
Lecture 12

IDS575: Statistical Models and Methods
Theja Tulabandhula

1 Course Evaluation

• You should have received an email with subject line: “UIC Student Evaluation of
Teaching [Subject Code and Number] [Instructor Name] [Semester, Year].”

• Some reasons to submit feedback are:

– Positive feedback helps keep industry relevant content.

– Helps improve the course offering to meet the needs of the students in the future
and strengthen the degree programs at UIC.

• Pleas do submit before the deadline!
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Notes derived from the course material titled “Time Series” (2010) and “Applied Time Series Anal-
ysis” (2010)

We will look at a brief overview of time series modeling.

2 Time Series and Supervised Learning

The idea of time series is to capture dependence across observations. So far, we have not
modeled any dependency across examples (say (xi, yi) and (xj , yj)) in a dataset. We will now
explicitly model this.

Example 1. One way to measure dependency is via correlation.

Note 1. Because we want to model dependency across observations, the ordering of observations
becomes important.

Time series models are applicable in many realistic settings, including:

• Demographic projections

• Financial analysis

• Dynamics of viral media (e.g., view-count of a youtube video)

• Speech and video

• ...

While supervised learning is a broad area, the emphasis is typically on predictive ability and not
on modeling dependence across observations. One can certainly model dependencies in a supervised
learning setting (say by casting an appropriate maximum likelihood problem). Although, the
collection of techniques that explicitly do this have been historically put under the time series
modeling umbrella.

Note 2. Also, while the concept of input and output variables is important in supervised learning,
it is less important, or even ignored, in time series modeling.

Example 2. Time series of lap times of a Nascar driver is shown in Figure 1.
The various phenomena that we care about with time series modeling include:

• finding trends and seasonality,

• dependence across time, and

• properties of random fluctuations around trend and seasonality patterns.
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Figure 1: An example of a time series realization.

2.1 Moments vs Distributions

We want to model dependencies across observations. Lets denote random variable W1 for the first
observation, W2 for the second observation and so on. Say we have N observations.

Note 3. A sequence of random variables is also called a stochastic process.
We could define a parametric joint distribution of these random variables as:

Pθ(W1, ..,WN ).

The issue with this is that it may be very difficult to specify such a parametric model. A slightly
simpler modeling approach is to only focus on moments, which are functions such as E[Wi] and
cov(Wt+τ ,Wt) etc.

A sequence of random variables is called weakly stationary if the following conditions hold:

• E[Wt] = µ is a constant.

• cov(Wt+τ ,Wt) = γτ <∞ is a function that only depends on the relative lag and not on the
absolute index t.

Note 4. These are okay assumptions to make once the predictability using features has already
been accounted for. In other words, roughly speaking, first do supervised learning and then apply
time series modeling on the residuals.
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Note 5. Check: (a) var(Wt) = γ0, and (b) γ−τ = γτ .

The function γτ is called the autocovariance function. The function ρτ = γτ/γ0 is called the
autocorrelation function.

Note 6. A sequence W1, ...,WN is called white noise if E[Wt] = 0 and E[W 2
t ] = σ2. If the Wt are

independent and identically distributed, then they are sometimes called i.i.d noise.

Example 3. An example of a non-stationary time series is as follows: Let Wt be a white noise
sequence. Let S0 = 0 and St = W1 +W2 + . . .+Wt. Then the sequence S0, S1, ... is called a random
walk. We can check that cov(St, St+τ ) = tσ2.

Why stationarity? Well, it allows us to average. We are only observing one realization of each
random variable. Still, we are allowed to average the values of these realizations across (time).

Example 4. Sample autocorrelation and sample autocovariance functions can be estimated similar
to estimating sample mean, which we have seen before.

How do we estimate seasonality and trend effects? Well, there are approaches that filter out
“noise” such that trends or seasonality patterns remain. We will skip the details of these techniques
for now.

3 The Autoregressive Moving Average (ARMA)Model

First we describe two linear time series models: the autoregressive model and the moving average
model.

By linearity, we mean that the random variable at time t is linearly related to other random
variables.

3.1 Autoregressive (AR) Model

An autoregressive (AR) model assumes that the random variable at time t is related to the random
variables before time t. For instance, an AR(1) model is written as follows:

Wt = φWt−1 + εt,

where εt is a white noise random variable with var(εt) = σ2.

If εt is independent of Wt−1,Wt−2, ..., then the sequence is Markovian. That is,
P (Wt|Wt−1,Wt−2, ...) = P (Wt|Wt−1).
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If we repeatedly back-substitute, we get the following expression:

Wt = εt + φεt−1 + φ2εt−2 + φt−1ε1 + φtW0.

For this sum to be finite for any realization (so that stationarity holds), we need |φ| < 1.

Example 5. The mean of the tth random variable in an AR(1) model is:

E[Wt] =

t∑
j=0

φjE[εt−j ] = 0.

The autocovariance function is:

γτ = cov(Wt+τ ,Wt)

= E[
t+τ∑
j=0

φkεt+τ−j

t∑
k=0

εt−k]

≈ σ2
∞∑
k=0

φk+τφk

= σ2φτ
∞∑
k=0

φ2k =
σ2φh

1− φ2
.

3.2 Moving Average (MA) Model

Say Wt = ctεt+ ct−1εt−1 + ..., where εt is white noise. This is called a moving average (MA) model.
Then γτ for the Wt time series is given by:

γτ = σ2
∑
t

ctct+τ .

More specifically, a MA(q) model would be:

Wt = θ0εt + θ1εt−1 + ...+ θqεt−q.

The mean of MA(q) would be E[Wt] = 0.
The covariance would be:

γτ = σ2
q−τ∑
t=0

θtθt+τ ; 0 ≤ τ ≤ q.

3.3 Combining AR and MA

We can combine to two models above to get the following model:

Wt − φ1Wt−1 − ...− φpWt−p = εt + θ1εt−1 + ...+ θqεt−q,

where εt represents white noise.
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Why do we combine? Because, MA and AR(1) capture certain covariances, but not all. For
example, for AR(1), the covariances are all determined using a single parameter. For MA(q), the
number of parameters is q.

In terms of notation, we can compactly write this as:

φ(B)Wt = θ(B)εt,

where φ(B)Wt = Wt − φ1Wt−1 − ...− φpWt−p, similarly for θ(B)εt.

Note 7. B is a shorthand symbol for the backshift operation. For example, BWt = Wt−1 and
BkWt = Wt−k.

Not all coefficients can go into the above model equation. In particular, we will need the
following conditions:

• The roots of the polynomial θ(B) are different from the roots of the polynomial φ(B) (if this
was not true, terms would cancel out on both sides).

• φ(B) 6= 0 for all |B| ≤ 1 (allowing B to be a complex number). This ensures a property
called causality (Wt only depends on variables before time t)

• θ(B) 6= 0 for all |B| ≤ 1 (allowing B to be a complex number). This ensures a property
called identifiability (otherwise there are multiple θ coefficients that correspond to the same
autocovariance values.)

• Ultimately, we are writing Wt = ψ(B)εt, where ψ(B) = θ(B)/φ(B). We need to ensure that
this polynomial is nice (it will have infinite terms, but hopefully the coefficients are small).

• We will also assume for simplicity that φ(0) = θ(0) = 1.

3.4 Estimation

How does one estimate all these parameters? How to determine p and q? The estimation of
both these is based on covariance or correlation estimates.

Example 6. For example for MA(q), if you plot the covariance values for different τ values, you
will observe that for τ > q, the covariance will be nearly zero.

Example 7. For AR(p), there is another quantity called the partial autocorrelation function, that
can be plotted to determine p. This is defined as:

φ11 = corr(W1,W0)

φττ = corr(Wτ −W τ−1
τ ,W0 −W τ−1

0 ), τ ≥ 2,

where W τ−1
τ is the regression of Wτ on (Wτ−1, ...,W1) and W τ−1

0 is the regression of W0 on
(W1, ...,Wτ−1). Seems complicated, but it just ensures that beyond p, the plot of partial auto-
correlation dies down.
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Example 8. Estimation of the parameters of, say, an AR(p) model can be done using a spe-
cific method of moments technique called the system of Yule-Walker equations. In general, such
estimation can be done using the method of maximum likelihood as well.

Note 8. In the literature, you may come across a methodology called the Box-Jenkins approach,
which describes the steps relating to estimating p and q and then estimating the model parameters
and then testing their validity.

Note 9. There is another model called ARIMA which just means that you may have to differ-
ence the time series a few times before fitting an ARMA model. Differencing means subtracting
successive values.

4 Summary

We learned the following things:

• Relation between time series models and supervised learning.

• The Autoregressive Moving Average (ARMA) model.

• There are many time series specific techniques beyond what we saw here. For instance, time
domain and frequency domain methods, methods based on distributional assumptions etc
are all very useful to know when dependency between observations is a key aspect of your
dataset.

A Sample Exam Questions

1. In time series models, why do we focus on moments of the distribution rather than the
distribution itself?

2. What are the key differences between an autoregressive (AR) model and a moving average
(MA) model?

B List of Topics

1. Expectation Maximization

2. Sampling from the posterior

3. Generalized additive models

4. Tree based methods

5. Classification and regression trees, their issues

6. Missing data

7. Adaboost
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8. Gradient boosting models

9. Interpretation using relative importance and partial dependence plots

10. Random Forests and bagging

11. MARS

12. SVMs and the dual formulation

13. The kernel trick

14. Association rules

15. Clustering: dissimilarity and algorithms for clustering

16. Principal components

17. Spectral clustering

18. Basics of time series
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