IDS 576: Assignment 4

Turn in solutions as a pdf+.ipynb on Blackboard.

Note: Answer the following questions concisely, in complete sentences and with full clarity.
If in doubt, ask classmates using the forum. Across group collaboration is not allowed.
Always cite all your sources.

1 Factorization I (5pt)

Let A be a random variable (RV) with support {0,1,2}. Similarly, let B,C and D be
random variables with supports {0,1}, {1,2,3} and {10,20}.

1. Write down the joint distribution of A, B, C' and D in a factored form. How many
numbers (parameters) are needed to fully specify this joint distribution? Write
down all factorizations that are possible for P(A, B,C') and P(A, B).

2. If we know that P(A|B,C, D) = P(A|B) and P(C|D) = P(C), then what is the
number of parameters needed to specify the join distribution P(A, B,C, D)?

3. If we know that P(B,C, D) respects DAG B — C — D, then does it imply
P(C|B,D) = P(C|B)?

4. If we know that P(A, B,C,D) = P(A)P(B)P(C)P(D), how many parameters are
needed to represent the joint distribution?

2  Factorization II (5pt)

Let X; for ¢« = 1,2,3 be an indicator random variable for the event that a coin toss
comes up heads (happening with some probability p). Assume X; are independent. Let
Zy = X1 ® X5 and Zs = Xy @ X3 where @ denotes the XOR (exclusive OR, see https:
//en.wikipedia.org/wiki/Exclusive_or) operation.

1. Show the computations of the following: P(Xs, X3|Z5 = 0) and P(X,, X5|Z5 = 1).

2. Draw a DPGM and write down the corresponding conditional probability tables.
What independence relationships are captured by the DPGM?

3. Draw a UPGM and write down the corresponding factors/potentials. What inde-
pendence relationships are captured by the UPGM?

4. Under what conditions on p would Z5 L X5 and Z; 1. X;? Are these independences
captured by the above two graphs? Explain.

3 D-separation (5pt)

Let A ={Xs}, B ={X3, X5} and C = {X;, X¢}. Let the DPGM be as shown in Figure 1.
Is AL B|C 7?7 Justify your answer.


https://en.wikipedia.org/wiki/Exclusive_or
https://en.wikipedia.org/wiki/Exclusive_or
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Figure 1: DPGM for Question 3.

4 Inference on DPGM (10pt)

Consider the DPGM in Figure 2 that represents a maintenance sensor network for a
machine that manufactures two goods. Each G; represents the health of a component
in a machine. G; = 1 if the component is running and G; = 2 if the component failed.
(G1 is the common component needed for both goods whereas GG, and G3 are specific
the goods. Also, Gy and G3 can be influenced by the failure of G;. X, is a continuous
random variable that measures the quantity of each good type produced by the machine,
which is high if the component is running and low if it is not. The conditional probability
distributions are:

[1/2,1/2]
0.8, i € {2,3}
N(X;|p = 100, 0% = 10)
N( Xl = 10, 0% = 20)

P(Gh)

P(G; = G1|Gy)
1)

2)

P(X;|G; =
P(X,|G: =

1. If we observe Xy = 100, what is the posterior belief on G;. That is, compute
P(G1]| X5 = 100) , and show your work.

2. If both X, and X3 are observed, then what is P(G1|X3, X3)? In particular, what
are the values when the observations are: (a) Xy = 100 and X3 = 100, (b) X, = 10
and X3 = 100, and (c¢) X = 10 and X3 = 10. Explain your answers.

5 Belief Propagation Implementation (25pt)

Implement the Sum-Product version of Belief Propagation in Python (using the networkx
package to represent the factor graph) to compute the marginal distribution P(A =

2


http://networkx.readthedocs.io/en/latest/
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Figure 2: DPGM for Question 4.

a, B = b) Ya,b for the factor graph shown in Figure 3. That is, use the graph object
from networkx to define the factor graph and implement the Sum-Product algorithm to
pass messages. The support of the corresponding random variables A, B, C, D and E are
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Figure 3: Factor Graph for Question 5.

{1,2}. The factors are as follows:

1. fi(a,b) = a*b (for example, fi(a =1,0=2) =1%2=2).



Report the marginal distribution (plot/table) as well as your implementation (py/ipynb).
Additionally,

1. Briefly describe how you implemented the algorithm (data structures and code
organization).

2. What is the complexity (number of additions and multiplications if any) of com-
puting an outgoing message from a variable node given that it is connected to F
factors and has a support of k values?

3. Similarly, what is the complexity of computing an outgoing message from a factor
node given it is connected to V' variables each of which have a support of k values.?

6 Metropolis-Hastings Sampling (15pt)

Let X ~ 7 be a distribution. To create a Monte Carlo estimate of the expectation of some
function of X, i.e., E;[f(X)], we will do Metropolis-Hastings (MH) MCMC sampling. For
this, we start with an initial x = xg and do the following;:

o 2/~ gl ).

m(z)g(z'|x) )

o o =min(l, JEA G

e With probability a accept =’ as the next sample z;.
e Set x =z’ and repeat.
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An example of the proposal distribution is g(z'|z) =

1. Implement the MH sampler for estimating E[(X?+ 10)z] when 7(z) = \/%e_(“"_g)Q.
Choose a suitable proposal distribution.

2. Plot the estimate as a function of the number of samples used in the estimation.

7 Gibbs Sampling (15pt)

Let the distribution 7(z) = S,°, MN (2| = vk, 0 = 0.01k%), with some arbitrarily
chosen A;’s that sum up to 1. Implement the Gibbs sampling procedure to estimate the
mean. Report the mean values computed using the first 500 samples and the next 5000
samples.
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