
Lecture 7

IDS575: Statistical Models and Methods
Theja Tulabandhula

Notes derived from the book titled “Elements of Statistical Learning [2nd edition] (Sections 8.5-8.6,

9.1-9.2)

1 Inference using Expectation Maximization

The Expectation Maximization (EM) algorithm is a very useful tool to simplify MLE prob-
lems that are difficult to solve.

Lets understand it for a specific problem first: the problem of density estimation.

Density estimation is the problem of estimating the distribution function (density func-
tion) using a dataset.

Consider the 1-dimensional data (N = 20) shown in Figure 1 and enumerated in Figure 2.

Figure 1: Dataset of 20 1-dimensional points, drawn as a histogram on the left. MLE fit on
the right (solid red, more explanation in text).

Eyeballing the data, it looks like there is bi-modality, so we hypothesize that the data
came from a mixture of two Gaussian distributions in the following way:

1. Y1 ∼ N(µ1, σ
2
1)
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Figure 2: Data used for the histogram in Figure 1.

2. Y2 ∼ N(µ1, σ
2
1)

3. ∆ ∼ Bernoulli(π)

4. Y = (1−∆)Y1 + ∆Y2.

The above is called a generative description. We flip a coin with bias π and then depending
on the outcome, make Y equal to Y1 or Y2. This is a very popular model in statistics and
machine learning.

The density of Y is gY = (1− π)N(Y ;µ1, σ
2
1) + πN(Y ;µ2, σ

2
2) and the parameter vector

is θ = [π, µ1, σ
2
1, µ2, σ

2
2]T .

The log likelihood is

l(θ; Y) =
N∑
i=1

log[(1− π)N(yi;µ1, σ
2
1) + πN(yi;µ2, σ

2
2)].

This optimization problem is difficult because there is an additive term inside the log. It
turns out that there are multiple local maxima for this function1.

Lets introduce the unobserved/latent variables δi (realizations of ∆ ∼ Bernoulli(π) taking
values 0 and 1 resp.). Then the new log-likelihood would be

l0(θ; Y,∆) =
N∑
i=1

{
(1− δi)

(
logN(yi;µ1, σ

2
1) + log(1− π)

)
+ δi

(
logN(yi;µ2, σ

2
2) + log π

)}
.

Maximizing the above likelihood is easy because the terms involving one parameter can
be decoupled with terms involving other parameters.

Since δi are not observed, we could substitute their conditional expected values, which
are defined as:

γi = E[∆i|θ,Y],

giving us the idea for an iterative algorithm shown in Figure 3.
In each iteration, there are two steps:

• The expectation step (E): We find γi, a soft assignment of each yi to one of the two
Gaussians.

1A point θ is a local maximum if it maximizes the value of the given function in its neighborhood. It is
a global maximum if it maximizes the function across all possible points.
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Figure 3: The Expectation-Maximization algorithm for the 2-component mixture model.

• The maximization step (M): Substituting these γi in place of δi and maximize l0(θ; Y,∆).

Example 1. For the 1-dimensional data above, starting with several initial values for θ, the
EM algorithm was run. Figure 4 shows one of these runs. Figure 5 shows how the estimate
π̂ changes over iterations. Finally, the right panel of Figure 1 shows the fitted Gaussians.

1.1 The General Trick

The idea behind EM is to make the likelihood maximization problem easier by enlarging the
data with latent data. This latent data can be any data that was missing, corrupted, or
just unobserved. The general algorithm is shown in Figure 6. Let the observed data be Z
and the latent data be Zm and let T = (Z,Zm). Let the original and new log-likelihoods be
l(θ; Z) and l0(θ; T). Then, in the jth iteration, we do:

• The E step: compute Q(θ′, θ̂(j)) by computing the conditional distribution of the latent

variables given the observed and the current parameter θ̂(j) and substituting these in

the expression for l0(θ
′; T) (call it Q(θ′, θ̂(j))).

• The M step: Maximize the expression Q(θ′, θ̂(j)) over θ′ to get θ̂(j + 1). And repeat.
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Figure 4: Progress of the Expectation-Maximization algorithm for the 1-dimensional dataset.

Figure 5: Estimates of π across select iterations of the Expectation-Maximization algorithm
for the 1-dimensional dataset.

1.2 Why does EM Work?

Lets look at the following conditional distribution relation, that related the two likelihoods:

Pr(Z |θ′) =
Pr(T |θ′)

Pr(Zm |Z, θ′)
⇒ l(θ′; Z) = l0(θ

′; T)− l1(θ′; Zm |Z).

Take conditional expectation of the above equality with respect to Pr(T |Z, θ), we get:

l(θ′; Z) = E[l0(θ
′; T)|Z, θ]− E[l1(θ

′; Zm |Z)|Z, θ]
= Q(θ′, θ)−R(θ′, θ).

So in the M step, we maximize the first term above with respect to θ′. But we still
succeed in maximizing l(θ′; Z), which is our original log-likelihood.

This is because the second term is maximized2 when θ = θ′. What does this imply, lets
look at two different parameter values, θ′ and θ, where θ′ maximizes Q(θ′, θ). Then, the

2We will assume that this is true here. You can verify this claim yourself.
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Figure 6: The Expectation-Maximization algorithm in general.

difference in the original log-likelihood will be:

l(θ′; Z)− l(θ; Z) = Q(θ′, θ)−R(θ′, θ)− (Q(θ, θ)−R(θ, θ))

= (Q(θ′, θ)−Q(θ, θ))− (R(θ′, θ)−R(θ, θ))

≥ 0.

The above inequality just means that we are always improving our original objective
values in each iteration. Hence, EM will at least get to the local maxima.

In summary, EM is a very powerful technique to fit complex models to many different
type of data: from fitting mixture models to community detection in social network analysis.
for every application, the E step and the M steps may need to be customized.

2 Sampling from the Posterior

Lets go back to Bayes rule. if you remember MAP estimation, it includes the prior on the
parameter θ and computes the mode of the posterior distribution over θ given data.

Here we discuss ways to compute the mode, or other functions of the posterior via the
technique of sampling.

Example 2. Say you have a random variable Z. Then one way to estimate E[Z] is to
sample say N realizations and take a Monte Carlo average 1

N

∑N
i=1 zi. Of course, E[Z]

can be computed analytically given the distribution/density if the latter is a well known
distribution/density like the Multinomial or the Gaussian.

Sampling from certain distributions is easy, especially if you have access to samples from
the uniform distribution U [0, 1].
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Example 3. Say we want to sample from a continuous increasing distribution function F
which is defined as F (z) = Pr(Z ≤ z). Let F−1 be its inverse function. Then, Z can be
sampled in two steps:

• Sample U from U [0, 1].

• Return Z = F−1(U).

For example, Z = − 1
λ

log(U) is exponentially distributed with parameter λ.

If we wish to sample from a more complex distribution, say that of a p-dimensional
random vector U = [U1, ..., Up]

T , there are a family of techniques called Markov Chain
Monte Carlo, one of which we will discuss: the Gibbs Sampler.

The key assumption for the Gibbs sampler is that it is easy to sample from
P (Uj|U1, ..., Uj−1, Uj+1, ..., Up) for every j = 1, ..., p.

The key idea of Gibbs sampling is to sample from each of the conditional distributions in
some sequence, many times, and finally bundle p of them together to get a sample. This is
illustrated in Figure 7. It turns out that this repeated sampling is related to an object called
the Markov chain. And the relation is this: when we are sampling coordinate Uj, it depends
on p−1 samples that we obtained previously and everything before that is irrelevant (this is
called the Markov property). Gibbs sampler stabilizes after some time and actually produces
realizations u that are from the distribution P (U1, ..., Up)

3.

Figure 7: The Gibbs Sampler.

Note 1. There are many other sampling techniques, and Gibbs sampler is just one of them.
They are very relevant in Bayesian statistical modeling.

3One can verify this claim, although we will skip this here.
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In the next several sections/lectures, we will get back to supervised learning. In particu-
lar, we will look at classification and regression methods that work with different (sometimes
lesser) assumptions than linearity, but still give great predictive performance. These are:

1. Generalized Additive Models (GAMs),

2. (future) Tree-based methods,

3. (future) Multivariate Adaptive Regression Splines (MARS),

4. (future) Adaboost and Gradient Boosting Methods,

5. (future) Random Forest, and

6. (future) Support Vector Machines.

3 Generalized Additive Models

In many situations, Y does not depend linearly on X. To counter this, a GAM assumes the
following:

E[Y |X] = α + f1(X1) + f2(X2) + ...+ fp(Xp),

where fj can be specified arbitrarily. For example, each such function can be a cubic smooth-
ing spline4.

Example 4. The GAM version of logistic regression for two classes would be:

log(
P (G = 1|X)

1− P (G = 1|X)
) = α + f1(X1) + f2(X2) + ...+ fp(Xp).

It turns out that P (G = 1|X) = µ(X) is the conditional mean of response Y . In general,
this mean is related to the right hand side above via a link function. Example link functions
include:

• Identity link: g(µ) = µ.

• Logit link: g(µ) = log( µ
1−µ).

• Probit link: g(µ) = Φ−1(µ).

• log-linear link: g(µ) = log(µ).

4Such a function is the minimizer (over the class of twice differentiable functions) of
∑N

(yi − f(xi))
2 +

λ
∫
f

′′
(x)2dx.
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These (and other links) define the family of Generalized Linear Models (GLMs) when
fj(Xj) = Xj.

Note 2. We can have nonlinear functions of more than one Xj as well.
The way these functions are estimated from data, is by solving the following optimization

problem:

PRSS(α, f1, ..., fp) =
N∑
i=1

(y − α−
p∑
fj(xij))

2 +

p∑
j=1

λj

∫
f

′′

j (tj)
2dtj,

where xij is the jth component of the ith observation. It turns out that this is not very
difficult, although we will skip it to focus on other models.

Example 5. An example set of functions for a spam classification task is shown in Figure 8.

Note 3. Unequal Loss Functions: In a spam classification task, it may be more important to
not classify a genuine email as spam, compared to classifying a spam as a genuine email. In
order to do so, the 0−1 loss function can be changed to penalize one type of mis-classification
more than the other.

4 Summary

We learned the following things:

• Learning/inference in general settings can be achieved using maximum likelihood and
the expectation maximization (EM) methods.

• Sampling as a way to infer/estimate quantities of interest, especially when the proba-
bility distribution function is complex.

• More models for regression and classification including: Generalized Additive Models
and Tree-based methods.

A Sample Exam Questions

1. When is the EM algorithm useful? How is it different from MLE?

2. In what situations would sampling be useful?

3. What are the key differences between General Additive Models and linear models?
Which family is more flexible?
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B Sensitivity and Specificity

In certain 2-class classification applications (say, disease (1) and no-disease (0)), one is not
only interested in a single mis-classification metric, but in two additional related metrics:

1. Sensitivity: It is the probability of the model predicting disease when the true label is
disease.

2. Specificity: It is the probability of the model predicting no-disease when the true label
is no-disease.

These can be empirically computed over training/validation data just like any other
performance measure. By introducing unequal loss values (say Lkk′ 6= Lk′k; here Lkk′ is the
loss for predicting true label k as label k′) we can change these numbers. For example, if we
want specificity to be high, then we can set L01 high.

The receiver operating characteristic curve (ROC) is used to shown this trade-off between
sensitivity and specificity. It plots sensitivity vs specificity.
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Figure 8: Estimated functions for a GAM model for a spam classification dataset.
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