
Lecture 5

IDS575: Statistical Models and Methods
Theja Tulabandhula

Notes derived from the book titled “Elements of Statistical Learning [2nd edition] (Sections 4.1-4.4,

7)

1 Classification using Linear Regression

Lets start thinking of classification now. Here the output variable G takes discrete values.
Say, hypothetically, you divide the input region into a collection of regions and label

them according to the true classification. These decision boundaries can be jagged or nice
(e.g., smooth/linear). There are methods that can output classifiers that only lead to linear
decision boundaries. These are the ones we will start looking at.

As we saw before, we could use linear regression for classification. To do so, from G,
make a K dimensional output variable Y (this is also called one-hot encoding). And fit a
linear model. More precisely, predict the kth indicator output variable using

f̂k(X) = β̂
T

k X.

The decision boundary between any two classes, say class k and l, would be given by f̂k(X) =

f̂ l(X). This is a hyperplane1. Hence the input space is divided into regions with linear
decision boundaries.

How does one classify using f̂k, k = 1, ..., K? Well, we can simply take the class corre-
sponding to the largest one. These are generally called discriminant functions. We will see
other discriminant functions later (LDA and logistic regression) soon.

Example 1. Linearity decision boundaries may seem more restrictive than necessary. But
it turns out that certain nonlinear boundaries, such as quadratic, can be thought of as linear
boundaries in a higher dimension. This is illustrated in Figure 1, where the original data is
2-dimensional.

Here are the steps for using linear regression for classification:

1Given constants a (p-dimensional) and c (1-dimensional), a hyperplane is a set of points z that obey
aT z = c.
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Figure 1: Linear decision boundaries in 2 and 5 dimensions (in the latter case, visualized in
the original 2-dimensional space).

1. Each response category (k = 1, ..., K) is coded as an indicator variable (this is a
K-dimensional vector with all zeros except the location/coordinate corresponding to
category/level k.)

2. Collect them together to get the indicator response matrix Y, which is N × K-
dimensional. Each row has a single 1 in it.

3. Fit a linear regression model to each of the columns of Y simultaneously, which is
β̂ = (XT X)−1 XT Y. Here β̂ is p×K-dimensional.

4. A new observation x0 is classified by:

• Compute xT0 β̂, which is a K-dimensional row vector.

• Identify the largest component, and report its index as the category/level.

Regression estimates conditional expectation. For Yk, E[Yk|X = x] = Pr(G = k|X = x),
hence this is reasonable, assuming Pr(G = k|X = x) are linear functions of x.

Note 1. Some coordinates of xT0 β̂ can be negative or greater than one, which is a bad
approximation to Pr(G = k|X = x).

Note 2. There is another issue with using regression, especially when K ≥ 3: classes can
get masked by other classes.

Example 2. Figure 2 represents an example of class masking. Here the three classes can be
separated easily by linear boundaries, but linear regression is unable to do so! To understand
this, look at Figure 3. The data has been projected onto the line joining the three centroids.
The three regression lines are also plotted, and we can see that the line corresponding to the
middle class is horizontal/never-dominant. Although using quadratic features help in this
example, there is no easy solution in general.
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Figure 2: Class masking when linear regression is used for classification (left). Another
method LDA (right) is able to circumvent this issue.

Figure 3: Class masking is minitgated using quadratic derived features (right) in this exam-

ple. Without them, the f̂ for one of the class never dominates (left).

2 Classification using Linear Discriminant Analysis (LDA)

If we recall statistical decision theory that we discussed before, then we know that P (G =
k|X = x) gives us the best classification (for the zero-one loss). Lets try to get to that
quantity by using Bayes rule. Here’s how:

1. Let the class conditional density of X be fk(X), k = 1, ..., K

2. Let the class prior be πk, k = 1, ..., K

3. Then the class posterior density is

P (G = k|X = x) =
fk(x)πk∑K
l=1 fl(x)πl

.

The Bayes rule above tells us that choosing a model for fk(X) can give us the posterior
distribution. There are many methods that model these densities, including LDA and Naive
Bayes and Quadratic Discriminant Analysis (QDA). Lets focus on LDA for now.
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LDA assumes that fk(X) ∼ N(µk,Σk) and Σk = Σ for all k = 1, .., K.

Thus, when we compare two classes via the log-ratio of their posteriors we get:

log
Pr(G = k|X = x)

Pr(G = l|X = x)
= log

fk(X)

fl(X)
+ log

πk
πl

= log
πk
πl
− 1

2
(µk + µl)

TΣ−1(µk − µl) + xTΣ−1(µk − µl).

This is linear in x!

The linear log-odds ratio implies that the decision boundary for any pair of classes is
linear (the points x at which Pr(G = k|X = x) = Pr(G = l|X = x)).

Example 3. Figure 4 illustrates these boundaries for a simulated 2-dimensional data in-
volving three classes.

Figure 4: LDA boundaries for a simulated data with the same covariance for the three
classes. Left plot shows the lines correspond to the Bayes decision boundaries. The right
plot shows the LDA decision boundaries using training data.

The LDA decision rule is to pick the class with the maximum among the following
discriminant functions : δk(x) = xTΣ−1µk − 1

2
µTkΣ−1µk + log πk.

The parameters of the discriminant functions are estimated from training data as:

• π̂k = Nk

N
, where Nk is the number of class-k observations

• µ̂k =
∑

gi=k
xi/Nk

• Σ̂ = 1
N−K

∑
k

∑
gi=k

(xi − µ̂k)(xi − µ̂k)T .

Note 3. Gaussian assumption is critical here. Would it hold if one of the features was
categorical?
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Note 4. Quadratic Discriminant Analysis(QDA): If you relax the assumption that all class
densities do not have the same Σ, we end up with discriminant functions that are quadratic.
This also leads to quadratic decision boundaries.

Example 4. Figure 5 shows how QDA varies from LDA for a 2-dimensional dataset. For
LDA, interactions terms were accounted for to fit a model in 5 dimensions (see Figure 1). As
you can see, there is not much difference between them for this dataset. Since QDA needs
to estimate different covariance matrices, the number of parameters is much larger.

Figure 5: QDA (right) versus LDA (left).

3 Classification using Logistic Regression

Logistic regression model is defined using log-ratios of posterior probabilities of classes given
feature vector. That is,

log
Pr(G = l|X = x)

Pr(G = K|X = x)
= βTl x,

for l = 1, ..., K − 1. The log ratio is also called a logit transformation, hence the name.
From these K − 1 ratios, we can deduce that for each k

Pr(G = k|X = x) =
exp(βTk x)

1 +
∑K−1

l=1 exp(βTl x)
.

We will use maximum likelihood method to fit the model parameters. The log-likelihood
given a training set of size N ({xi, gi}Ni=1) is

l({β1, ..., βK−1}) =
N∑
i=1

logPr(G = gi|X = xi)

Example 5. When K = 2, we can use variables yi instead of gi to write down the log-
likelihood in a nicer form.
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• Let yi = 1 when gi = 1 and let it be 0 when gi is 2.

• Let Pr(G = 1|X = x) = p (just a shorthand notation)

Then,

l(β1) =
N∑
i=1

{
yi log p+ (1− yi) log(1− p)

}
=

N∑
i=1

{
yiβ

Txi − log(1 + exp(βTx))
}
.

Maximizing the log-likelihood turns out to be a convex2 problem and can be solved using
several off-the-shelf solvers.

Note 5. There is also another way to solve for β1 that involves repeatedly solving linear
regression problems. The method is called IRLS (Iteratively Reweighted Least Squares) that
solves the following in each iteration:

βnew ← arg min
β

(z−X β)T (z−X β),

where z = X βold + W−1(y−p), W is a N ×N diagonal matrix with entries Pr(G = 1|X =
xi)(1−Pr(G = 1|X = xi)) and p is a N -dimensional vector with entries Pr(G = 1|X = xi),
all evaluated at βold. Finally, note that this is not super interesting unless one cares about
optimization and is working in a large scale setting.

3.1 Logistic Regression versus LDA

Since the logistic model and the LDA have very similar forms for the log-ratios of probabil-
ities, they may seem similar. They do in fact have the same linear form. But there are key
differences in how the coefficients are estimated.

• Logistic regression makes lesser assumptions. Specifically, it does not impose that the
marginal density of X is a mixture of Gaussian distributions.

• LDA on the other hand makes Gaussian assumptions. It is also estimated easily because
of this.

• If indeed data was such that P (X) was a mixture of Gaussians, then LDA would need
lesser data to reach the same level of estimation accuracy.

So if you are unsure about which to use, side with logistic regression.
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4 Model Selection and Assessment

Now that we have seen several methods: (a) linear regression with subset selection, ridge
and LASSO penalties, (b) k-nearest neighbor methods, (c) linear discriminant analysis, and
(d) logistic regression, lets discuss how to pick the most promising model.

We want to know the generalization performance: the prediction capability on indepen-
dent test data.

This is the problem of model selection and assessment. We have already seen cross-
validation as a way to assess any choice that we make while doing model search. There are
other methods, some simpler than other that help us assess performance. Before doing that,
lets understand model complexity.

4.1 Model Complexity, Model Bias and Model Variance

As before, let τ = {(x1, y1), ..., (xi, yi), ..., (xN , yN)} represent the training set, and L(Y, f̂α(X))
denote the loss function for measuring errors (α denotes a tunable parameter or choice that
you make). We have already seen the expected prediction error:

Err = Eτ,Pr(X,Y )[L(Y, f̂α(X))] = Eτ [Errτ ],

where Errτ = EPr(X,Y )[L(Y, f̂α)|τ ]. This latter quantity is also what we want to know, but
is not easy to estimate, so we focus on Err instead. Figure 6 depicts both of these for 100
simulated trainings sets with 50 observations each, and using LASSO.

Training error is the average loss over the training sample (RSS is a special case), and

we will denote it as err = 1
N

∑N
i=1 L(yi, f̂α(xi)). In general, negative log-likelihoods can be

used to define the loss function as well.

The intuition for model complexity is this: as the model becomes more complex (more
parameters), it will be able to adapt to more underlying structure in the data. The model
bias will decrease, but the model variance will increase.

Note 6. Although we discuss quantitative outputs here, most of our discussion can also
encompass the qualitative output setting easily.

Note 7. We want to set the tuning parameter α such that we get the minimum Err.

Note 8. There are two related but distinct goals: (a) model selection that involves esti-
mating different models (corresponding to different αs) to pick the best one; and (b) model
assessment that involves estimating the Err for a given model.

Example 6. Say we have lots of data. Then we can do the following:
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Figure 6: Illustration of expected prediction error Err (solid red) vs Errτ (light red) for
LASSO. Training error err (blue) decreases as model complexity increases.

• Randomly divide dataset into three parts as shown in Figure 7.

• Fit models using train.

• Use validation to estimate Err for model selection.

• Finally, use test set to estimate Err of the one chosen model (model assessment). Do
not use test set multiple times!

Figure 7: Train, validation and test sets.

You have to make a choice about what proportion of your data will be validation and test.

If we do not have lots of data, then we can attempt to use other methods discussed here,
viz., AIC, BIC and cross-validation.

4.2 Bias Variance Decomposition

Consider the data distribution Pr(X, Y ) such that Y = f(X) + ε, E[ε] = 0, V ar(ε) = σ2,
and X fixed. In this case, recall that the EPE (which is the same as Err for the squared
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loss) can be written at a point x0 as:

Err(x0) = σ2 + (Eτ f̂(x0)− f(x0))
2 + Eτ (̂f(x0)− Eτ f̂(x0))

2.

The first term is the variance of the output variable around its true mean f(x0). The second
term is the squared model bias and the third term is model variance.

Figure 8: An example illustration of bias-variance decompostion. Blue region indicates σ2.
Red boundary represents linear models. Purple boundary represents ridge models. Yellow
circles represent model variance (larger one for linear regression and smaller one for ridge).

The rule of thumb is that if a model is complex, then its bias will be low, but variance
will be high.

Example 7. For k-nearest neighbor:

• Bias: (f(x0)− 1
k

∑k
l=1 f(x(l)))

2.

• Variance: σ2/k.

This means that if k is chosen to be high, the bias is high and the variance is low. When k
is small, f̂(x) can adapt itself better to the underlying f(x).
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Example 8. For a p-dimensional linear model, the variance term for Err(x0) is equal to
‖X(XT X)−1x0‖2σ2. There is a slightly intuitive version for the in-sample model variance
term for 1

N

∑
iErr(xi), which is pσ2/N . Figure 8 shows an illustration of bias-variance

decomposition for this class of models.

Note 9. Bias variance decomposition behaves differently for different loss functions. This
implies different tuning parameters for different settings.

4.3 Model Selection Basics

Note 10. Intuitively, training error err will be less than the expected error Err because the
same data is used to fit the model as well as assess its error.

Methods such as AIC and BIC try to estimate the optimism in training error err and
add a corrective term to get an estimate of Err. Thus, they use training data only, and
mostly make sense3 for linear models. On the other hand, methods such as cross-validation
directly estimate Err, but use ‘validation’ data.

4.4 AIC: Akaike Information Criterion

The AIC tells us to pick the model with the smallest AIC over the set of models considered.
AIC for regression models is defined as follows. Let errα and d(α) be the training error

and number of parameters of model f̂α(x). Then, AIC is:

AIC = errα + 2
d(α)

N
σ̂2,

where σ̂2 is the estimated noise variance.
AIC for classification models such as logistic regression is defined as:

AIC = − 2

N

N∑
i=1

logPrθ̂(yi) + 2
d

N
.

Although it is a useful way to perform model selection, it may be inapplicable for certain
choices of loss/likelihood functions. Further it is sensitive to d(α).

4.5 BIC: Bayesian Information Criterion

BIC is an alternative to AIC and is applicable when the loss function is defined in terms of
a likelihood function (so we are maximum likelihoods here). The general formula is:

BIC = −2
N∑
i=1

logPrθ̂(yi) + d logN.
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Under simple Gaussian assumptions, it simplifies to:

BIC =
N

σ2
err + d logN.

Because of the logN term, it penalizes more complex models more heavily than AIC.

Although the formula looks very similar, BIC is motivated from a Bayesian perspective.
Say we have multiple models. Say we have the same prior for each model. Then the posterior
given data can be written as the likelihood times the prior. It turns out that the (negative
of) log of this posterior can be approximated using the equations defined above.

Note 11. There is an additional benefit of BIC over AIC because of the Bayesian perspective:
we can compare two models easily because we have the posterior probability of each model.

4.6 Nuances of Cross-Validation

Cross-validation (CV) estimates Err directly. It uses part of training data to fit models, and
a different part to estimate Err, and repeats this by exchanging the parts. For example,
K = 5 parts look as shown in Figure 9, where we have chosen the third part to estimate
Err in this turn.

Figure 9: An example CV data split.

When K = N , we call this version of CV leave-one-out cross-validation.

How to pick K, the cross-validation parameter? Again it is a choice. Lets see how it
impacts estimation of Err.

Example 9. One of the factors that influences how K-CV performs is the performance of the
learning methods as training data increases. Figure 10 shows an illustration of the learning
curve of a classifier. The classifier performance increases as training set size N increases up
to about 100 observations, beyond which the performance improvement is small.

If our training data had 200 observations to work with. Then choosing K = 5 would give
us 160 observations to fit a model, whose performance would be similar to the model fit using
the full 200 observations. On the other hand, if our training data had 50 observations, then
K = 5 would give us only 40 observations to fit a model, which would give us an incorrect
(lower) estimate of 1− Err.
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Figure 10: Learning curve as a function of training set.

4.7 Incorrect Use of CV

Cross validation should always be applied before the entire sequence (if any) of choices
are made. For example, folds must be created before any filtering/data-processing steps are
applied. And these filtering/data-processing steps must be applied in turn within each run
of CV.

Note 12. If you ignore the realizations of the output variable, then you can process the
remaining data (predictors) without involving cross-validation here.

Example 10. Say you plot scatterplots of predictors with the output and pick a subset
of predictors (say 100). Using these, you build your classifier. And use cross-validation to
estimate the error of the final model. This is an incorrect application of cross-validation!

Consider setting where N = 50, p = 5000 and all the input variables are standard Gaus-
sians that are independent of class labels. Then the true Err = 50%. If we use the above
process for 1-nearest neighbor, we get a CV error rate as 3% (50 simulations, see Figure 11).
The reason for this discrepancy is that the chosen input variables have an unfair advantage
because they were chosen based on all data. Leaving data out after that does not let us
estimate its Err correctly because these variables have “seen the left out data” as well. In
Figure 11, we chose a random set of 10 observations (because we are using 5-fold CV) and
computed the correlation between the pre-selected 100 input variable coordinates and the
class labels of just these 10 samples. These correlations are non-zero!

So what is the correct way? First divide data into K folds. For each fold, find input
coordinates that correlated with labels using all data except the kth fold. Build a model
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using all data except the kth fold. Get its Err estimate. Repeat this over all folds in turn.
Average the estimates. The bottom panel in Figure 11 shows the correlation of class labels
with chosen predictors in a typical fold, which is zero on average.

Figure 11: Incorrect vs correct use of cross-validation.

Note 13. Models must always be retrained from scratch for each turn of the K-CV.

Note 14. It is also useful to report the standard error of the CV estimate of Err to get an
idea about the variance of the estimator.

5 Summary

We learned the following things:

• Classification via regression, linear discriminant analysis and logistic regression.

• Model selection and assessment using: (a) the bias-variance decomposition, (b) Akaike
and Bayesian Information Criterion (AIC, BIC), and (c) cross-validation.
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A Sample Exam Questions

1. What is class masking?

2. What are the similarities and differences between LDA and logistic regression?

3. What is the difference between Err and Errτ?

4. How do you find the final model using cross-validation? What data will be used to
find it?
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