
Advanced Prediction
Models

Today’s Outline

• Recap of Attention in Sequence to Sequence Models
• Transformer Architecture and Self-Attention
• Transfer Learning using a pre-trained NLP model
• BERT and related architectures

2

Attention in Seq2Seq

3

What does attention mean?

• Attend to certain steps/parts of the input sequence while
deciding/predicting the current output (of the output sequence)

• By ‘attend’, we just mean that the prediction of the current output
depends on specific parts of the input sequence.

• Next, we will revisit the attention mechanism in a neural machine
translation sequence to sequence modelling setting.

1Reference: N

Sequence to Sequence Modeling

1Reference: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-
with-attention/

Sequence to Sequence Modeling

1Reference: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-
with-attention/

Sequence to Sequence Modeling

1Reference: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-
with-attention/

Sequence to Sequence Modeling

1Reference: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-
with-attention/

Collect the hidden layer outputs from all RNN steps

Sequence to Sequence Modeling

1Reference: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-
with-attention/

Sequence to Sequence Modeling

1Reference: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-
with-attention/

Sequence to Sequence Modeling

1Reference: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-
with-attention/

Sequence to Sequence Modeling

1Reference: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-
with-attention/

While decoding happens sequentially, each RNN
step involves attention!

Attention in Seq2Seq

1Reference: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-
with-attention/

A combination of encoder vectors is
concatenated with the decoder hidden vector

Recall that score generating
function has its own parameters
and uses the decoder hidden
vector

Attention in Seq2Seq

1Reference: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-
with-attention/

Attention in Seq2Seq

1Reference: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-
with-attention/

Because the attention mechanism spans across encoder and decoder, we will
refer to it as encoder-decoder attention

Attention in Seq2Seq

1Reference: https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-
with-attention/ . Also see https://github.com/tensorflow/nmt

An example illustrating the attention scores: in this example, the attention scores seem
quite natural

Attention in Seq2Seq

1Reference: Bahdanau et al., 2015

Attention visualization –
example of the alignments
between source and target

sentences

An example illustrating the attention scores: in this
example, the attention scores for ‘European Economic
Area’ capture the non-triviality

Questions?

18

Today’s Outline

• Recap of Attention in Sequence to Sequence Models
• Transformer Architecture and Self-Attention
• Transfer Learning using a pre-trained NLP model
• BERT and related architectures

19

Transformer Architecture and
Self-Attention

20

Transformer

1Reference: https://jalammar.github.io/illustrated-transformer/

Is a new model/architecture (from 2017) that we will look at that can also be used
for sequence to sequence modelling

Attention (same idea as before, but a slightly different take) is a core component of
this model

Lets start again with neural machine translation as the running application.

Transformer

1Reference: https://jalammar.github.io/illustrated-transformer/

Transformer

1Reference: https://jalammar.github.io/illustrated-transformer/

Lets now see the insides of both the encoder and the decoder in order.

Transformer : Encoder

1Reference: https://jalammar.github.io/illustrated-transformer/

In particular, lets focus on one encoder unit.

The number of such units is fixed and does not depend on the input sequence
length (thanks to parallel treatment of all input elements/words, as we will
see later).

Transformer : Encoder

1Reference: https://jalammar.github.io/illustrated-transformer/

The encoder units don’t share weights.

Have two sub-layers: self-attention followed by a fully connected/feed forward (FF) layer.

All words will be input at the same time. So the FF layer’s weights are reused across words

(Decoder has self-attention as well as the classical encoder-decoder attention)

Self-attention helps ‘transform’ inputs taking other inputs into consideration

Transformer : Encoder

1Reference: https://jalammar.github.io/illustrated-transformer/

Lets start with vector embeddings of words (fix some max length say 20) at the
lowest/starting layer. Say the embedding size is 512.
In other layers, its not embeddings but vector outputs of previous encoder units

Each word has its own path till the end

Transformer : Encoder

1Reference: https://jalammar.github.io/illustrated-transformer/

Transformation of each word depends on transformations of other words in each encoding unit
E.g.: z1 depends on x1 and x2

Transformer : Self-Attention

1Reference: https://jalammar.github.io/illustrated-transformer/

Self-attention: while processing the word ‘it’ below, attend to words related to it

Self-attention: helps better encode the word ‘it’. Analogous to cell state changes in LSTMs.

Transformer : Self-Attention

1Reference: https://jalammar.github.io/illustrated-transformer/

Create three vectors for each input: q, k and v using three matrices (that need to be learned)

Their dimension is typically chosen to be smaller, e.g., 64

The use of names query, key and value is for interpretation (just like in LSTMs)

Transformer : Self-Attention

1Reference: https://jalammar.github.io/illustrated-transformer/

After create the three vectors, a set of scores per input word are calculated.

Transformer : Self-Attention

1Reference: https://jalammar.github.io/illustrated-transformer/

These scores are then normalized. They determine how much attention is needed on
itself and other words (e.g., Machines below).

Transformer : Self-Attention

1Reference: https://jalammar.github.io/illustrated-transformer/

A score weighted sum of ‘value’ vectors is the output encoding of the input in this encoder unit

Transformer : Self-Attention

1Reference: https://jalammar.github.io/illustrated-transformer/

The computation of queries, keys and values actually happens via matrix multiplication.

Transformer : Self-Attention

1Reference: https://jalammar.github.io/illustrated-transformer/

Similarly, the scores are also computed using matrix-matrix multiplications.

Exercise: This should seem similar to the encoder-decoder attention we saw in seq2seq models

Transformer : Multi-Headed Attention

1Reference: https://jalammar.github.io/illustrated-transformer/

Multi-headed attention: doing multiple attention computations in parallel.
Empirically validated.
How it might help: (a) model can better focus on multiple inputs, (b) get ’different’ representations
(basically we can get different ‘output embeddings’ due to random initializations)

Transformer : Multi-Headed Attention

1Reference: https://jalammar.github.io/illustrated-transformer/

Transformer : Multi-Headed Attention

1Reference: https://jalammar.github.io/illustrated-transformer/

Need to merge these vectors before passing onto the FF layer: concatenate and transform.

Transformer : Multi-Headed Attention

1Reference: https://jalammar.github.io/illustrated-transformer/

Transformer : Multi-Headed Attention

1Reference: https://jalammar.github.io/illustrated-transformer/

Two heads are focusing on two different related words. The orange head focuses on animal, the
green head focusses on tired.

Transformer : Multi-Headed Attention

1Reference: https://jalammar.github.io/illustrated-transformer/

Visualizing all heads does not give an interpretation. But it works well!

Transformer : Positional Encoding

1Reference: https://jalammar.github.io/illustrated-transformer/

We need to account for word ordering. We can do that by adding a ‘disambiguating vector’ to
each embedding.

Transformer : Positional Encoding

1Reference: https://jalammar.github.io/illustrated-transformer/

Transformer : Positional Encoding

1Reference: https://jalammar.github.io/illustrated-transformer/

Each row below is an example positional encoding vector (512 dimensional, from
Transformer2Transformer).

Transformer : Positional Encoding

1Reference: https://jalammar.github.io/illustrated-transformer/

Each row below is an example positional encoding vector (64 dimensional).

Transformer : Residual Connections

1Reference: https://jalammar.github.io/illustrated-transformer/

Each sub-layer has residual connections that skip it, and these get normalized with processed
vectors.

Transformer : Residual Connections

1Reference: https://jalammar.github.io/illustrated-transformer/

Transformer : Residual Connections

1Reference: https://arxiv.org/abs/1607.06450

Transformer : Residual Connections

1Reference: https://jalammar.github.io/illustrated-transformer/

A 2-layer transfer example is below. Layer-normalization is part of the decoder unit as well.

Transformer : Decoder

1Reference: https://jalammar.github.io/illustrated-transformer/

The outputs of the top encoder unit are transformed to keys and values. These will be used in all
encoder-decoder attention sub-layers.

Decoder works sequentially

Transformer : Decoder

1Reference: https://jalammar.github.io/illustrated-transformer/

Decoder self-attention: can only attend to previous words. Achieved by masking

Transformer : Decoder

1Reference: https://jalammar.github.io/illustrated-transformer/

Decoder’s encoder-decoder attention: queries are generated from below (sub)-layers.

Transformer : Decoder

1Reference: https://jalammar.github.io/illustrated-transformer/

Decoder outputs are fed back sequentially. They are also embedded and positional encoding is
added.

Transformer : Decoder

1Reference: https://jalammar.github.io/illustrated-transformer/

Transformer : Final Layer

1Reference: https://jalammar.github.io/illustrated-transformer/

Transformer : Training

1Reference: https://jalammar.github.io/illustrated-transformer/

The output is compared to ground truth translation after the forward pass.
E.g.: Consider a 6 word vocabulary as shown below.

Transformer : Training

1Reference: https://jalammar.github.io/illustrated-transformer/

Transformer : Training

1Reference: https://jalammar.github.io/illustrated-transformer/

Use cross-entropy loss, summed across all outputs.

Transformer : Training

1Reference: https://jalammar.github.io/illustrated-transformer/

Transformer : Training

1Reference: https://jalammar.github.io/illustrated-transformer/

After training, output probabilities at each position should reflect the translated sentence’s word.
Do beam-search decoding, probabilistic decoding or greedy decoding as needed.

Questions?

60

Today’s Outline

• Recap of Attention in Sequence to Sequence Models
• Transformer Architecture and Self-Attention
• Transfer Learning using a pre-trained NLP model
• BERT and related architectures

61

Transfer Learning in NLP

62

Bidirectional Encoder Representations from
Transformers

631Reference: https://github.com/google-research/bert and https://arxiv.org/abs/1910.01108

• Key idea: transfer learning
• Similar to how we can use pre-trained models in vision, we

can use pre-trained models for language
• We have seen this idea before:
• Word2Vec
• Glove

• Since 2018, embeddings generated using transformer
based pre-trained models have further improved the state
of the art for multiple NLP tasks.

• Lets first see how to use such a model (distillBERT) in a
classification task.
• BERT stands for Bidirectional Encoder Representations

from Transformers

https://github.com/google-research/bert
https://arxiv.org/abs/1910.01108

Pre-trained BERT Embeddings

641Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/ and
https://www.blog.google/products/search/search-language-understanding-bert/

• BERT has been used in versatile products such as
Google Search.
• “… the biggest leap forward in the past five

years, and one of the biggest leaps forward in the
history of Search.”

• For us, we want to use BERT (or distillBERT) in a
specific NLP task.
• Lets pick a movie review classification task

https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://www.blog.google/products/search/search-language-understanding-bert/

Pre-trained BERT Embeddings

65

1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/ and
https://colab.research.google.com/github/jalammar/jalammar.github.io/blob/master/notebooks/bert/A_Vis
ual_Notebook_to_Using_BERT_for_the_First_Time.ipynb

https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://colab.research.google.com/github/jalammar/jalammar.github.io/blob/master/notebooks/bert/A_Visual_Notebook_to_Using_BERT_for_the_First_Time.ipynb

Pre-trained BERT Embeddings

66
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

The ‘review embedding’ that will be passed on the logistic regression model will be of size 768.

Pre-trained BERT Embeddings

67
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

The embedding vector is the output of the first position (associated with the so called [CLS] token)
among multiple positions (recall transformer encoder)
DistillBERT has been pretrained on English using a suitable learning task and a large dataset

Pre-trained BERT Embeddings

68
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

Lets say we have 2000 examples. Once the embeddings are generated, we can just follow the
usual ML process.

Pre-trained BERT Embeddings

69
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

Pre-trained BERT Embeddings

70
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

Lets focus on a single prediction with a trained model. We need to ‘tokenize’ our input sentence
and add [CLS] and [SEP] at the start and the end.

Pre-trained BERT Embeddings

71
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

After tokenization, we are left with a sequence of token ids.

Pre-trained BERT Embeddings

72
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

Pre-trained BERT Embeddings

73
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

This sequence is passed through DistillBERT (again, think of this as a transformer encoder. We will
look at key details later).

Pre-trained BERT Embeddings

74
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

As mentioned before, we only use the vector corresponding to the first dimension.

Pre-trained BERT Embeddings

75
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

The rest of the process is standard ML workflow: cross-validated training or training after a train-
test split.

Pre-trained BERT Embeddings

76
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

The code is as follows:

Pre-trained BERT Embeddings

77
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/ and
https://github.com/clairett/pytorch-sentiment-classification/

https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://github.com/clairett/pytorch-sentiment-classification/

Pre-trained BERT Embeddings

78
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

We are applying tokenization over all training data.

Pre-trained BERT Embeddings

79
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

We will pad short sentences with token 0. The largest sentence length is 66.

Pre-trained BERT Embeddings

80
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

The forward pass is as shown above.

Pre-trained BERT Embeddings

81
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

The output variable has a shape (#examples, max no of tokens, number of hidden units)
So, 2000 * 66 * 768.

Pre-trained BERT Embeddings

82
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

Here is an illustration for a single example (the first one).

Pre-trained BERT Embeddings

83
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

We only need the output vector corresponding to the first position/token. That part of the output
tensor is highlighted.

Pre-trained BERT Embeddings

84
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

Pre-trained BERT Embeddings

85
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

See https://huggingface.co/transformers/examples.html for more example that not only use pre-
trained models as feature extractors, but also fine-tune them.

Its standard ML from this point out for our running example (movie review classification).

https://huggingface.co/transformers/examples.html

Pre-trained BERT Embeddings

86
1Reference: https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

Questions?

87

Today’s Outline

• Recap of Attention in Sequence to Sequence Models
• Transformer Architecture and Self-Attention
• Transfer Learning using a pre-trained NLP model
• BERT and related architectures

88

BERT and Friends

89

BERT

90
1Reference: https://jalammar.github.io/illustrated-bert/ and https://arxiv.org/abs/1810.04805

BERT, or Bidirectional Encoder Representations from Transformers, is a new method of pre-training
language representations which obtains state-of-the-art results on a wide array of Natural
Language Processing (NLP) tasks.

There are many models out there.

https://jalammar.github.io/illustrated-bert/
https://arxiv.org/abs/1810.04805

BERT

91
1Reference: https://medium.com/huggingface/distilbert-8cf3380435b5 and
https://en.wikipedia.org/wiki/GPT-3

• GPT-3

https://medium.com/huggingface/distilbert-8cf3380435b5
https://en.wikipedia.org/wiki/GPT-3

BERT

92
1Reference: https://rajpurkar.github.io/SQuAD-explorer/

• Stanford Question Answering Dataset (SQuAD) is a
reading comprehension dataset, consisting of questions
posed by crowdworkers on a set of Wikipedia articles,
where the answer to every question is a segment of text,
or span, from the corresponding reading passage, or the
question might be unanswerable.

https://rajpurkar.github.io/SQuAD-explorer/

BERT

93
1Reference: https://github.com/google-research/bert

https://github.com/google-research/bert

BERT

• A general-purpose "language understanding" model
on a large text corpus (like Wikipedia)

• Use the model for downstream NLP tasks that we care
about (like question answering)

• BERT outperforms previous methods because it is the
first unsupervised, deeply bidirectional system for pre-
training NLP
• Unsupervised: trained only on plain text (no

metadata)

94
1Reference: https://github.com/google-research/bert

https://github.com/google-research/bert

BERT

• Pre-trained representations can also either be
context-free or contextual, and contextual
representations can further be unidirectional or
bidirectional.

• Context-free models such as word2vec or GloVe
generate a single "word embedding" representation

• Contextual models instead generate a representation
of each word that is based on the other words in the
sentence.

• Bidirectionality: BERT represents words using both its
left and right context

95
1Reference: https://github.com/google-research/bert

https://www.tensorflow.org/tutorials/representation/word2vec
https://nlp.stanford.edu/projects/glove/
https://github.com/google-research/bert

BERT

96
1Reference: https://jalammar.github.io/illustrated-bert/

Two step process

BERT

97
1Reference: https://jalammar.github.io/illustrated-bert/

The second step is problem specific

BERT

98
1Reference: https://jalammar.github.io/illustrated-bert/

For instance, BERT can be used for classification (we saw this in detail earlier)
If the BERT parameters are also changed, this would be considered fine-tuning (we saw this for
vision)

BERT

99
1Reference: https://jalammar.github.io/illustrated-bert/

There are two pre-trained versions for BERT (just like resnet18 vs resnet50 or vgg16 vs vgg19)

BERT

100
1Reference: https://jalammar.github.io/illustrated-bert/

The encoder units/layers (also called transformer blocks) is 12 or 24. FF networks have 768 or 1024
hidden units. The number of attention heads is 12 or 16. (vs 6 units, 512 units, 8 heads before)

BERT

101
1Reference: https://jalammar.github.io/illustrated-bert/

First input is a special symbol (cls means classification). Architecture same as Transformer so far.

BERT

102
1Reference: https://jalammar.github.io/illustrated-bert/

Each position outputs a 768 dim vector in BERT base.

BERT

103
1Reference: https://jalammar.github.io/illustrated-bert/

For classification, as we saw earlier, we use only the first vector.

BERT

104
1Reference: https://jalammar.github.io/illustrated-bert/

Similar to a CNN classificer (CNN layers followed by a fully connected layer)

ELMo

105
1Reference: https://jalammar.github.io/illustrated-bert/ and https://arxiv.org/pdf/1802.05365.pdf

• A word can have different meaning depending on its
context

• This was not captured in word2vec and Glove for
instance.

• ELMo (2018) produces contextualized word
embeddings.

https://jalammar.github.io/illustrated-bert/
https://arxiv.org/pdf/1802.05365.pdf

ELMo

106
1Reference: https://jalammar.github.io/illustrated-bert/

Look at the entire sentence before embedding each word in the sentence. Based on LSTMs.
Trained as a language model.

ELMo

107
1Reference: https://jalammar.github.io/illustrated-bert/

Language modelling task looks like the following:

ELMo

108
1Reference: https://jalammar.github.io/illustrated-bert/

The hidden vectors computed in the forward pass are used for generating embeddings.

ELMo

109
1Reference: https://jalammar.github.io/illustrated-bert/

ELMo is actually a bidirectional LSTM. The hidden vectors are aggregated to get the embedding.

In addition to embeddings, the model parameters can also be changed later on (ULM-FiT)

OpenAI Transformer

110
1Reference: https://jalammar.github.io/illustrated-bert/

Transformers are able to capture long-term dependencies better than LSTMs (empirical)

Use just the decoder for language modelling. Can predict the next word and masks future tokens.

OpenAI Transformer

111
1Reference: https://jalammar.github.io/illustrated-bert/

Has 12 decoder units (the encoder-decoder attention is removed).

OpenAI Transformer

112
1Reference: https://jalammar.github.io/illustrated-bert/

Can then be used for downstream NLP tasks.

OpenAI Transformer

113
1Reference: https://jalammar.github.io/illustrated-bert/

Suitably processing the input can allow the OpenAI Transformer to be used for various tasks

BERT

114
1Reference: https://jalammar.github.io/illustrated-bert/

• ELMo was bi-directional but OpenAI Transformer was
not

• The next natural idea (that lead to BERT) is whether a
transformer-based model can look both forward and
backward while predicting the next word.

BERT

115
1Reference: https://jalammar.github.io/illustrated-bert/

The key idea is to use masks and encoders. We need to prevent word from seeing itself.
We will skip much of the details here about masking.

BERT

116
1Reference: https://jalammar.github.io/illustrated-bert/

In addition to language modelling, BERT also pre-trains on sentence sequencing task.

BERT

117
1Reference: https://jalammar.github.io/illustrated-bert/

Pre-trained BERT can be used for other tasks (beyond classification) as well:

BERT

118
1Reference: https://jalammar.github.io/illustrated-bert/

BERT can be used as a word embedding model like ELMo. The embeddings are contextual.

BERT

119
1Reference: https://jalammar.github.io/illustrated-bert/

The choice of which hidden vector to use as the word-embedding can be data driven.

Questions?

120

Summary

• Self-attention is the key building block of transformer
variants

• Transformer based encoders can be used for contextualized
embeddings of words

• BERT and related architectures can be used to improve many
NLP tasks. This is similar to using pre-trained vision models
(e.g., resnet50). Finetuning can also be done.

• Readily available pre-trained models alleviate the need for
compute heavy resources in application specific ML projects

• Exercise: BERT finetuning tutorial on Google Colab
• https://colab.research.google.com/github/tensorflow/tp

u/blob/master/tools/colab/bert_finetuning_with_cloud_
tpus.ipynb 121

https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/bert_finetuning_with_cloud_tpus.ipynb

