleby should have been the be all end all of the modern office anomie films 1

"Reference: https://jalammar.github.io /a-visual-guide-to-using-bert-for-the-first-time / and
https: //colab.research.google.com/github /jalammar /jalammar.github.io /blob /master /notebooks /bertpA Vis
val Notebook to Using BERT for the First Time.ipynb



https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://colab.research.google.com/github/jalammar/jalammar.github.io/blob/master/notebooks/bert/A_Visual_Notebook_to_Using_BERT_for_the_First_Time.ipynb

Pre-trained BERT Embeddings

The ‘review embedding’ that will be passed on the logistic regression model will be of size 768.

Movie Review Sentiment Classifier

DistiiBERT Logistic
Regression

A
- . U
a visually stunning

rumination on love” ' — . eea,‘n —> pOositive

v

66
"Reference: https://jalammar.github.io /a-visual-guide-to-using-bert-for-the-first-time /



Pre-trained BERT Embeddings

The embedding vector is the output of the first position (associated with the so called [CLS] token)
among multiple positions (recall transformer encoder)
DistilIBERT has been pretrained on English using a suitable learning task and a large dataset

Step #1: Use DistiBERT to embed all the sentences
ng re inagining of DistiBERT

—
...
7]
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Pre-trained BERT Embeddings

Lets say we have 2000 examples. Once the embeddings are generated, we can just follow the

usual ML process.  gten #2: Test/Train Split for model #2, logistic regression

68
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Pre-trained BERT Embeddings

Step #3: Train the logistic regression model using the training set

Sentence Embeddings Label
0 1 767

] Model / Logistic \

Training Regression

- /
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Pre-trained BERT Embeddings

Lets focus on a single prediction with a trained model. We need to ‘tokenize’ our input sentence
and add [CLS] and [SEP] at the start and the end.

[CLS]
Tokenization

DistilBertTokenizer

visually stunning

visually stunning

rum ##ination on love

2) Add [CLS] and [SEP] tokens

rum ##ination on love

1) Break words into tokens

Tokenize

[SEP]

“a visually stunning rumination on love”

"Reference: https://jalammar.github.io /a-visual-guide-to-using-bert-for-the-first-time /
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Pre-trained BERT Embeddings

After tokenization, we are left with a sequence of token ids.

101 1037 17453 14726 19379 12758 2006 2293 102
3) substitute tokens with their ids

[CLS] a visually stunning rum ##ination on love [SEP]
Tokenization

DistilBertTokenizer

2) Add [CLS] and [SEP] tokens

a visually stunning rum ##ination on love

1) Break words into tokens

Tokenize

“a visually stunning rumination on love”

tokenizer.encode("a visually stunning rumination on love", add special

tokens=True)
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Pre-trained BERT Embeddings

DistiBERT

—
e 0

.

N

V' -

Input into the model

101 1037 17453 14726 19379 12758 2006 2293

3) substitute tokens with their ids
Tokenization

DistilBertTokeni - 3 c q
retaRertiokentzer [CLS] a visually stunning rum ##ination on love

2) Add [CLS] and [SEP] tokens
1) Break words into tokens

Tokenize

102

[SEP]

“a visually stunning rumination on love”

"Reference: https://jalammar.github.io /a-visual-guide-to-using-bert-for-the-first-time /
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Pre-trained BERT Embeddings

This sequence is passed through DistilIBERT (again, think of this as a transformer encoder. We will
look at key details later).

Model
Outputs
DistiBERT

—
~—

'\I"nopdi' 101 1037 17453 14726 19379 12758 2006 2293 102

u
[CLS] a visually stunning rum ##ination on love [SEP]

"Reference: https://jalammar.github.io /a-visual-guide-to-using-bert-for-the-first-time /



Pre-trained BERT Embeddings

As mentioned before, we only use the vector corresponding to the first dimension.

15% | 0 (negative) Model #2 Output

85% | 1 (positive) (positive)
Logistic Regression
Model #2
O learn
Model #2 Input
Model #1 Output
DistiiBERT
—
Model #1 a
L 1
Model #1 Input 101 1037 17453 14726 19379 12758 2006 2293
[CLS] a visually stunning rum ##ination on love

"Reference: https://jalammar.github.io /a-visual-guide-to-using-bert-for-the-first-time /
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Pre-trained BERT Embeddings

The rest of the process is standard ML workflow: cross-validated training or training after a train-

test split.

“a visually stunning
rumination on love”

—

DistiiBERT

Logistic
Regression

'.Kewm

"Reference: https://jalammar.github.io /a-visual-guide-to-using-bert-for-the-first-time /

—

1

(positive)
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Pre-trained BERT Embeddings

The code is as follows:

import numpy as np

import pandas as pd

import torch

import transformers as ppb # pytorch transformers
from sklearn.linear model import LogisticRegression
from sklearn.model_selection import cross val score
from sklearn.model_selection import train test split

model class, tokenizer_ class, pretrained weights = (ppb.DistilBertModel, ppb.Distil

BertTokenizer, 'distilbert-base-uncased')

## Want BERT instead of distilBERT? Uncomment the following line:

#model class, tokenizer class, pretrained weights = (ppb.BertModel, ppb.BertTokeniz
er, 'bert-base-uncased')

# Load pretrained model/tokenizer
tokenizer = tokenizer class.from pretrained(pretrained weights)

model = model class.from pretrained(pretrained weights)

"Reference: https://jalammar.github.io /a-visual-guide-to-using-bert-for-the-first-time /



Pre-trained BERT Embeddings

df = pd.read csv('https://github.com/clairett/pytorch-sentiment-classification/raw/

master/data/SST2/train.tsv', delimiter='\t', header=None)

0 1
0 a stirring , funny and finally transporting re... 1
1 apparently reassembled from the cutting roomf... 0
2 they presume their audience wo n't sit still f... 0
3 this is a visually stunning rumination on love... 1
4

jonathan parker 's bartleby should have beent... 1

"Reference: https://jalammar.github.io /a-visual-guide-to-using-bert-for-the-first-time / and 77
https: //github.com/clairett /pytorch-sentiment-classification /



https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://github.com/clairett/pytorch-sentiment-classification/

Pre-trained BERT Embeddings

We are applying tokenization over all training data.

tokenized = df[0].apply((lambda x: tokenizer.encode(x, add_special tokens=True)))

Raw Dataset Sequences of Token IDs
0
a stirring , funny and finally transporting re... (101, 1037, 18385, 1010, 6057, 1998, 2633, 182...
apparently reassembled from the cutting room f... Tokenize (101, 4593, 2128, 27241, 23931, 2013, 1996, 62...

[101, 2027, 3653, 23545, 2037, 4378, 24185, 10...
they presume their audience wo n't sit still f —_— [101, 2023, 2003, 1037, 17453, 14726, 19379, 1...

this is a visually stunning rumination on love... [101, 5655, 6262, 1005, 1055, 12075, 2571, 376...

jonathan parker 's bartleby should have been t...
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Pre-trained BERT Embeddings

We will pad short sentences with token O. The largest sentence length is 66.

BERT/D1sti1lBERT Input Tensor

Tokens 1n each sequence

0 1 - 66
0 101 1037 . 0
1 101 2027 . 0
Input sequences
(reviews)
1,999 101 1996 . 0

"Reference: https://jalammar.github.io /a-visual-guide-to-using-bert-for-the-first-time /
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Pre-trained BERT Embeddings

input ids = torch.tensor(np.array(padded))

with torch.no grad():

last hidden states = model(input ids)

Raw text dataset Tokenized 1input

tensor
DistilBERT
0 1 - 66
0
0 101 1037 o 0 —
a stirring , funny and finally transporting re...
LN J
apparently reassembled from the cutting room f... 1 101 2027 . 0
they presume their audience wo n't sit still f...
this is a visually stunning rumination on love... - ' ' \ -
jonathan parker 's bartleby should have been ... 1,999 101 1996 . 0 ) )

The forward pass is as shown above.

BERT Output
Tensor/predictions

TReference: https://jalammar.github.io /a-visual-guide-to-using-bert-for-the-first-time /



Pre-trained BERT Embeddings

The output variable has a shape (#examples, max no of tokens, number of hidden units)

So, 2000 * 66 * 768.

last_hidden_states[0]
BERT Output Tensor/

"Reference: https://jalammar.github.io /a-visual-guide-to-using-bert-for-the-first-time /
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Pre-trained BERT Embeddings

Here is an illustration for a single example (the first one).

101

input_ids
0 1 - 66
0 101 1037 0
1
1,999
Batch

Tokenize all 2,000 sentences
Put each sentence in its own row

1037 17453 14726 19379 12758 2006 2293 102

Tokenize

“a visually stunning rumination on love”

DistiBERT

—
L

~_

last_hidden_states[0]

"Reference: https://jalammar.github.io /a-visual-guide-to-using-bert-for-the-first-time /



Pre-trained BERT Embeddings

We only need the output vector corresponding to the first position/token. That part of the output
tensor is highlighted.

only the first position: [CLS]
!
last_hidden_states[0] last_hidden_states([0][:,0,:]
BERT Output Tensor/ ' N\
e
[CLS]
0 1 65
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Pre-trained BERT Embeddings

# Slice the output for the first position for all the sequences, take all hidden unit
outputs
features = last hidden_states[0][:,0,:].numpy()

s the same as lone Der 5

84
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Pre-trained BERT Embeddings

See https://huggingface.co /transformers/examples.html for more example that not only use pre-

trained models as feature extractors, but also fine-tune them.

Its standard ML from this point out for our running example (movie review classification).

features
0 1 - 767 label
0 1
1 0
1,999 1

85
'Reference: https:/ /jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time /


https://huggingface.co/transformers/examples.html

Pre-trained BERT Embeddings

labels = df[1]
train features, test features, train labels, test labels = train test split(features,
labels)

Step #2: Test/Train Split for model #2, logistic regression
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"Reference: https://jalammar.github.io /a-visual-guide-to-using-bert-for-the-first-time /



Questions?



Today’s Outline

Recap of Attention in Sequence to Sequence Models
Transformer Architecture and Self-Attention
Transfer Learning using a pre-trained NLP model

BERT and related architectures



BERT and Friends



BERT

BERT, or Bidirectional Encoder Representations from Transformers, is a new method of pre-training
language representations which obtains state-of-the-art results on a wide array of Natural
Language Processing (NLP) tasks.

There are many models out there.

R o)®

ULM-FiT
THE
TRANSFORMER
s o
W, )
® o
BERT
o
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'Reference: https://jalammar.github.io /illustrated-bert/ and https://arxiv.org/abs/1810.04805



https://jalammar.github.io/illustrated-bert/
https://arxiv.org/abs/1810.04805

BERT

GPT-3

10000
MegatronLM
8300
L]
<
7500
NVIDIA.
5000
@ w
OpenAI UNIVERSITY,of WASHINGTON
2500 GPT-2 Grover-
- Mega
N 1500 [ 1500
: @ ;i Google Al klz
m OpenAl Transformer @ = 8] .o
BERT-Large ELMo MT<DNN XLM665 RoBERTa
ELMo GPT 340 465 330 340 355 DistilBERT
94 110 @ 'XLNET' ¢ 66
I e Carnegie ¢ o
0 R sl Mellon a

™

o
N

W

University

"Reference: https://medium.com /huggingface /distilbert-8cf3380435b5 and

https:/ /en.wikipedia.org /wiki/GPT-3



https://medium.com/huggingface/distilbert-8cf3380435b5
https://en.wikipedia.org/wiki/GPT-3

BERT

Here are the ExactMatch (EM) and F1 scores evaluated on the test set of SQUAD v1.1.

Rank Model EM F1

Human Performance 82.304 91.221
Stanford University
(Rajpurkar et al. '16)

12 =531 (single model) 85.083 91.835
Google Al Language

https://arxiv.org/abs/1810.04805

* Stanford Question Answering Dataset (SQUAD) is a
reading comprehension dataset, consisting of questions
posed by crowdworkers on a set of Wikipedia articles,
where the answer to every question is a segment of text,
or span, from the corresponding reading passage, or the
question might be unanswerable.

92
1Reference: https://rajpurkar.github.io /SQuAD-explorer/



https://rajpurkar.github.io/SQuAD-explorer/

BERT

SQuAD v1.1 Leaderboard (Oct 8th 2018) TestEM  Test Fi

1st Place Ensemble - BERT 87.4 93.2
2nd Place Ensemble - ninet 86.0 91.7
1st Place Single Model - BERT 85.1 91.8
2nd Place Single Model - ninet 83.5 90.1

And several natural language inference tasks:

System MultiNLI Question NLI SWAG
BERT 86.7 91.1 86.3
OpenAl GPT (Prev. SOTA) 82.2 88.1 75.0

Plus many other tasks.
Moreover, these results were all obtained with almost no task-specific neural network
architecture design.

93
TReference: https://qgithub.com/google-research/bert



https://github.com/google-research/bert

BERT

* A general-purpose "language understanding” model
on a large text corpus (like Wikipedia)

e Use the model for downstream NLP tasks that we care
about (like question answering)

* BERT outperforms previous methods because it is the
first unsupervised, deeply bidirectional system for pre-
training NLP

* Unsupervised: trained only on plain text (no
metadata)

1Reference: https://github.com/google-research/bert



https://github.com/google-research/bert

BERT

* Pre-trained representations can also either be
context-free or contextual, and contextual
representations can further be unidirectional or
bidirectional.

* Context-free models such as word2vec or GloVe
generate a single "word embedding" representation

* Contextual models instead generate a representation
of each word that is based on the other words in the
senfence.

* Bidirectionality: BERT represents words using both its
left and right context

1Reference: https://github.com/google-research/bert



https://www.tensorflow.org/tutorials/representation/word2vec
https://nlp.stanford.edu/projects/glove/
https://github.com/google-research/bert

BERT

Two step process
1 - Semi-supervised training on large amounts

of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp
patterns in language. By the end of the training process,

BERT has language-processing abilities capable of empowering
many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

[ =)
| Mode:
I
I

I Dataset:

C— BERT |

WIKIPEDIA I

Die freie Enzyklopidie

s Predict the masked word
Objective: . /
(langauge modeling)

\ ==

'Reference: https://jalammar.github.io /illustrated-bert/
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BERT

The second step is problem specific

2 - Supervised training on a specific task with a

labeled dataset.

Supervised Learning Step

-~

, { Classifier J_>

I

N\

75% | Spam

25% | Not Spam

Model:
(pre-trained

in step #1) O/

=

BERT

- |

Class

Buy these pills Spam I
Dataset: Win cash prizes Spam I
Dear Mr. Atreides, please find attached... Not Spam

\

-_— e  e-—— . ..

'Reference: https://jalammar.github.io /illustrated-bert/

/
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BERT

For instance, BERT can be used for classification (we saw this in detail earlier)
If the BERT parameters are also changed, this would be considered fine-tuning (we saw this for
vision)

Input Output

Prediction

Y )

Classifier
85% Spam
BERT
15% Not Spam

\____ \. J
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BERT

There are two pre-trained versions for BERT (just like resnet18 vs resnet50 or vgg16 vs vgg19)

24 ( ENCODER J

s ~
)

<4 ENCODER
12 | ENCODER L )
— s ~

eoe 3 ENCODER
\ J
— . w

2 ENCODER 2 ENCODER
~— . J
) ' ™\

1 ENCODER 1 ENCODER
\ ) g J

BERTgase BERT arGE
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BERT

The encoder units/layers (also called transformer blocks) is 12 or 24. FF networks have 768 or 1024
hidden units. The number of attention heads is 12 or 16. (vs 6 units, 512 units, 8 heads before)

1 2 3 4 oo 512

BERT

1 2 3 4 ¢eoo 512

[CLS]
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BERT

First input is a special symbol (cls means classification). Architecture same as Transformer so far.

12 [¥ ENCODER )

e 00
4 N
2 ENCODER
L )
@ o
1 ENCODER
\ J
1 2 3 4 ceooe 512
[CLS] Prince Mayu
BERT
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BERT

Each position outputs a 768 dim vector in BERT base.

LT LT
12 ( ENCODER ]
e 00
( Y
2 ENCODER
\ J
4 A
1 ENCODER
. W
1 2 3 4 oo 512
[CLS] Help
BERT
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BERT

For classification, as we saw earlier, we use only the first vector.
85% Spam

15% Not Spam

{ Classifier J

CLTTIT 1

BERT

[CLS]

'Reference: https://jalammar.github.io/illustrated-bert/

512
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BERT

Similar to a CNN classificer (CNN layers followed by a fully connected layer)

Input Output
Features Prediction
7 .
Vi ' 0.2% Kit fox
N VGG-16
"7 .
: 7 ( ) 0.1% | English setter
L/ L 4
TPTIAN ‘ N ; = |2llells [g)l8llgl s [sllala]s  [sla]sls
e Y A [ 95% Egyptian cat
///[ 555|553 5553 5585 (5583535 [2¢2¢25
“ | Mostly Feature Extraction Cla:‘:i‘;lsct‘la);lon 1% Great Dane
. y,

0%  Hotdog

104
'Reference: https://jalammar.github.io /illustrated-bert/



ELMo

* A word can have different meaning depending on its
context

* This was not captured in word2vec and Glove for
instance.

* ELMo (2018) produces contextualized word
embeddings.

105
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https://jalammar.github.io/illustrated-bert/
https://arxiv.org/pdf/1802.05365.pdf

ELMo

Look at the entire sentence before embedding each word in the sentence. Based on LSTMs.
Trained as a language model.

stick improvisation this
ELMo 0 0 I I e B I I e B I

Embeddings O e R s 5

Let’s in skit

ELMo

Words to embed
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ELMo

Language modelling task looks like the following:
0.1% Aardvark
Possible classes:

All English words 10% | Improvisation

0% | Zyzzyva

Output
Layer

LSTM
Layer #2

o o 1] o o 11 o« o 1]

FFNN + Softmax

LSTM (] ¢ °
Layer #1 w w w
Embeddmg LT T 1] LT 1] LT 1]
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ELMo

The hidden vectors computed in the forward pass are used for generating embeddings.

Embedding of “stick” in “Let’s stick to” - Step #1

Forward Language Model Backward Language Model

LSTM > > >
Layer #2

o o T o o 11 o o T oo "TT] " TT1 o611
LSTM () (] () 0 e 0
Layer #1 -w w w w w w
Embedding I T 1] (T T 1] (1111 111 I11] I 1171
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ELMo

ELMo is actually a bidirectional LSTM. The hidden vectors are aggregated to get the embedding.

Embedding of “stick” in “Let’s stick to” - Step #2

1- Concatenate hidden layers
-

g &

[T T T

o o 11T e o 1T
2- Multiply each vector by

[
a weight based on the task w w

¥ S
1] (T 1]

T x sq

T X So

3- Sum the (now weighted)
vectors

[T T TITTT]

ELMo embedding of “ " for this task in this context

In addition to embeddings, the model parameters can also be changed later on (ULM-FiT)
109
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OpenAl Transformer

Transformers are able to capture long-term dependencies better than LSTMs (empirical)

Use just the decoder for language modelling. Can predict the next word and masks future tokens.

- 3

DECODERS

S )
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OpenAl Transformer

Has 12 decoder units (the encoder-decoder attention is removed).

0.1%  Aardvark
Possible classes:
All English words 10% | Improvisation

0% | Zyzzyva

FFNN + Softmax

12 ( DECODER )

A
o 00
4
( N
2 DECODER
\_ )
7y
a2 Y
1 DECODER
\_ )

'Reference: https://jalammar.github.io/illustrated-bert/
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OpenAl Transformer

Can then be used for downstream NLP tasks.

85% Spam

15% Not Spam

I

FFNN + Softmax

1

1T ZI 3T 4T coe Tooo 512T
<s> Help Prince Mayuko <e>

112
'Reference: https://jalammar.github.io /illustrated-bert/



OpenAl Transformer

Suitably processing the input can allow the OpenAl Transformer to be used for various tasks

Classification Start Text Extract }— Transformer = Linear
Entailment Start Premise Delim | Hypothesis | Extract |+ Transformer (> Linear
Start Text 1 Delim Text 2 Extract | Transformer
Similarity = Linear
Start Text 2 Delim Text 1 Extract | > Transformer
Start Context Delim Answer 1 | Extract | Transformer (> Linear [—
Multiple Choice | Start Context Delim | Answer 2 | Extract | = Transformer [+ Linear {
Start Context Delim Answer N Extract | > Transformer > Linear

113
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BERT

* ELMo was bi-directional but OpenAl Transformer was
not

* The next natural idea (that lead to BERT) is whether o
transformer-based model can look both forward and
backward while predicting the next word.

'Reference: https://jalammar.github.io/illustrated-bert/



BERT

The key idea is to use masks and encoders. We need to prevent word from seeing itself.

We will skip much of the details here about masking.

Use the output of the 0.1%  Aardvark

masked word’s position
to predict the masked word

Possible classes:
All English words 10% Improvisation

0% | Zyzzyva

FFNN + Softmax

BERT

Randomly mask .

15% of tokens
[CLS] [MASK]

Input

[CLS]
'Reference: https:/ /jalammar.github.io/illustrated-bert/
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BERT

In addition to language modelling, BERT also pre-trains on sentence sequencing task.

Predict likelihood
that sentence B
belongs after

1%  IsNext

99% NotNext

sentence A
FFNN + Softmax
e 00
BERT
Tokenized cooe
Input [CLS] [MASK]
mpUt [CLS] [MASK] [MASK]
l Sentence A l I Sentence B l 116

'Reference: https://jalammar.github.io/illustrated-bert/



BERT

Pre-trained BERT can be used for other tasks (beyond classification) as well:

'Reference: https://jalammar.github.io /illustrated-bert/

e
BERT
[seafl & |- (& ][ Eenl{e ] [&]
5D FEn &
Sentence 1 Sentence 2

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

Start/End Span

BERT

[eeafle |- [& ][ |l |- [&]

T -

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, ColLA

o C—C—C———(0—
Question Paragraph

(c) Question Answering Tasks:
SQuUAD v1.1

B-PER -

BERT
o] & [ =] -
sy || Tok1 || Tok2 Tok N

[

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER
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BERT

BERT can be used as a word embedding model like ELMo. The embeddings are contextual.

Generate Contexualized Embeddings The output of each encoder layer along
o E— — — — — m— m— m—— m—— E— oy, each token’s path can be used as a
feature representing that token.

I ? T T T T I e e ee e ee e
I, (( ENCODER ) | RENRENENEE NN
| oo | oo I e
| | o BLEE
( | | ) | [T [T COr]
2 ENCODER
| | coro| T | | N O O
o | oo | (LI

|1( ENCODER ) | [T ][I T 1T ]CrI11

Help Prince Mayuko

I BERT I

\ / But which one should we use?
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BERT

The choice of which hidden vector to use as the word-embedding can be data driven.

What is the best contextualized embedding for “Help” in that context?
For named-entity recognition task CoNLL-2003 NER
Dev F1 Score

TTT First Layer (T TT] 91.0
e Last Hidden Layer [TTT11 94.9
L1 I I
I 11 Sum All 12 T ac &
Layers + '
LT 1T
J I
d
Second-to-Last
CIT 111 Hidden Layer —— 92:0
I 1] N -
[ T1 S Last F
um Last Four +
Hidden I:I:!:l:l 95.9
CTTT] CLIT]
LT T
Help
Concat Last
. N I .
Four Hidden T TT 7T 71 96.1
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Questions?



Summary

Self-attention is the key building block of transformer
variants

Transformer based encoders can be used for contextualized
embeddings of words

BERT and related architectures can be used to improve many
NLP tasks. This is similar to using pre-trained vision models
(e.g., resnet50). Finetuning can also be done.

Readily available pre-trained models alleviate the need for
compute heavy resources in application specific ML projects

Exercise: BERT finetuning tutorial on Google Colab

* https://colab.research.google.com/github /tensorflow /tp
u/blob/mcus’rer/’rools/colab/ber’r finetuning with cloud
tpus.ipynb !



https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/bert_finetuning_with_cloud_tpus.ipynb

