Advanced Prediction
Models

Deep Learning, Graphical Models and Reinforcement
Learning

Today’s Outline

* Python Walkthrough
* Feedforward Neural Nets

e Convolutional Neural Nets
 Convolution
* Pooling

Python Walkthrough

Python Setup (I)

* Necessary for the programming portions of the
assignments

* More precisely, use Ipython (ipython.org)

IPy]: Python @ .

Install - Documentation - Project - Jupyter - News : Cite - Donate - Books

IPython provides a rich architecture for interactive computing with:

m A powerful interactive shell.

m A kernel for Jupyter.

m Support for interactive data visualization and use of GUI toolkits.
m Flexible, embeddable interpreters to load into your own projects.
m Easy to use, high performance tools for parallel computing.

Python Setup ()

* Install Python

* Use Anaconda
(https: / /www.continuum.io /downloads)

* Python 2 vs Python 3 (your choice)

DOWNLOAD
ANACONDA NOW

Download for A
= 6

https://www.continuum.io/downloads)

Python Setup (lll)

* Install Ipython/Jupyter

* If you installed the Anaconda distribution, you are
all set

e Else use the command on the command-line

X bash a8 1 X bash 382

10--1-228-143:~ theja$ pip install jupyter]]

10--1-228-143:~ theja$ pip install ipython]]

Python Setup (V)

* Run Jupyter (or ipython)

-

] | _-\\I If_-\\l
y @

£
-

X bash 381 X bash 82

10--1-228-143:1ds576_code theja$ jupyter notebookl

r

* Your browser with open a page like this

— Jupyter

Files Running Clusters
Select items to perform actions on them.
v /ﬂ‘

& Lecture on Jan 11.ipynb

& |ogistic_backprop_example1.ipynb

* Start a new notebook (see button on the right)

Upload New ~

[$]

Python Setup (V)

— Jupyter untitled [

File Edit View Insert Cell Kernel Help & |Py1h0n2 O
+ xx & B 2 ¥ M B C Code 4 CellToolbar
In[]: x=1 /Ce”S
y =2 (code)
print(x+y|)

— Jupyter untited e

File Edit View Insert Cell Kernel Help & |Python2 O
+ < B 4 ¥ M B C Code : CellToolbar
In [1]: % = 1 Press
y =2 °
print (xty) shift+enter, or
3
ctrl+enter
In []:
8

Python Setup (VI)

e Global variables are shared between cells

* Cells are typically run from top to bottom

In [1]: x =1 ZJupyter untited
Y N 2 H N .
print (x+y) File Edit View Insert
New Notebook (I S "
3
Open...
In [2]: print(y+10 Make a Copy...
Rename...
12 Save and Checkpoint ¥*Y)

Revert to Checkpoint » |

y+10
Print Preview

* Save changes using the save button = Pownezda >

Trusted Notebook

Close and Halt

Python Review

* General purpose programming language
e 2 vs 3 (3 is backward incompatible)

* Very similar to Matlab (and better) for scientific
computing

* It is dynamically typed

10

Python Review: Data Types

In [1]:

X 3

y 3.0

zZ 2

print (x)
print(y)
print type(x)
print type(y)
print (x/z)
print(y/z)

3

3.0

<type 'int'>
<type 'float'>
1

1.5

11

Python Review: Data Types

|+ x +=1 #This is a comment. No unary operators (x++ will not work)
print (x)
Y **:2
print y

4
9.0

|]: a,b = True,False
mystring = 'ids676'
print a,b,mystring,'. In upper case:

+ mystring.upper()

True False ids676 . In upper case: IDS676

Python Review: List and Tuple

Dictionary, List, Tuple, Set

mylist = ['1','d", 's"]
mytuple = (5,7,6)
print mylist, mytuple

[(‘'i1', 'd’, 's'] (5, 7, 6)

mylist[0] = 'c'
mylist[l] = 'b'
mylist[2] = 'a'
mylist.append(5)

mylist.extend([7,6])
print mylist

[‘c'y "', "a@a’, 5, 7, 6]

Python Review: Dictionary & Set

mylist[:2] = 'a','a’
print mylist
print set(mylist) #a set object will have unique elements

[!al'r lal'r lal'r 5

r 1, 6]
set(['a', 5, 6, 7])

course = {} #An empty dictionary/hash-map
course[mytuple] = 'Advanced Prediction Models'
course['572'] = 'Data Mining'

print course

{(5, 7, 6): 'Advanced Prediction Models', '572': 'Data Mining'}

Python Review: Naive for-loop

for x in mylist: #A for loop
print x

=2 T I R VLR I)

Python Review: Function

Functions

import math, numpy
def softmax(z):
return (1.0/(l+math.e**(-2)))
print softmax(-20)
print softmax(numpy.asarray([-1,0,1]))

2.06115361819e-09
[0.26894142 0.5 0.73105858]

16

Python Review: Numpy

Numpy

a = numpy.array([-1,0,1])

print a,type(a),a.shape,a.dtype

b = numpy.array([[1.0,2,3],[1,2,3]])
print b, type(b), b.shape,b.dtype

[-1 0 1] <type 'numpy.ndarray'> (3,) inté64

[[1. 2. 3.]
[1. 2. 3.]] <type 'numpy.ndarray'> (2,

cl = b[l:,0:2]#note the slice indexing
print cl,cl.shape
c2= b[1l,0:2] #note the integer indexing
print c2,c2.shape

[l 1. 2.71 (1, 2)
[1. 2.1 (2,)

3) floaté64

Python Review: Numpy

print b>2, b[b>2]

[[False False True]
[False False True]] [3. 3.]

X = numpy.array([[1,2],[3,4]])

y = numpy.array([[1,1]1,[1,1]])

z = numpy.array([1,1])

print x*y #elementwise product

print x.dot(z) #matrix vector product

[[1 2]
[3 4]1]
[3 7]

print x.sum(), x.T

10 [[1 3]
[2 4]]

Python Review: Scipy Images

Scipy images

from scipy.misc import imread, imresize
matplotlib inline
import matplotlib.pyplot as plt

img = imread('uic-logo-circle-red.jpg')

Show the original image
plt.subplot(1l, 2, 1)
plt.imshow(numpy.uint8(img))
plt.show()

0
50 |
100
150
200 |
250
300
350
0 5-0 ICIIO 15;0 ZCIIO 25;0 3-CIIO 35;0

Additional resources: 1. http://cs231n.github.io/python-numpy-tutorial /
2. http:/ /docs.scipy.org/doc/scipy /reference /index.html

Some Relevant Packages in Python

* Keras
* An open-source neural network library running on
top of various deep learning frameworks.
* Tensorflow
* A programming system to represent computations
as graphs
* Two steps:
* Construct the graph
* Execute (via session)

Questions?

Today’s Outline

* Python Walkthrough
* Feedforward Neural Nets

e Convolutional Neural Nets
 Convolution
* Pooling

22

Feedforward Neural Network

* Llinear model| f(x,W,b) = Wx + b

e A feedforward neural network model will include
nonlinearities

* Two layer model

o f(x,Wy,by,W,,by) =W,max(0,W;x + by) + b,
* Say x is d dimensional

« W isd X q dimensional

* W, is @ X p dimensional

* Then the number of hidden nodes is g

* The number of labels is p
* The notion of layer is for vectorizing /is conceptual

23

Nonlinearities (l)

Name Formula Year
none y =X -

sigmoid y = 1+é_$ 1986
tanh y = Sl 1986
ReLU y = max(x, 0) 2010
(centered) SoftPlus y = In(e* 4+ 1) —In2 2011
LReLU y = max(x, ax), a =~ 0.01 2011
maxout y = max(Wix + by,Wox + bs) 2013
APL y = max(x,0) + Zle ai max (0, —x + b7) 2014
VLReLU y = max(x, ax), a € 0.1,0.5 2014
RReLU y = max(x, ax), &« = random(0.1, 0.5) 2015
PReLU y = max(x, ax), « is learnable 2015
ELU y = x, if x > 0, else a(e” — 1) 2015

* How to pick the nonlinearity /activation function?

24
'Systematic evaluation of CNN advances on the ImageNet, arxiv:1606.02228

Nonlinearities (ll)

* Sigmoid
* |s a map whose range is [O,1]

o
on

—6 -4 -2 0 2 4 6
'"Figure: Qef, Public Domain, https:/ /commons.wikimedia.org /w /index.php2curid=4310325

| fa) I I
ur

Nonlinearities (lll)

* Saturated node/neuron makes gradients vanish

1

Z g h /
s
G—— C— 0.5
dg oh oh
0z dg dg .

* Not zero-centered
* Empirically may lead to slower convergence

'"Figure: Qef, Public Domain, https:/ /commons.wikimedia.org /w /index.php2curid=4310325

Nonlinearities (1V)

* tanh() addresses the zero-centering problem. So will
typically give better results

* Still gradients vanish

— y =sinh(x)
| == y = cosh(x)
j e y = tanh(x)

L I
-10 1

"Figure: Fylwind, Public Domain, https://commons.wikimedia.org /w /index.php2curid=1642946

Nonlinearities (V)

* RelU (2012 Krizhevsky et al.)

* No vanishing gradient on the positive side

* Empirically observed to be very good

* Initialization /high learning rate may lead to

permanently dead RelUs (diagnosable)

Z

———
dg oh
0z dg

Is a gradient gatel

28
"Figure: CCO, https://en.wikipedia.org/w/index.php2curid=48817276

Feedforward Neural Net

* Lets focus on a 2-layer net

* Layers Hidden
* |nput Input

* Hidden _,
e O .\‘
utput A\
QU=
* Node \Vy,)
* Nonlinearity ./)

e Activation

f(x, Wl) bl) Wz,bz) — WZmaX(O) Wlx + bl) + bZ

"Figure: https://en.wikibooks.org /wiki/Artificial_Neural_Networks/Print_Version

29

Feedforward Net: Two Layer Model

* Number of layers is the

number of W, b pairs l l l l

* Some questions to think Input Layer
about:
* How to pick the number Hidden Layer
of layers?
* How to pick the number Output Layer
of hidden units in each
layer?

1CC BY-SA 3.0, https://en.wikipedia.org/w /index.php2curid=8201514

30

Feedforward Net and Backprop

* Choose a mini-batch (sample) of size B

* Forward propagate through the computation graph
* Compute losses L; , L; , ...L;, and

R(Wli bl' WZJ bZ)
e Get loss L for the batch

* Backprop to compute gradients with respect to

Wl’ bl’ W2 and bz
* Update parameters Wy, by, W, and b,

* In the direction of the negative gradient

Feedforward Net in Python

Feedforward neural net model

Start with an initial set of parameters randomly
h = 100 # size of hidden layer

W= 0.01 * np.random.randn(D,h)

b = np.zeros((1l,h))

W2 = 0.01 * np.random.randn(h,K)

b2 = np.zeros((1,K))

Initial values from hyperparameter
reg = le-3 # regularization strength

#For simplicity, we will not optimize this using grid search here.

32

Feedforward Net in Python

#Perform batch SGD using manual backprop

#For simplicity we will take the batch size to be the same as number of examples
num_examples = X.shape[0]

#Initial value for the Gradient Descent Parameter
step_size = le-0 #Also called learning rate

#For simplicity, we will not hand tune this algorithm parameter as well.

gradient descent loop
for i in xrange(10000):

evaluate class scores, [N x K]
hidden layer = np.maximum(0, np.dot(X, W) + b) # note, ReLU activation
scores = np.dot(hidden_ layer, W2) + b2

compute the class probabilities
exXp scores = np.exp(scores)
probs = exp_scores / np.sum(exp_scores, axis=1l, keepdims=True) # [N x K]

compute the loss: average cross-entropy loss and regqularization
corect_logprobs = -np.log(probs|[range(num_examples),y])
data loss = np.sum(corect logprobs)/num examples
reg loss = 0.5*reg*np.sum(W*W) + 0.5*reg*np.sum(W2*W2)
loss = data_loss + reg loss
if i % 1000 == O:
print "iteration %d: loss %f" % (i, loss)

33

Feedforward Net in Python

compute the gradient on scores
dscores = probs

dscores[range(num examples),y] -= 1
dscores /= num examples

backpropate the gradient to the parameters
first backprop into parameters W2 and b2
dW2 = np.dot(hidden layer.T, dscores)

db2 np.sum(dscores, axis=0, keepdims=True)
next backprop into hidden layer

dhidden = np.dot(dscores, W2.T)

backprop the ReLU non-linearity
dhidden[hidden layer <= 0] = 0

finally into W,b

dW = np.dot(X.T, dhidden)

db = np.sum(dhidden, axis=0, keepdims=True)

add regularization gradient contribution
dW2 += reg * W2
dW += reg * W

perform a parameter update
W += -step size * dW

b += -step size * db

W2 += -step size * dW2

b2 += -step size * db2

Feedforward Net in Python

Post Training

Post-training: evaluate test set accuracy

#For simplicity, we will use training data as proxy for test. Do not do this.
X test = X
y test = y

hidden layer = np.maximum(0, np.dot(X test, W) + b)

scores = np.dot(hidden layer, W2) + b2

predicted class = np.argmax(scores, axis=l)

print 'test accuracy: %.2f' % (np.mean(predicted class == y test))

35

Feedforward Net in Python

36

FNN in the Browser

* See playground.tensorflow.org

37

Questions?

Today’s Outline

* Python Walkthrough
* Feedforward Neural Nets

e Convolutional Neural Nets
 Convolution
* Pooling

39

Convolutional Neural
Network

Similar to Feedforward NN

e Similar to feedforward neural networks

* Each neuron/node is associated with weights and a
bias
* Node receives input
* Performs dot product of vectors
* Applies non-linearity

e The difference:

* Number of parameters is reduced!

How? That is the content of this lecture!

TReference: http://cs231n.github.io/convolutional-networks/

41

Similar to Feedforward NN

* Recall a Feedforward net:

* Get a vector X; and transform it to a score vector
by passing through a sequence of hidden layers

* Each hidden layer has neurons
* Each neuron is fully connected to previous layer

_ weights
inputs
X
activation
functon
12 p——
(p 0,
J

X @ activation
- ‘i’ | l
X qﬂ'

" threshold

"Figure: https://en.wikibooks.org /wiki/Artificial_Neural_Networks/Print_Version

Towards CNNs (I)

e Feedforward net:

* Can you visualize the connections for an arbitrary
neuron here?

"Figure: https://en.wikibooks.org /wiki/Artificial_Neural_Networks/Print_Version

Towards CNNs (Il)

* Consider the CIFAR-10 Dataset. Images are 32*32*3 in size

e 4 EESYT BRI
automobile EEHE‘
o Elmall WET ¥ BB
=« HESHNEEEs P
deer ’ nan
S | [e | PPN
woo i N 0 I 2 I N B
s RIS P PR ER TS TR
o N e PR -
we o B e B P S o L R

"Figure: http://cs231n.github.io/classification/

Towards CNNs (lll)

* First fully connected feedforward neuron would have
32*32*3 weights associated with it (+1 bias
parameter)

* What if the images were 1280%800%32

* Clearly, we also need many neurons in each hidden
layer. This leads to explosion in the total number of
parameters (or the dimension of W's and bs)

CNN Architecture

* We will look at it from layers point of view

* The new idea is that layers have width and depthl
* (In contrast, Feedforward NN layers only had
height)
* (depth here does NOT correspond to number of
layers of a network)

46

CNN Architecture

* View FFN layers as having width and height

Input Image

Hidden

Input

\

Score vector

Pt

o

QY

/

QOOD

AN

Hidden layer

47
TLeft figure: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

CNN Architecture

* The new idea is that CNN layers have depth!

* (depth here does NOT correspond to number of
layers of a network)

— Height

. —

/<idth

48

3D Volumes of Neurons

* Input has dimension 32%32%3 (for CIFAR-10 dataset)

* Final output has dimension 1*1*10 (10 classes)

* Previously,

put layer

input layer
hidden layer 1 hidden layer 2

49

3D Volumes of Neurons

* Input has dimension 32%32*3 (for CIFAR-10 dataset)

* Final output has dimension 1*1*10 (10 classes)

* So assuming 2 hidden layers, previously we had,

Input Image

' Score vector
Hidden layer
Hidden layer

50

0
XU/
i

output layer

I
XX
o§

input layer
hidden layer 1 hidden layer 2

TLeft figure: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

3D Volumes of Neurons

* Now,

[.l.,l.l.l.. 4

W A W W

OOOOOK
QOOOOK
y e@PpES -

* Each layer simply does this: transforms an input tensor
(3D volume) to an output tensor using some function

51
"Figure: http://cs231n.github.io /convolutional-networks/

3D Volumes of Neurons

* Now,

e AR AR 9P W
/.1.1.1.10‘74

OOOO0OK,
~ ~ 00000 —~
4 LXK R ¥ width

* Each layer simply does this: transforms an input tensor
(3D volume) to an output tensor using some function

52

CNN Layers

* Three types
* Convolutional Layer (CONYV)
* Pooling Layer (POOL)
* Fully Connected Layer (same as Feedforward

neural network, i.e., 1*1*#Neurons is the layer’s
output tensor)

* Stack these in various ways

53

CNN Example Architecture

* Say our classification dataset is CIFAR-10

* Let the architecture be as follows:
* INPUT -> CONY -> POOL -> FC

 INPUT:

* This layer is nothing but 32*32*3 in dimension
(width*height*3 color channels)

54

CNN Example Architecture

* Say our classification dataset is CIFAR-10

e |Let the architecture be as follows:

* INPUT -> CONV -> POOL -> FC

* [INPUT:
* This layer is nothing but 32*32*3 in dimension
(width*height*3 color channels)

e CONYV:

* Neurons compute like regular feedforward neurons
(sum the product of inputs with weights and add
bias).

* May output a different shaped tensor, say with
dimension 32%32%*12

CNN Example Architecture

 POOL:

* Performs a down-sampling in the spatial dimension
* Outputs a tensor with the depth dimension the

same das input
e |If inputis 32%32*12, then output could be

16%16%12

56

CNN Example Architecture

* POOL:
* Performs a down-sampling in the spatial dimension
* Outputs a tensor with the depth dimension the
same das input
e |If inputis 32%32*12, then output could be
16*16%12
* FC:
* This is the fully connected layer. Input can be any
tensor (say 16*16*12) but the output will have

only one effective dimension (1*1*10 since this is
the last layer and CIFAR-10 has 10 classes)

CNN Example Architecture

* So we went from pixels (32*32 RGB images) to scores
(10 in number)

* Some layers have parameters (CONV and FC), other
layers do not (POOL)

* Optimization of these parameters still for achieving
scores consistent with image labels

58

The Convolution Layer (CONYV)

* Layer’s parameters correspond to a set of filters

* What is a filter?
* A linear function parameterized by a tensor
* OQutputs a scalar
* The parameter tensor is learned during training

* Example
* First layer filter may be of dimension 3*3*3
* 3 pixels wide
* 3 pixels high
* 3 unit filter-depth for three color channels

* We slide (convolve) the filter across the width and height
of the input volume and compute the scalar output to be

passed into the nonlinearity “

CONV: Sliding /Convolving

* We slide (convolve) the filter across the width and height of
the input volume and compute the scalar output to be passed
into the nonlinearity

1::1 1xﬂ 1::1 0 0
0/1/1,1,0 4
0:-:1 Oxﬂ 1::1 1 1
O(O0(1(1(0
O(1(1(0|0
image Convolved
Feature

Also see http://setosa.io/ev/image-kernels/

60
'Figure: http://deeplearning.stanford.edu/wiki/index.php /Feature_extraction_using_convolution

The Convolution Layer (CONYV)

* Three things to notice
* Filters are small along width and height
* Same filter-depth as the input tensor (3D volume)

* If the input is X * y * z, then filter could be 3 *
3*Z

* As we slide, we produce a 2D activation map

61

The Convolution Layer (CONV)

* Three things to notice
* Filters are small along width and height
* Same filter-depth as the input tensor (3D volume)

* If the input is X * y * z, then filter could be 3 *
3*Z

* As we slide, we produce a 2D activation map

* Filters (i.e., filter parameters) will be learned during
training that ‘detect’ certain visual features

* Example:
* Oriented edges, colors, etc. at the first layer
* Specific patterns in higher layers

CONV: Filters

* Before we look at the patterns ...

* Lets now look at the neurons themselves
* How are they connected?
* How are they arranged?
* How can we get reduced parameters?

63

CONV: Local Connectivity

* Connect each neuron to a local (spatial) region of the
input tensor

* Spatial extent of this connectivity is called receptive
field

* Depth connectivity is the same as input depth

64

CONV: Local Connectivity

y-

i, N
@; eJele]0
/32 One neuron

* Example: If input tensor is 32%32*3 and filter is
3*3*3 then
* the number of weight parameters is 27, and

3

* there is 1 bias parameter

"Figure: http://cs231n.github.io /convolutional-networks/

65

CONV: Local Connectivity

@E 50000

/32 One neuron

w |

* All 5 neurons are looking at the same spatial region

* Each neuron belongs to a different filter

"Figure: http://cs231n.github.io /convolutional-networks/

66

CONV: Spatial Arrangement

* Back to layer point of view

* Size of output tensor depends on three numbers:
* Layer Depth
* Corresponds to the number of filters
e Stride (how much the filter is moved spatial)

* Example: If stride is 1, then filter is moved 1
pixel at a time

* Zero-padding
* Deals with boundaries (is usually 1 or 2)

67

CONV: Stride /Zero-pad

Stride = 1, Zero-padding = 0

1::1 1::0 1::1 0 0
0::0 1::1 1::0 1 0 4
0::1 OKI'J 1::1 1 1
0|0(1|1/0
011(1|0/0
image Convolved
Feature

"Figure: http://deeplearning.stanford.edu/wiki/index.php /Feature_extraction_using_convolution

CONV: Parameter Sharing

* Key assumption: If a filter is useful for one region, it
should also be useful for another region

* Denote a single 2D slice of depth of a layer as depth
slice Depth Slice

i

—=00000D

7

N\

3
"Figure: http://cs231n.github.io /convolutional-networks/

69

CONV: Parameter Sharing

* Then, all neurons in each depth slide use the same
weight and bias parameters!

Depth Slice
/
/ 32 O
S 0
@7>© 000P

A

"Figure: http://cs231n.github.io /convolutional-networks/

CONV: Parameter Sharing

* Number of parameters is reduced!

* Example:

* Say the number of filters is M (= Layer Depth)

* Then, this layer willhave M * (3 *3 %3 + 1)
parameters

* Gradients will get added up across neurons of a
depth slice

CONV: Parameter Sharing

* AlexNet’s first layer has 11%*11%*3 sized filters 96 in
number. The filter weights are plotted below:

* Intuition: If capturing an edge is important, then important
everywhere

TFigure: http://cs231n.github.io /convolutional-networks/

Example: CONV Layer Computation

Input Volume (+pad 1) (7x7x3)

Filter WO (3x3x3)

Filter W1 (3x3x3)

X[:,:,0] wO[:,:,0] wl[:,:,0]
0 “0 "0 0 1 1 1 01 |I-1
o o R o a4 [0
0 || || 0 1 1 1 -1||O ||—1
0 wO[:,:,1] wl[z:,:,1]
2
1

0
2
1
1
&
0
0

0
0
0
0
0
0
0

Figure: http://cs23 1n.github.io/convolutional-networks/

B
3H§

[]
7]

£ |
i

Iull"
oa
mmn

[]
\

bl[:,:,0]
0

Output Volume (3x3x2)

o[:,:,0]
1 -7 0

4 -2 -2
4 6 3
o[:,:,1]

Biasb1 (1x1x1)

toggle movement

73

The Pooling Layer: POOL

* Vastly more simpler than CONYV

* Reduce the spatial size by using a MAX or similar
operation

* Operate independently for each depth slice

74

POOL: Example

* Input depth is retained

224x224x64

pool

— >

224

224

"Figure: http://cs231n.github.io /convolutional-networks/

112x112x64

|

—i 112
downsampling

12

75

POOL: Example

Single depth slice

>

.| I 2 | 4
max pool with 2x2 filters
DNIRGE 7 | 8 and stride 2
3 | 2
1 | 2 B

"Figure: http://cs231n.github.io /convolutional-networks/

76

POOL: Example

Single depth slice

" N 2 | 4
max pool with 2x2 filters
SreN 7 | 8 and stride 2 6 | 8
3 | 2 3|4
1 | 2 EE
y

* Recent research is showing that you may not need a
pooling layer

Fully Connected Layer: FC

* Essentially a fully connected layer

* Already seen while discussing feedforward neural
networks

78

CNN in the Browser

e Dataset: CIFAR-10

* http://cs.stanford.edu/people /karpathy /convnetis/d
emo /cifar10.html

79

Summary

* Feedforward neural nets can do better than linear
classifiers (saw this for a low-dimensional small
synthetic example)

* CNN have been very effective in image related
applications.
* Exploit specific properties of images
* Hierarchy of features
* Locality
* Spatial invariance
* Lots of design choices that have been empirically

validated and are intuitive. Still, there is room for
improvement.

Appendix

Naming: Why ‘Neural’

Historical
let f(x) =w-x+b

0, f(x) <0

Perceptron from 1957: h(x) = {1 otherwise

Update rule was wy1 = wy + a(y — h(x))x similar
to gradient update rules we see today

Passing the score through a sigmoid was likened to

how a neuron fires
1

1+e-Yf(x)

* Firing rate =

Naming: Why ‘Convolution’

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
wl[21,:,0]) ofz,:,0)
=1 B B 2 7
0 -1 1 13 9
«1 0] 0 3 5
LS EA) oft,1,1) The name
00 -l 43 4 . o
40 1 7 8 3 convolution
:’m' "‘n I comes from the
: ‘: ;‘ convolution
15519 operation in
Bis b (8181 signal processing
l2,:,0) o .
0 that is essentially
: iy e a matrix matrix
- roduct.
o] o o P
2Q1|p7r 10
0O 0 2 0 1 0 0O
Ol (1) (D 23] 20 12 O
U 20 U8 BN 18 D 5
O 00 0 0 0 0

Figure: http://cs23 1n.github.io /convolutional-networks / 83

Naming: Why ‘Convolution’

Convolution Cross-correlation Autocorrelation
f f f

5 I\ 5 I\ 9 I\

Figure:https://en.wikipedia.org/wiki/Convolution#/media/ File:Comparison_convolution_correlation.%{lg

