
Lecture 8

IDS575: Statistical Models and Methods
Theja Tulabandhula

Notes derived from the book titled “Elements of Statistical Learning [2nd edition] (Sections 9.2,

Chapter 10)

Continuing from before, we will look at classification and regression methods that work
with different (sometimes lesser) assumptions than linearity, but still give great predictive
performance:

1. (previously) Generalized Additive Models (GAM),

2. (today) Tree-based methods,

3. (today) Adaboost and Gradient Boosting Methods,

4. (future) Random Forests,

5. (future) Multivariate Adaptive Regression Splines (MARS), and

6. (future) Support Vector Machines.

1 Tree-based Methods

These are methods that partition the input space into a set of rectangles and for each
rectangle, make a constant prediction.

We will discuss a popular technique known as CART (Classification and Regression Tree)
that can be used for regression and classification.

Example 1. An illustration of how a tree model looks like is given in Figure 1 for a 2-
dimensional regression dataset.

Here, we are recursively doing a binary partitioning of the input space. First, we break
it into two parts and model the response by the mean of yi in each region. The choice of the

1

Figure 1: Partitioning of the input space in general (top left), partitioning using CART (top
right), equivalent tree representation (bottom left), and predictions in each region (bottom
right).

variable to split and where to split is based on some criteria (we will describe soon). Then
we repeat the partitioning in these regions as long as a stopping condition is not met. In the
figure, we get five regions. Our prediction function is:

f̂(x) =
5∑

m=1

cm1[x ∈ Rm],

where cms are the constant predictions in each region.
One of the advantages of recursive binary tree is interpretability, even when we have p > 2

dimensions.

2

1.1 Regression Trees

Computing the best binary partition that minimizes the residual sum of squares (for example)
is hard. So there is a greedy approach:

• Start with all data. Consider a split variable j and split point s. This defines regions
R1(j, s) = {X : Xj ≤ s} and R2(j, s) = {X : Xj > s}. We can optimize for j, s by
solving the following problem:

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2

 .
• For a choice of (j, s), the optimal ĉk = avg(yi|xi ∈ Rk(j, s)) for k = 1, 2. Optimizing

over this choice is not very difficult.

• We repeat the splitting for each of the regions obtained above.

• We stop the process when some criteria is met (see below).

Note 1. There are a couple of ways to stop the tree expansion process:

• We can stop if the decrease in the sum of squared errors is small after a split compared
to before. This doesn’t seem to work well in practice.

• We can stop if the number of observations in the current node is less than a number
(say 5). Such a tree T0 may be too big. This can be pruned using a strategy that is
called cost-complexity pruning.

– Notation: Let T ⊂ T0 be a pruning of T0 by collapsing any number of its internal
nodes. Let the number of terminal nodes of any tree T be |T |. Let Nm = |{xi ∈
Rm}|, ĉm = 1

Nm

∑
xi∈Rm

yi and node-impurity function Qm(T) = 1
Nm

∑
xi∈Rm

(yi−
ĉm)2.

– Define the cost-complexity function as Cα(T) =
∑|T |

m=1NmQm(T) + α|T |.
– We can minimize this1for different α values that trade off tree size and its fit to

training data (α itself can be chosen via K-fold cross-validation).

Note 2. The size of the tree is a design choice that controls predictive performance. A very
large tree will potentially overfit the training data. Whereas a small tree may underfit.

1One can successively collapse the internal node that produces the smallest increase in
∑

m NmQm(T).

3

1.2 Classification Trees

When we have qualitative variable G, then we just need to replace squared loss and Qm(T)
functions. Lets define the proportion of class k observations in a region Rm (node m) as:

p̂mk =
1

Nm

∑
xi∈Rm

1[yi = k].

With this, a new observation in node m can be classified as k(m) = arg maxk p̂mk. The
choice for Qm(T) can be any of the following:

• Mis-classification: 1− p̂mk(m).

• Gini index:
∑K

k=1 p̂mk(1− p̂mk).

• Cross-entropy: −
∑K

k=1 p̂mk log(p̂mk).

Example 2. Here is a visualization in Figure 2 of how these look like when K = 2 and
(pm1, pm2) = (1 − p, p). if you can find a split such that p is closet to 0 or 1, the lower are
these node-impurity functions.

Figure 2: Node-impurity functions are higher when a split leads to higher error (p close to
0.5).

Note 3. There are many variants of tree-based methods such as C4.5, CART etc and we
have only looked at one of them, namely, CART.

Example 3. Consider the spam classification problem. The performance of tree-based
classifiers is shown in Figure 3. The pruned tree is shown in Figure 4.

4

Figure 3: Spam classification: 10-fold CV performance is plotted (blue curve) as a function
of α (top label). The orange curve is the test error.

1.3 Issues with Trees

There are several issues to be aware of when using tree-based methods for regression or
classification tasks. These are:

• Categorical predictors : When Xj takes q values, then there are 2q−1 − 1 partitions
into two groups, which is a lot of choices. The impact of this is that the tree building
process will be splitting on these choices more than the other variables. There is also
a possibility of overfitting because of so many choices.

• Binary splitting vs continuous splitting : Although we could do multi-way splits, it
tends to break data too quickly leading to worse predictive performance. One could
also think of a split such as

∑
j ajXj ≥ s, but these become non-interpretable very

quickly.

• Stability : Often a small change in data will change the whole tree, especially if there
is a change at the beginning stages of tree-building process.

• Smoothness : When the underlying regression function E[Y |X = x] is smooth, then
region-wise constant function fitting may not be a good idea.

Finally, lets also look at the issue of missing data deeply below, as it not only affects
tree-based methods, but many other methods for supervised learning.

5

Figure 4: Spam classification: the pruned tree. The majority class is shown in each node.
The ratio under the nodes indicate misclassification rates on test data.

6

1.4 Missing Data

Most importantly, we need to hypothesize whether the missing data influences the ob-
served data in any way before choosing a solution approach.

Example 4. As a toy example, consider that physical measurements were made of Olympic
athletes and the latter information was not recorded. Then any analysis based on this sample
will be subject to selection bias.

Let Xobs be the observed entries in X and let Z = (y,X), Zobs = (y,Xobs). Let R be an
indicator matrix with ijth entry 1 if xij is missing.

Data is missing at random (MAR) if Pr(R |Z, θ) = Pr(R |Zobs, θ), where θ is a parameter
for the distribution of R.

Data is missing completely at random (MCAR) if Pr(R |Z, θ) = Pr(R |θ), where θ is
again a parameter for the distribution of R.

Example 5. If a patient’s sickness measurement was not taken because she was too sick,
then that observation would not be MAR or MCAR.

Here are some workarounds if data is MCAR:

• If some of the predictors have missing entries, then we can discard the corresponding
observations if they are relatively small in number.

• Another option is to impute: fill in some reasonable values at these locations in the
dataset. This is a popular approach in many settings.

• Depend on an algorithm such as EM to deal with missing values in the training phase.

Note 4. For tree-based methods, if the predictor with missing entries Xj is categorical, then
we can just make a new category called ‘missing’ and proceed. Another way to deal with
missing entries is to not consider them in the binary partitioning step. Further, during tree
construction, we can track surrogate variable and split choices that mimic the original splits.
This helps when during prediction, the new feature vector also has missing entries, then the
surrogate variables and splits can be used.

7

2 Adaboost and Gradient Boosting

This is a method that combines the outputs of many weak classifiers in a way that has very
good predictive performance, both for regression and classification. A weak classifier is one
which is only slightly better than random guessing.

Lets directly jump into a boosting algorithm called Adaboost.M1. Let there be 2 classes
such that Y ∈ {−1, 1}. We will use G(X) to represent a classifier2.

Intuitively boosting in this setting applies the weak classification algorithm on modified
copies of the original training data producing classifiers Gm(x) for m = 1, ...,M . The final

classifier is G(x) = sign
(∑M

m=1 αmGm(x)
)

. See Figure 5 for a schematic and Figure 6 for

the algorithm.

Figure 5: Adaboost.

2Notation: we had used G to represent qualitative output variable before, here we are using it as a
classification function.

8

Figure 6: Adaboost.M1 algorithm.

Example 6. Consider a synthetic data setup: Y = 1 if
∑10

j=1X
2
j > 9.3 and 0 otherwise. The

Xjs are independent standard Gaussians. Let N = 2000. The weak classifier is a two-node
classification tree (also called a stump). As shown in Figure 7, the performance of the stump
is 45.8%, and a 244-node tree is 24.7%, whereas boosting reaches 5.8% in 400 iterations.

2.1 Why does Boosting Work?

Boosting works because it fits an additive model with exponential loss.

In particular, it sequentially adds a new basis function (Gm) without adjusting the parame-
ters and coefficients of those that have already been added (αj, Gj for j = 1, ..,m− 1).

A general version of this stagewise additive model fitting is shown in Figure 8.
For Adaboost.M1, L(y, f(x)) = exp(−yf(x)). Hence, we solve

(βm, Gm) = arg min
β,G

N∑
i=1

exp(−yifm−1(xi)) exp(−βyiG(xi)).

From manipulating this expression a bit (we will not do that here), Adaboost.M1 can be
seen as equivalent to forward stagewise additive modeling, which we know are good predictive
models. A slight difference is that Adaboost is not minimizing training-set misclassification
error (see Step 2(a) in figure 6 where no loss criteria is specified).

9

Figure 7: Boosting on toy data.

Figure 8: General stagewise fitting. Here b(xi; γ) is a basis function.

10

Example 7. A boosted tree is a sum of scaled trees:

fM(x) =
M∑
m=1

T (x; Θm).

We would like to solve the following step in the forward stagewise procedure:

Θm = arg min
Θm

M∑
i=1

L(yi, fm−1(xi) + T (xi; Θm)),

where Θm = {Rjm, γjm}Jm1 corresponds to the regions and the constants of the next tree
given the current model fm−1(x). Finding the regions is difficult, while finding constants is
relatively straightforward:

γ̂jm = arg min
γjm

∑
xi∈Rjm

L(yi, fm−1(xi) + γjm). (1)

We get Adaboost with trees (Figure 6) when the problem is a 2-class classification problem
with exponential loss function.

Some advantages of tree methods are sacrificed by boosting: computational speed, in-
terpretability and robustness against mislabeling of training data. Gradient boosted (tree)
models attempt to mitigate these issues.

In fact, we will focus on speed below. When the loss function is general (not just least
squares or exponential), performing stagewise boosting is computationally difficult, so we
use gradient boosting as a way to get around this.

2.2 Gradient Boosted Models (GBMs)

Lets now motivate gradient boosting by thinking about gradients in a generic problem. Say
L(fm) =

∑N
i=1 L(yi, fm(xi)). Instead of thinking of function fm, lets think of vector fm ∈ RN ,

where fm = [fm(x1), ..., fm(xN)]T .
We can think of these as N numbers that need to be set to minimize L(fm). And there is

a family of methods (actually gradient based methods) that do this by iteratively updating
fm from fm−1 using gradient information.

For example, there is a numerical method called steepest descent which does the following:

• Computes gm ∈ RN such that

gim =

[
∂L(yi, f(xi))

∂f(xi)

]
f(xi)=fm−1(xi)

.

11

• Computes step length ρm such that

ρm = arg min
ρ
L(fm−1−ρgm).

• Then updates fm = fm−1−ρm gm and repeats.

The intuition behind steepest descent is that −gm is the local direction in RN that
decreases the objective L(fm) from the current point fm−1.

Of course, these N numbers in vector fm are dependent on each other through a model,
such as a tree. This brings us to the next idea: building a tree (or any other model) that
approximates these numbers (fm).

Tree predictions T (xi; Θm) are analogous to components of the negative gradient. And
thus the N numbers are constrained to be predictions of a tree.

If we find such a tree, then finding the γjm is similar to finding ρm above. In the former,
we can think of doing Jm line searches, one for each region.

So the key idea is to induce a tree T (x; Θm) at the mth iteration whose predictions are
close to the negative gradient , say by using a least squares fit. Once the tree is fit, the
constants in each region are fit using Equation 1.

Gradients for commonly used loss functions are given in Figure 9.

Figure 9: Gradients.

Figure 10 presents the gradient tree-boosting algorithm for regression, which summarizes
what we discussed above.

Note 5. The key parameters for this method are: (a) the number of iterations M , and (b)
the size of trees Jm,m = 1, ..,M .

12

Figure 10: Gradient boosting algorithm for trees.

2.3 Gradient Boosting for Classification

For classification, K trees are fitted at each iteration. Tree Tkm is fit to its negative gradient
vector gkm which component wise is given as:

−gikm =

[
∂L(yi, f1(xi), ..., fK(xi))

∂fk(xi)

]
f(xi)=fm−1(xi)

.

3 Summary

We learned the following things:

• Tree-based methods.

• Idea of boosting to get better predictive performance.

A Sample Exam Questions

1. What is Gini index in the context of a classification-tree?

13

2. What are the different models of missing data?

3. Describe the Gradient Boosted Tree algorithm. What is the use of gradients?

B Loss Functions

In the classification setting, loss function L should ideally penalize incorrect classifications.
A generalized notion of this is to penalize negative margins (margin is defined as yf(x))
instead of misclassifications. See Figure 11 for some examples.

Example 8. Misclassification loss L(y, f(x)) = 1[yf(x) < 0] where 1[·] is an indicator
function (takes value 1 when the argument is true).

Figure 11: Loss functions for classification vs margin.

A similar set of loss functions for regression are shown in Figure 12.

C Prediction Models

Here is a table (Figure 13) that shows the relative merits of various prediction models.

14

Figure 12: Loss functions for regression vs y − f(x).

Figure 13: List of prediction models.

15

	Tree-based Methods
	Regression Trees
	Classification Trees
	Issues with Trees
	Missing Data

	Adaboost and Gradient Boosting
	Why does Boosting Work?
	Gradient Boosted Models (GBMs)
	Gradient Boosting for Classification

	Summary
	Sample Exam Questions
	Loss Functions
	Prediction Models

