
Lecture 1

IDS575: Statistical Models and Methods
Theja Tulabandhula

We are drowning in information and starving for knowledge. - Rutherford D. Roger

Notes derived from the book titled “Elements of Statistical Learning [2nd edition] (Chapters 1 and

2.1-2.3)

1 Motivation

The impact of data science on a variety of fields, businesses and areas of works needs no
introduction. So, here is a list of problems that involve some sort of statistical modeling or
other. I am sure you can all relate statistical modeling to your past professional experiences.

• Sports analytics

• Online retail and pricing

• Advertising and personalization

• Social networks

• Education and MOOCs

• Transportation systems

• Automatic speech recognition

• Robotics and computer vision, image processing

• Fraud detection and finance

• ICU monitoring and clinical decision support

• ...
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What are some common components among these applications?

1.1 Application in Sports Analytics

Here is an example of how a decision support tool was built using statistical modeling. The
context is that a team makes pit stop calls during a race. When to make a call and what
to do in it constitutes a pit strategy. for example, replacing four tires (Figure 1) takes more
time but the car is much better with respect to lap times.

Figure 1: Car racing: a crew member inspecting a tire.

• The problem to be addressed is the following: use live race measurements to forecast
future and decide/update a pit strategy in real time.

• Is there even predictability in this setting?

• Data: text strings are beamed by the organizers over the radio, so there could be
several noisy values.

Initial exploration to build features from 17 races (∼ 100000 laps) resulted in the following
plots (see Figure 2).
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Figure 2: Some histogram and correlation plots to design features.

So after that, one can jump into using off the shelf predictive models to predict a quantity
of interest. In this particular application, it was the change in rank position in the laps
following a pit stop given measurements of what happened in the pits and what happened
before in the race. The performance of various models is shown in Figure 3.
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Figure 3: Different predictive models.

All models look similar in performance. What to do next? Can this be improved? Is
this accuracy enough to actually build a strategy? By the end of this course, you will be in
a better position to answer these questions!

2 Building a Language for Statistical Modeling

In the applications described above, we use some keywords. These are:

• Inputs: these variables are measured in some way: e.g., can be physical measurements,
can be answers to a survey, etc.

• Outputs: we hypothesize that inputs influence the values these variables take.
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Informally, we can define supervised learning as the problem of finding a relation between
inputs and outputs. You can think of it as a function or a mapping. The method that does
the search/finding is typically called a learner.

Below is a table of equivalent keywords that you may have come across:

Inputs Predictors Independent variables Features
Outputs Responses Dependent variables Labels

Lets focus on outputs for a bit. These can be quantitative, i.e., taking numerical values.
Or they can be qualitative, with no order relationship between the values the outputs take.

When the learner learns a mapping for the quantitative setting, we will call the mapping
a regression function and the process regression. On the other hand, when the learner learns
a mapping for the qualitative setting, we will call the mapping a classifier, and the process
classification.

2.0.1 Examples

For instance, in the setting where the learner learns a cat classifier, we can specify 1-
dimensional representation for the output that takes a value 0 when there is no cat and
1 otherwise. Of course, you could have chosen value 0 to indicate the presence of a cat
instead. This is what we mean by no order relationship. These values are sometimes called
targets.

Another example is that of data drive decisions. Think of a stylized example where an
autonomous car’s controller is designed using statistical modeling. Then all the features that
are measured (location on the road, location of other people and cars, traffic signals) can be
mapped to descriptive actions or decisions such as accelerate, brake, turn left, steer right by
10 degrees etc., using supervised learning. Outputs such as these are also called discrete or
categorical.

2.1 Describing Statistical Modeling

We will use statistical modeling as a way to describe data mining and machine learning
solutions where statistics and probabilistic models play a key role. I will enumerate the
different types of (application independent) problems that comprise this area:

• Pattern mining: processing databases to find rules (e.g., bread → oatmeal).

• Clustering: group objects that belong together.

• Classification: map inputs to outputs, where the values that outputs take have little/no
relation with each other.

• Regression: same as above, but with values of outputs having some relationship. Typ-
ically these values are numerical.
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• Ranking: order new data using historical data. This is related to classification and
regression.

• Density estimation: finding the probability distribution that describes how data real-
ized.

• ...

Both regression and classification can be viewed as a function approximation problem:
given inputs and outputs, fit a nice function.

A language to describe these various problems is as follows. We will use X to represent
an input variable or a vector of input variables (in the latter case, the jth variable is Xj).
Quantitative outputs are denoted Y and qualitative ones G.

Lets observe N realizations of input X. The ith observed input is denoted using xi. Say
this is p-dimensional. Then if you stack them together as rows, you get a matrix X which is
N × p dimensional.

Why did we introduce this notation? We did it to describe the learning task more
formally: given X, find a function that predicts Ŷ that is close to Y . For the qualitative
setting, replace Y with G.

3 Two Learners

We will look at linear regression and k-nearest neighbor, especially because they are very
different from each other in various ways and will give you an idea about the solution space
(you could come up with your own learner if you understand these two!)

We will use the word model to describe the function or mapping output by a learner.

3.1 Linear Model

A linear model is given by: Ŷ = XT β̂ (note: vectors are always column vectors unless

specified explicitly). β̂ is the parameter of the model. That is, β̂1 and β̂2 specify two

different models. If Ŷ is K dimensional, then β̂ is K × p dimensional.
If we want to find a function approximator that maps Xs to Y s and we are allowed to

only search in the space of linear models, we can do the following: we can pick an objective
that measures how well we are doing.

For example, let the objective be
∑N

i=1(yi − xTi β)2. This is called the least squared

objective1. If we minimize this, we get the best approximator β̂, where best is defined
precisely in terms of the objective function.

1sometimes also called the residual sum of squares
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If we have enough observations such that XT X is not singular, then there is a single β̂
that minimizes the least squares objective, and it is given by β̂ = (XT X)−1XT y.

Think of it this way: we reduced the N×p matrix and the N observed outputs (vectorized
as y) to a p-dimensional vector. This vector allows us to make predictions. In some sense,
we have done compression, We do not need the original data (observations of inputs and
outputs) anymore.

3.1.1 Example

Figure 4: Linear model with 2-dimensional data.

Figure 4 shows a scatterplot of the observations of inputs which are 2-dimensional. The
colors of each point represent the value that output variable G takes. We will use a linear
model to fit this data (say blue is 1 and orange is 0) and convert Ŷ to Ĝ via a non-linear
transformation:

Ĝ = 1[Ŷ > 0.5].

The black line corresponds to the decision boundary. Here xT β̂ = 0.5. The decision
boundary is linear.

As you can see, the boundary does not separate blue points from red points well. We
can eyeball and see this for 2-dimensional data. What if we have 100 dimensions? We will
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necessarily have to rely on projections or other summary diagnostics to assess model fit. We
will discuss this much more detail in a subsequent lecture.

Lets take a tangent and hypothesize how the 2-dimensional data was generated. What
if it is just a mixture of two 2-dimensional Gaussians? One can reason that if these two
Gaussians overlap too much, a linear decision boundary will not be adequate. Would any
other boundary be better?

What if it was a mixture of mixtures of Gaussians, whose means were sampled from
Gaussians? Sounds pretty complex, isn’t it?

Note that a mixture of Gaussians can be described generatively. Think of a Bernoulli
random variable. If it takes value 1, you sample a point from one Gaussian, and if it takes
value 0, you sample from a different Gaussian. This is a generative description of a mixture
of two Gaussians. We will see later that a linear boundary is the best in the least squares
sense when data is realized this way.

If it is a much more complex model (mixture of mixture of ...) then a linear boundary
may be very bad.

3.2 Nearest-neighbor Methods

These are lazy methods. Given a input, you can predict its output Ŷ as:

Ŷ =
1

k

∑
xi∈Nk(x)

yi.

Here Nk(x) is the neighborhood of value x. It is a set of k points closest to x in terms of
some metric.

What is a metric?

3.2.1 Example

Figure 5 shows the same data as Figure 4 and uses k = 15. There is no fitting here (except
for choosing k).

A point is orange if at least 8 of the 15 neighbors of that point are orange, and vice-versa.
As can be inferred from the two figures, we get a non-linear decision boundary with this

method. Also, arguably a better fit2

What if we choose k = 1? We get a Voronoi tesselation. There are many decision
boundaries! See Figure 6.

What would change if we were doing regression instead?

2We have only been looking at in-sample fit!
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Figure 5: 15-Nearest neighbor method with 2-dimensional data.

3.3 Comparing Nearest-neighbor with Linear Modeling

If you thought nearest-neighbor methods are superior, think again. In Figure 6, all the points
are classified correctly. Hence, we can reason that as we increase k, our errors will increase,
starting from value 0 when k = 1. These errors are somewhat meaningless though. What
we should care about is performance on an independent test set.

How do we pick k? Does its choice matter? If you used the least squares objective3 to
pick k, what would you get?

If the data in Figures 5 and 6 were from two overlapping Gaussians, k-nearest-neighbor
methods would probably capture ‘noisy patterns’.

3.3.1 Comparing Parameters

We know that the linear model had p parameters. How many parameters does the k-nearest-
neighbor method have? 1. But there is more to this. It turns out that the effective number
of parameters is N/k, which grows with N and shrinks with k.

The intuition is as follows: lets say the neighborhoods were non-overlapping. Then
there would be N/k neighborhoods and we would fit one parameter (the mean) in each
neighborhood.

3That is, for each k, we find the residual sum of squares.
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Figure 6: 1-Nearest neighbor method with 2-dimensional data. More-irregular than the
15-Nearest neighbor method.

3.3.2 Comparing Decision Boundaries

The decision boundary from a linear model is stable and smooth4 This is a manifestation of
low variance and high bias.

For the k-nearest-neighbor, since any classification decision only depends on a few nearby
points, it is unstable and wiggly. But it can adapt to complex data. This is a manifestation
of high variance and low bias.

As you will see throughout the course, there is no single best method for making the data
talk. Any method can shine if its properties are aligned with the unknown true characteristics
of the data. This is true of deep neural nets as well.

3.3.3 Comparing Testing Performance

In the examples, we have 200 training observations. The performance of nearest neighbor
methods is shown in Figure 7 as a function of N/k over an independent test data (10000
in number, so fairly accurate representation of how these methods do in reality). The

4We are using both these terms loosely here.
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Figure 7: Error for different models.

performance is just the number of points on the wrong side of the decision boundary. The
figure also includes the performance of a linear model with p = 3.

Many methods discussed in the course can be thought about in similar terms, and will
work intuitively the same way as either of the two methods we just saw.

4 Summary

We learned the following two things:

• Introduced vocabulary to describe statistical modeling.

• Looked at two intuitive prediction models: the linear model and the k-nearest-neighbor
method.

In the next lecture, we will discuss the bias-variance tradeoff and jump into the nuances
of regression modeling.
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A Sample Exam Questions

• What are the different types of statistical modeling tasks? What are their differ-
ences/distinctions?

• Describe the dependence of k-nearest neighbor method’s performance on k? How is
the performance in-sample different from out-of-sample?
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