
Advanced Prediction
Models

Deep Learning, Graphical Models and Reinforcement
Learning

Today’s Outline

• Python Walkthrough

• Feedforward Neural Nets

• Convolutional Neural Nets

• Convolution

• Pooling

2

Python Walkthrough

3

Python Setup (I)

• Necessary for the programming portions of the
assignments

• More precisely, use Ipython (ipython.org)

4

Python Setup (II)

• Install Python

• Use Anaconda
(https://www.continuum.io/downloads)

• Python 2 vs Python 3 (your choice)

5

https://www.continuum.io/downloads)

Python Setup (III)

• Install Ipython/Jupyter

• If you installed the Anaconda distribution, you are
all set

• Else use the command on the command-line

6

or

Python Setup (IV)

• Run Jupyter (or ipython)

• Your browser with open a page like this

• Start a new notebook (see button on the right)

7

Python Setup (V)

8

Press

shift+enter, or

ctrl+enter

cells
(code)

Python Setup (VI)

• Global variables are shared between cells

• Cells are typically run from top to bottom

• Save changes using the save button

9

Python Review

• General purpose programming language

• 2 vs 3 (3 is backward incompatible)

• Very similar to Matlab (and better) for scientific
computing

• It is dynamically typed

10

Python Review: Data Types

11

Python Review: Data Types

12

Python Review: List and Tuple

13

Python Review: Dictionary & Set

14

Python Review: Naïve for-loop

15

Python Review: Function

16

Python Review: Numpy

17

Python Review: Numpy

18

Python Review: Scipy Images

19Additional resources: 1. http://cs231n.github.io/python-numpy-tutorial/

2. http://docs.scipy.org/doc/scipy/reference/index.html

Some Relevant Packages in Python

• Keras

• An open-source neural network library running on
top of various deep learning frameworks.

• Tensorflow

• A programming system to represent computations
as graphs

• Two steps:

• Construct the graph

• Execute (via session)

20

Questions?

21

Today’s Outline

• Python Walkthrough

• Feedforward Neural Nets

• Convolutional Neural Nets

• Convolution

• Pooling

22

Feedforward Neural Network

• Linear model 𝑓(𝑥,𝑊, 𝑏) = 𝑊𝑥 + 𝑏

• A feedforward neural network model will include
nonlinearities

• Two layer model

• 𝑓 𝑥,𝑊1, 𝑏1,𝑊2, 𝑏2 = 𝑊2max 0,𝑊1𝑥 + 𝑏1 + 𝑏2
• Say 𝑥 is 𝑑 dimensional

• 𝑊1 is 𝑑 × q dimensional

• 𝑊2 is 𝑞 × p dimensional

• Then the number of hidden nodes is 𝑞

• The number of labels is 𝑝

• The notion of layer is for vectorizing/is conceptual

23

Nonlinearities (I)

24
1Systematic evaluation of CNN advances on the ImageNet, arxiv:1606.02228

• How to pick the nonlinearity/activation function?

Nonlinearities (II)

• Sigmoid

• Is a map whose range is [0,1]

25
1Figure: Qef, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4310325

Nonlinearities (III)

• Saturated node/neuron makes gradients vanish

• Not zero-centered

• Empirically may lead to slower convergence

26
1Figure: Qef, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4310325

𝑔1

1 + 𝑒−𝑧

𝑧 ℎ

𝜕ℎ

𝜕𝑔
𝜕𝑔

𝜕𝑧

𝜕ℎ

𝜕𝑔

Nonlinearities (IV)

• tanh() addresses the zero-centering problem. So will
typically give better results

• Still gradients vanish

27
1Figure: Fylwind, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1642946

Nonlinearities (V)

• ReLU (2012 Krizhevsky et al.)

• No vanishing gradient on the positive side

• Empirically observed to be very good

• Initialization/high learning rate may lead to
permanently dead ReLUs (diagnosable)

28
1Figure: CC0, https://en.wikipedia.org/w/index.php?curid=48817276

𝑔
max(0, 𝑧)

𝑧 ℎ

𝜕ℎ

𝜕𝑔
𝜕𝑔

𝜕𝑧

𝜕ℎ

𝜕𝑔

Is a gradient gate!

Feedforward Neural Net

• Lets focus on a 2-layer net

• Layers

• Input

• Hidden

• Output

• Node

• Nonlinearity

• Activation

29

𝑓 𝑥,𝑊1, 𝑏1,𝑊2, 𝑏2 = 𝑊2max 0,𝑊1𝑥 + 𝑏1 + 𝑏2
1Figure: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

Feedforward Net: Two Layer Model

• Number of layers is the
number of 𝑊, 𝑏 pairs

• Some questions to think
about:

• How to pick the number
of layers?

• How to pick the number
of hidden units in each
layer?

30
1CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=8201514

Feedforward Net and Backprop

• Choose a mini-batch (sample) of size B

• Forward propagate through the computation graph

• Compute losses 𝐿𝑖1 , 𝐿𝑖2 , … 𝐿𝑖𝐵 and

𝑅(𝑊1, 𝑏1,𝑊2, 𝑏2)

• Get loss 𝐿 for the batch

• Backprop to compute gradients with respect to
𝑊1, 𝑏1,𝑊2 and 𝑏2

• Update parameters 𝑊1, 𝑏1,𝑊2 and 𝑏2
• In the direction of the negative gradient

31

Feedforward Net in Python

32

Feedforward Net in Python

33

Feedforward Net in Python

34

Feedforward Net in Python

35

Feedforward Net in Python

36

FNN in the Browser

• See playground.tensorflow.org

37

Questions?

38

Today’s Outline

• Python Walkthrough

• Feedforward Neural Nets

• Convolutional Neural Nets

• Convolution

• Pooling

39

Convolutional Neural
Network

40

Similar to Feedforward NN

• Similar to feedforward neural networks

• Each neuron/node is associated with weights and a
bias

• Node receives input

• Performs dot product of vectors

• Applies non-linearity

• The difference:

• Number of parameters is reduced!

41
1Reference: http://cs231n.github.io/convolutional-networks/

How? That is the content of this lecture!

• Recall a Feedforward net:

• Get a vector 𝑥𝑖 and transform it to a score vector
by passing through a sequence of hidden layers

• Each hidden layer has neurons

• Each neuron is fully connected to previous layer

42
1Figure: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

Similar to Feedforward NN

Towards CNNs (I)

• Feedforward net:

• Can you visualize the connections for an arbitrary
neuron here?

43
1Figure: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

Towards CNNs (II)

• Consider the CIFAR-10 Dataset. Images are 32*32*3 in size

44
1Figure: http://cs231n.github.io/classification/

Towards CNNs (III)

• First fully connected feedforward neuron would have
32*32*3 weights associated with it (+1 bias
parameter)

• What if the images were 1280*800*3?

• Clearly, we also need many neurons in each hidden
layer. This leads to explosion in the total number of
parameters (or the dimension of 𝑊s and 𝑏s)

45

CNN Architecture

• We will look at it from layers point of view

• The new idea is that layers have width and depth!

• (In contrast, Feedforward NN layers only had
height)

• (depth here does NOT correspond to number of
layers of a network)

46

CNN Architecture

• View FFN layers as having width and height

47

Input Image

Hidden layer

Score vector

1Left figure: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

CNN Architecture

• The new idea is that CNN layers have depth!

• (depth here does NOT correspond to number of
layers of a network)

48

Depth

Width

Height

3D Volumes of Neurons

• Input has dimension 32*32*3 (for CIFAR-10 dataset)

• Final output has dimension 1*1*10 (10 classes)

• Previously,

49

3D Volumes of Neurons

• Input has dimension 32*32*3 (for CIFAR-10 dataset)

• Final output has dimension 1*1*10 (10 classes)

• So assuming 2 hidden layers, previously we had,

50

Input Image

Hidden layer

Score vector

Hidden layer

1Left figure: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

3D Volumes of Neurons

• Now,

• Each layer simply does this: transforms an input tensor
(3D volume) to an output tensor using some function

51
1Figure: http://cs231n.github.io/convolutional-networks/

3D Volumes of Neurons

• Now,

• Each layer simply does this: transforms an input tensor
(3D volume) to an output tensor using some function

52

CNN Layers

• Three types

• Convolutional Layer (CONV)

• Pooling Layer (POOL)

• Fully Connected Layer (same as Feedforward
neural network, i.e., 1*1*#Neurons is the layer’s
output tensor)

• Stack these in various ways

53

CNN Example Architecture

• Say our classification dataset is CIFAR-10

• Let the architecture be as follows:

• INPUT -> CONV -> POOL -> FC

• INPUT:

• This layer is nothing but 32*32*3 in dimension
(width*height*3 color channels)

• CONV:

• Neurons compute like regular feedforward neurons
(sum the product of inputs with weights and add
bias).

• May output a different shaped tensor, say,
32*32*12

54

CNN Example Architecture

• Say our classification dataset is CIFAR-10

• Let the architecture be as follows:

• INPUT -> CONV -> POOL -> FC

• INPUT:

• This layer is nothing but 32*32*3 in dimension
(width*height*3 color channels)

• CONV:

• Neurons compute like regular feedforward neurons
(sum the product of inputs with weights and add
bias).

• May output a different shaped tensor, say with
dimension 32*32*12

55

CNN Example Architecture

• POOL:

• Performs a down-sampling in the spatial dimension

• Outputs a tensor with the depth dimension the
same as input

• If input is 32*32*12, then output could be
16*16*12

• FC:

• This is the fully connected layer. Input can be any
tensor (say 16*16*12) but the output will have
only one effective dimension (1*1*10 since this is
the last layer and CIFAR-10 has 10 classes)

56

CNN Example Architecture

• POOL:

• Performs a down-sampling in the spatial dimension

• Outputs a tensor with the depth dimension the
same as input

• If input is 32*32*12, then output could be
16*16*12

• FC:

• This is the fully connected layer. Input can be any
tensor (say 16*16*12) but the output will have
only one effective dimension (1*1*10 since this is
the last layer and CIFAR-10 has 10 classes)

57

CNN Example Architecture

• So we went from pixels (32*32 RGB images) to scores
(10 in number)

• Some layers have parameters (CONV and FC), other
layers do not (POOL)

• Optimization of these parameters still for achieving
scores consistent with image labels

58

Input CONV POOL FC

The Convolution Layer (CONV)

• Layer’s parameters correspond to a set of filters

• What is a filter?
• A linear function parameterized by a tensor
• Outputs a scalar
• The parameter tensor is learned during training

• Example
• First layer filter may be of dimension 3*3*3

• 3 pixels wide
• 3 pixels high
• 3 unit filter-depth for three color channels

• We slide (convolve) the filter across the width and height
of the input volume and compute the scalar output to be
passed into the nonlinearity

59

CONV: Sliding/Convolving

60

Also see http://setosa.io/ev/image-kernels/

• We slide (convolve) the filter across the width and height of
the input volume and compute the scalar output to be passed
into the nonlinearity

1Figure: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

The Convolution Layer (CONV)

• Three things to notice

• Filters are small along width and height

• Same filter-depth as the input tensor (3D volume)

• If the input is 𝑥 ∗ 𝑦 ∗ 𝑧, then filter could be 3 ∗
3 ∗ 𝑧

• As we slide, we produce a 2D activation map

61

The Convolution Layer (CONV)

• Three things to notice

• Filters are small along width and height

• Same filter-depth as the input tensor (3D volume)

• If the input is 𝑥 ∗ 𝑦 ∗ 𝑧, then filter could be 3 ∗
3 ∗ 𝑧

• As we slide, we produce a 2D activation map

• Filters (i.e., filter parameters) will be learned during
training that ‘detect’ certain visual features

• Example:

• Oriented edges, colors, etc. at the first layer

• Specific patterns in higher layers 62

CONV: Filters

• Before we look at the patterns …

• Lets now look at the neurons themselves

• How are they connected?

• How are they arranged?

• How can we get reduced parameters?

63

CONV: Local Connectivity

• Connect each neuron to a local (spatial) region of the
input tensor

• Spatial extent of this connectivity is called receptive
field

• Depth connectivity is the same as input depth

64

CONV: Local Connectivity

• Connect each neuron to a local (spatial) region of the
input tensor

• Spatial extent of this connectivity is called receptive
field

• Depth connectivity is the same as input depth

• Example: If input tensor is 32*32*3 and filter is
3*3*3 then

• the number of weight parameters is 27, and

• there is 1 bias parameter

65

One neuron

1Figure: http://cs231n.github.io/convolutional-networks/

CONV: Local Connectivity

• All 5 neurons are looking at the same spatial region

• Each neuron belongs to a different filter

66

One neuron

1Figure: http://cs231n.github.io/convolutional-networks/

CONV: Spatial Arrangement

• Back to layer point of view

• Size of output tensor depends on three numbers:

• Layer Depth

• Corresponds to the number of filters

• Stride (how much the filter is moved spatial)

• Example: If stride is 1, then filter is moved 1
pixel at a time

• Zero-padding

• Deals with boundaries (is usually 1 or 2)

67

CONV: Stride/Zero-pad

68

Stride = 1, Zero-padding = 0

1Figure: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

CONV: Parameter Sharing

• Key assumption: If a filter is useful for one region, it
should also be useful for another region

• Denote a single 2D slice of depth of a layer as depth
slice

69

Depth Slice

1Figure: http://cs231n.github.io/convolutional-networks/

CONV: Parameter Sharing

• Then, all neurons in each depth slide use the same
weight and bias parameters!

70

Depth Slice

1Figure: http://cs231n.github.io/convolutional-networks/

CONV: Parameter Sharing

• Number of parameters is reduced!

• Example:

• Say the number of filters is 𝑀 (= Layer Depth)

• Then, this layer will have 𝑀 ∗ (3 ∗ 3 ∗ 3 + 1)
parameters

• Gradients will get added up across neurons of a
depth slice

71

CONV: Parameter Sharing

• AlexNet’s first layer has 11*11*3 sized filters 96 in
number. The filter weights are plotted below:

• Intuition: If capturing an edge is important, then important
everywhere

72
1Figure: http://cs231n.github.io/convolutional-networks/

Example: CONV Layer Computation

73Figure: http://cs231n.github.io/convolutional-networks/

The Pooling Layer: POOL

• Vastly more simpler than CONV

• Reduce the spatial size by using a MAX or similar
operation

• Operate independently for each depth slice

74

POOL: Example

• Input depth is retained

75
1Figure: http://cs231n.github.io/convolutional-networks/

POOL: Example

• Recent research is showing that you may not need a
pooling layer

76
1Figure: http://cs231n.github.io/convolutional-networks/

POOL: Example

• Recent research is showing that you may not need a
pooling layer

77

Fully Connected Layer: FC

• Essentially a fully connected layer

• Already seen while discussing feedforward neural
networks

78

CNN in the Browser

• Dataset: CIFAR-10

• http://cs.stanford.edu/people/karpathy/convnetjs/d
emo/cifar10.html

79

Summary

• Feedforward neural nets can do better than linear
classifiers (saw this for a low-dimensional small
synthetic example)

• CNN have been very effective in image related
applications.

• Exploit specific properties of images

• Hierarchy of features

• Locality

• Spatial invariance

• Lots of design choices that have been empirically
validated and are intuitive. Still, there is room for
improvement.

80

Appendix

81

Naming: Why ‘Neural’

• Historical

• Let 𝑓 𝑥 = 𝑤 ⋅ 𝑥 + 𝑏

• Perceptron from 1957: ℎ(𝑥) = ቊ
0, 𝑓(𝑥) < 0
1, otherwise

• Update rule was 𝑤𝑘+1 = 𝑤𝑘 + 𝛼(𝑦 − ℎ(𝑥))𝑥 similar
to gradient update rules we see today

• Passing the score through a sigmoid was likened to
how a neuron fires

• Firing rate =
1

1+𝑒−𝑦𝑓(𝑥)

82

Naming: Why ‘Convolution’

831Figure: http://cs231n.github.io/convolutional-networks/

The name
‘convolution’

comes from the
convolution
operation in

signal processing
that is essentially
a matrix matrix

product.

Naming: Why ‘Convolution’

84Figure:https://en.wikipedia.org/wiki/Convolution#/media/File:Comparison_convolution_correlation.svg

