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• Knowledge Aware Attentive Sequential 
Recommendations (DL)

• User Engagement Model based on Choices (DL)
• Multi-armed Bandits under Priming Effect (Bandits)
• Thompson Sampling for Recommendations (Bandits)
• RL for Optimization: Crowdsourced Last-Mile Urban 

Delivery (RL)
• Improving RL by Detecting Symmetries (RL)



Knowledge Aware 
Attentive Sequential 
Recommendations
With Mehrnaz Amjadi and Danial Mohseni Taheri, UIC

Paper: KATRec: Knowledge Aware aTtentive Sequential Recommendations

Draft Available (2020)
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Knowledge Aware Attentive Sequential 
Recommendations

• Sequential recommendation systems model the dynamic preferences 
of users based on their historical interactions with items.

• Modeling short-term and long-term behaviour of users is challenging

• Can collaborative signal be detected via shared entities?



Knowledge Aware Attentive Sequential 
Recommendations

• Essentially two components in the proposed solution:
• A bi-directional BERT like architecture that captures sequential 

patterns (of items) per user
• A Knowledge graph based representation of items such that 

higher-order item-item relationships are adequately captured
• Leverage pre-existing side information
• Captures multi-relationships between items and improves their 

representations by considering their higher-order connectivity 
with neighbors on a graph

• Use both these components to make predictions of recommended items
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Knowledge Aware Attentive Sequential 
Recommendations

• The architecture to 
process the 
sequential 
information is the 
same as BERT.
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• Knowledge Aware Attentive Sequential 
Recommendations (DL)

• User Engagement Model based on Choices (DL)
• Multi-armed Bandits under Priming Effect (Bandits)
• Thompson Sampling for Recommendations (Bandits)
• RL for Optimization: Crowdsourced Last-Mile Urban 

Delivery (RL)
• Improving RL by Detecting Symmetries (RL)



User Engagement Model 
based on Choices
With Saketh Karra, UIC
Paper: Choice-Aware User Engagement Modeling on Social Media
Draft Available (2020)
Presented at INFORMS 2020
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Engagement on Twitter
• The amount of information/content is overwhelming

• Tweets may not be consistently interesting

• Goal: maximize user engagement with content (in the form of like, 
reply, retweet, and retweet with comments) on the Twitter platform.

• Formulate the engagement forecasting task as a multi-label 
classification problem

• It captures choice behavior on an unsupervised clustering of tweet 
topics 

• The  deep neural network incorporates recent user engagement 
history and predicts choice conditional on this context 

• Solve a tweet optimization problem based on this

• Use a large dataset obtained from Twitter
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Key Idea: If I show you these x items, which one(s) will you pick?
Has some overlap/difference with the idea of recommendations.
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User Engagement Model based on Choices
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• Data
• Twitter (RecSys Challenge 2020)
• 100k users, 3.4 million tweets
• Userid
• Tweetid
• BERT tokens of the tweet text
• Tweet/retweet timestamp

• Convert data to account for choice based on 
timestamps



User Engagement Model based on Choices

25
Uplift is computed by calculating the optimal solution using each model and scoring against the most
expressive one. This can be calculated for each user and for each r time-window.

BCE: Binary cross-entropy loss. AUC: Area under the ROC curve.



Questions?

26



Today’s Outline

27

• Knowledge Aware Attentive Sequential 
Recommendations (DL)

• User Engagement Model based on Choices (DL)
• Multi-armed Bandits under Priming Effect (Bandits)
• Thompson Sampling for Recommendations (Bandits)
• RL for Optimization: Crowdsourced Last-Mile Urban 

Delivery (RL)
• Improving RL by Detecting Symmetries (RL)



Multi-armed Bandits 
under Priming Effect
With Priyank Agrawal (UIUC)
Paper: Learning by Repetition: Stochastic Multi-armed Bandits under 
Priming Effect
Conference: Uncertainty in Artificial Intelligence 2020
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Multi-armed Bandits under Priming Effect

• Priming effect on consumer behavior: 
• Advertiser’s payoff depends on how frequently the 

consumer was presented with the same ad
• Repeated display of recommendations can cause positive

reinforcement.

• Key contributions:
• No need to use a full RL solution strategy
• Use bandits where rewards depend on current and past 

actions
• Advantage: get regret guarantees (upper bound on 

expected regret)
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Multi-armed Bandits under Priming Effect
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Algorithm details are omitted here.



Multi-armed Bandits under Priming Effect
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• Knowledge Aware Attentive Sequential 
Recommendations (DL)

• User Engagement Model based on Choices (DL)
• Multi-armed Bandits under Priming Effect (Bandits)
• Thompson Sampling for Recommendations (Bandits)
• RL for Optimization: Crowdsourced Last-Mile Urban 

Delivery (RL)
• Improving RL by Detecting Symmetries (RL)



Thompson Sampling for 
Recommendations
With Yunjuan Wang (UIC -> JHU)
Paper: Thompson Sampling for a Fatigue-aware Online 
Recommendation System
Venue: International Symposium on AI and Mathematics (2020)
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Algorithm details are omitted here.



Thompson Sampling for Recommendations
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• Thompson Sampling for Recommendations (Bandits)
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RL for Optimization: 
Crowdsourced Last-Mile 
Urban Delivery
With Bo Zou, Tanvir Ahamed and Nahid Farazi (UIC)
Paper: Rule-Interposing Deep Reinforcement Learning for Crowdsourced Last-
Mile Urban Delivery
Draft Available (2020)
Presented at INFORMS 2020
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RL for Optimization: State
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RL for Optimization: Actions
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RL for Optimization: Reward
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RL for Optimization: DQN Recap
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RL for Optimization
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Improving RL by 
Detecting Symmetries
With Anuj Mahajan (Oxford)
Paper: Symmetry Detection and Exploitation for Function Approximation in 
Deep Reinforcement Learning
Venue: International Conference on Autonomous Agents and Multiagent 
Systems (2017)
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Improving RL by Detecting Symmetries
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