
Lecture 11

IDS575: Statistical Models and Methods
Theja Tulabandhula

Notes derived from the book ‘Elements of Statistical Learning’ [2nd Ed.] (Sections 14.3,14.5-14.7)

We will discuss two unsupervised learning methods: clustering and principal components.

1 Unsupervised Learning with Clustering

The idea of clustering is to segment observations into separate sets such that the obser-
vations in the same set are closer to each other according to a metric/measure compared to
observations in other sets.

Note 1. We do not necessarily have to work with observations. Even information about
how similar each observation is to other observations is enough to cluster them.

Thus, a notion of dissimilarity (or similarity) is key to cluster analysis. This is typically
defined by an expert using domain knowledge, and is not data driven.

1.1 Defining Dissimilarity

Dissimilarity can be represented using a N × N matrix D, where N is the number of ob-
servations (e.g., xi for i = 1, ..., N). Each entry of this matrix dii′ is the similarity between
observation i and observation i′.

Note 2. If we have the similarity value between two observations, we can convert it to a
value dissimilarity by using a function such as 1− z. For example, if similarity is 0 ≤ s ≤ 1,
then dissimilarity can be defined as 1− s.

One way to define dissimilarity is to define it coordinate wise. That is, dissimilarity

D(xi, x
′
i) = dii′ =

p∑
j=1

dj(xij, xi′j),
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where dj(xij, xi′j) is the coordinate wise dissimilarity1.

Example 1. For example, dj(xij, xi′j) = (xij − xi′j)2.

Example 2. Define correlation between standardized observations xi and xi′ as:

ρ =

∑p
j=1 xijxi′j√∑p

j=1 x
2
ij

∑p
j=1 x

2
i′j

.

This correlation (similarity/dissimilarity) information can be used to cluster. In fact,
this is equivalent to defining clustering using squared distance because:

p∑
j=1

(xij − xi′j)2 ∝ 2(1− ρ).

Example 3. For categorical variables, you can define dj(xij, xi′j) using exogenous informa-
tion about how one category is different from another.

Specifying dii′ is generally very important compared to the clustering method of choice.

1.2 Algorithms for Clustering

There are two main ways to cluster:

• optimization formulations (there is no statistical or probability distribution)

• mixture models (like Gaussian mixtures)

Since we have looked at mixture models before, lets investigate the optimization formu-
lation route. Here, we want to find the cluster label of each observation in our dataset given
the dissimilarities matrix D. This cluster labeling should minimize some loss.

Example 4. An example loss function is W (C) = 1
2

∑K
k=1

∑
C(i)=k

∑
C(i′)=k d(xi, xi′), where

we are optimizing for cluster labels given by C(i) for i = 1, ..., N . This loss function is high
if observations that are not close in similarity are assigned to the same cluster.

Note 3. Optimizing the cluster assignments over a loss function such as the above is typically
a difficult problem. Enumeration is not possible for even small datasets. Hence iterative
greedy methods are our only computationally tractable choice.

1One can question why dissimilarity in each attribute should be added equally. There is no right answer
here.
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In particular, lets look at the k-means clustering method. Assume that all Xj are quan-
titative. Let dii′ = ‖xi − xi′‖22. Then, W (C) can be written as:

W (C) =
K∑
k=1

Nk

∑
C(i)=k

‖xi − x̄k‖22.

Here, x̄k is the mean of the kth cluster and Nk is the number of observations in the kth

cluster.
By noting that x̄S = arg minm

∑
i∈S‖xi −m‖22, we can solve for cluster assignments by

solving the following problem:

min
C,{mk}K1

K∑
k=1

Nk

∑
C(i)=k

‖xi −mk‖22.

The above can be minimized by alternative over C and the {mk} variables, giving us the
Algorithm shown in Figure 1.

Figure 1: The k-means clustering method.

The EM algorithm for Gaussian mixture model is closely related to the k-means algo-
rithm. The E-step finds soft assignments (recall the q(|x) conditional probability values) of
observations to mixture components. The M-step finds the mixture parameters given the
soft assignments. If we assume K mixture components with covariances σ2I, then given
mixture soft assignments, the likelihood of data is proportional to Euclidean distance to the
mixture center. This is very similar to the k-means method above.

A variation of k-means, called k-medoids, extends it to non-Euclidean dissimilarity mea-
sures. The Algorithm is given in Figure 2. Other than replacing the squared dissimilarity
measure, an additional restriction imposed here is that each cluster center has to be one of
the observation itself.
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Figure 2: The k-medoid clustering method.

Note 4. The choice of K: Larger K implies a lower objective value. Hence, as a heuristic,
we can search for that K for which the decrease in the objective drastically changes from
large values to small values. This is known as identifying a kink in the objective versus K
plot.

Note 5. One issue with k-means and k-medoids is that empirically, the clusters may change
drastically as K is changed. This does not happen for a different clustering method called
hierarchical clustering.

Hierarchical clustering requires user to specify a dissimilarity measure between groups of
observations.

It produces a hierarchical representation of clusters, where clusters at one level are ob-
tained by splitting the clusters one level above (divisive) or merging the clusters from one
level below (agglomerative).

Such cluster representations can be represented as trees with nodes representing clusters.
Sometimes these hierarchical clusters have a monotonicity property: dissimilarity between
merged clusters is monotonically increasing with the level of the merger. In terms of plot,
the height of a node can be proportional to the dissimilarity of its children nodes. This is
called a dendrogram.

Note 6. Hierarchical clustering will impose a hierarchical representation whether such pat-
tern exists in the dataset or not.

For agglomerative clustering, the following are some measures for dissimilarity between
groups:
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• Single Linkage (SL): dSL(G,H) = mini∈G,i′∈H dii′ .

• Complete Linkage (CL): dCL(G,H) = maxi∈G,i′∈H dii′ .

• Group Average (GA): dGA(G,H) = 1
NGNH

∑
i∈G

∑
i′∈H dii′ .

Note 7. SL has a tendency to combine observations linked by a series of close intermediate
observations, and this phenomena is called chaining.

2 Principal Components

Recall that we used principal components to understand ridge regression. So, what are
these?

Intuitively, they are projections (linear approximations) of data (xi ∈ Rp for i = 1, .., N)
that are uncorrelated with each other and capture data variance in order.

For simplicity subtract from each observation a constant vector defined as x̄ = 1
N

∑N
i=1 xi.

Say we want a rank q < p linear approximation to this data. This means, that we want
for each vector xi an equivalent q-dimensional vector λi such that a linear transformation
of xi is close to λi for all i. Let Vq be a p × q-dimensional matrix with q orthogonal unit
column vectors.

It turns out that Vq VT
q is called a projection matrix that maps xi to a rank q recon-

struction of itself.

The search for Vq (λi = VT
q xi) is done by minimizing reconstruction error:

min
Vq

N∑
i=1

‖xi −Vq VT
q xi‖22.

The matrix Vq VT
q projects xi onto the columnspace of Vq, which is of rank q.

The solution to the above problem is given by taking the SVD of X (N ×p-dimensional),
i.e., X = U D VT 2and set Vq to be equal to the first q columns of V.

2Assume that the entries of the diagonal matrix D are ordered |d1| ≥ |d2| ≥ ....
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The columns of U D are called the principal components of X.

The N λis are given by the first q principal components (the first q columns of U D).

Example 5. One and two dimensional principal components are shown in Figures 3 and 4
respectively.

Figure 3: The 1-dimensional principal components of an example 2-dimensional dataset.

Figure 4: The 2-dimensional principal components (right) of an example dataset.

There is an interesting property that principal components capture with regard to vari-
ance in the data. For example, the N -dimensional vector (linear combination) X v1 has the
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highest variance among all linear combinations of columns of X. Similarly X v2 has the next
highest variance.

Example 6. They capture low dimensional aspects of the data well. For example, consider
the 16-dimensional images of the number ‘3’ in Figure 5.

Figure 5: The handwritten ‘3’ dataset.

Note 8. Kernel PCA computes principal components with the kernel matrix and is more
flexible than using the gram matrix (XT X = U D2 UT ).

2.1 Spectral Clustering

The idea here to cluster, taking into account a different metric to define dissimilarity/simi-
larity.

Note 9. The name spectral represents the use of eigenvalues of matrices (such as those based
on the dissimilarity matrix).

Example 7. For example, it is difficult to cluster the points shown in Figure ?? (top left)
using k-means.

Say, we have N observations and let dii′ be the Euclidean distance between observation
xi ∈ Rp and observation xi′ . We will convert the dissimilarity to a similarity metric as:
sii′ = exp(−dii′/c) for some c > 0.
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Figure 6: First two principal components and representative observations (corresponding
to red circles on the left plot). The first component seems to encourage longer lower tail and
the second encourages character thickness.

Figure 7: Evidence that principal components capture correlation. If you randomly scramble
ech column of X, less variance is captured in the lower principal directions.

We create a graph with observation indices as nodes and edge weights sii′ . With this, we
phrase a graph partitioning problem: break the graph into pieces such that edges between
different clusters have low weight.

We can optionally do some preprocessing on the similarity matrix (such as setting low
values to 0). Let this processed matrix be W (we will call it the weighted adjacency matrix ).
Spectral clustering has the following steps:
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Figure 8: Spectral clustering example containing three concentric circular clusters with 150
points each.

• Compute G as a diagonal matrix with weighted degree value gi =
∑

i′ wii′ for each i.

• Compute the un-normalized graph Laplacian as L = G−W.

• Find eigenvectors the Z (N ×m dimensional) corresponding to the m smallest eigen-
values excluding 0.

• Use k-means to cluster the rows of Z to get a clustering of the original dataset.

Example 8. See Figure 8 for a visualization of how the smallest eigenvectors capture cluster
information. The nodes of the graph were only connected to 10 nearest neighbors.

Why does this work? For any vector f , f L f =
∑N gif

2
i −

∑N
i

∑N
i′ fifi′wii′ =

1
2

∑N
i

∑N
i′ wii′(fi − fi′)2. This takes small values for those vectors whose coordinates have
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close values if wii′ is large. Eigenvectors can be defined using this product as well. It turns
out that if there is a single connected component, then 1 vector corresponds to the unique
0 eigenvalue. If there are more than one connected components, then there will be multiple
such indicator eigenvectors corresponding to the 0 eigenvalue. In reality, this leads to the
heuristic of finding smallest eigenvalues.

3 Summary

We learned the following things:

• Clustering methods: k-means and k-medoid.

• Principal components.

A Sample Exam Questions

1. What is the relation between k-means clustering and the EM algorithm for Gaussian
mixture models?

2. Why do we cluster the left singular vectors corresponding to large singular values
(in principal components) compared to clustering eigenvectors corresponding to small
eigenvalues (in spectral clustering)?
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