Advanced Prediction
Models

Deep Learning, Graphical Models and Reinforcement
Learning

Today’s Outline

* Visualizing CNNs
* Transfer Learning

* Neural Net Training Tricks
* Data Augmentation
* Weight Initialization /Batch Normalization /Dropout

Quick Review:
Convolutional Neural
Networks

Recap of CNN Architecture

* Typically a CONV is followed by a POOL

* Closer to the output, use FC layers
* In CONY, smaller filters are preferred (say 3 * 3 * z)

* Input image should ideally be divisible by 2 many
times

conv [oot [con [§ Poot I conv g Poor

Example: A CNN Architecture

@

ONV CONV CONV

®!

CONV_CONV

car
truck

aifplane

= |
—
=
=
i
_,

Ship

)

Jl‘morse

) % 1 L L0 10
AEESBEEERS

LN

. Figure: http://cs23 1n.github.io /convolutional-networks
* A different sequence of layers // / /

* Number of filters (layer depth) is 10

* Activation tensors (flattened along depth) are shown

Example: CONV Layer Parameter Count

* Input tensor of size 90 * 90 * 10

* Say we have 5 filters, eachis 3 * 3 * 10
e Stride is 1 and zero padding is 1

* Then output tensor will be 90 * 90 * 5

* We can calculate manually for other strides and padding
values

* Number of parametersis 5% (3 *3 10 + 1) = 455

* Contrast with Fully connected net:
* Number of inputs is 31000
* Number of hidden layer neurons is 40500
* Hence, the number of parametersis > 3,280,500,000

CNN and Backpropagation

* Backpropagation through a CONYV layer
* Constitutes a set of matrix-matrix products and
whatever is the behavior for the nonlinearity
* Backpropagation through a POOL layer

* Essentially like ReLU where one can keep track of
the index of the maximum

* (You will not have to do this by hand in real-life)

Questions?

Visualizing CNNs

Combating Non-Interpretability

e Common criticism: learned features are not
interpretable

* We will look at a few attempts
* Look at activations
* Look at weights
* Look at images in an embedded space
* Look at impact of occlusion
* Look at images that activate neurons highly

An Example CNN Visualization Tool

* Online tool by Adam Harley
* http://scs.ryerson.ca/~aharley /vis/conv/flat.html

11

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Visualize: Activations

* Useful to debug ‘dead’ filters (e.g., when using RelLU)

* Input is a cat image

RS

i)'

1 CONV D T 5hCONV

"Figure: http://cs231n.github.io /understanding-cnn/

Visualize: Weights

* Useful to debug if training needs to be run more (if
patterns are noisy)

1** CONV 274 CONV

"Figure: http://cs231n.github.io /understanding-cnn/

Visualize: Low-Dimensional
Embeddings

CNN
* |nput: Image
* Output: Scores

The input to the layer that computes scores:
e s= Wmax(0,h)+ b=Wa+b>b

Activation a can be considered as a representation of
the input image

Embed a’s into a 2D space
* Such that distance properties are preserved

Visualize: Low-Dimensional

Embeddings
* In Alexnet, the output of layer before FC layer is 4096 dim

* The t-SNE embedding is shown below:

e RSN

Tl D T —-“-*—":_.:-;—&- o et o Pyt o L '-‘._‘,' -
“ -."\o’’-. -’~_ f"—’"'r' " “-.-t‘-“--"'i" 7 t‘,;~~_-‘.|;-- .
- § Gl o7 - " _.,-' .- P -

! '. B _‘_’; ﬁ,' ' % b A - ‘ 1” :
- T i '-! __\ 4 4 ﬁ\ - - . d) .
- o T 7 Pty O 14k T SO i =

e Similarities are class-
pixel based

* Implies: images close to each other are similar for the CNN
"Figure: http://cs231n.github.io /understanding-cnn/

Visualize: By Occlusion

* To figure out which part of the image is leading to a
certain classification

* Plot the probability of class of interest as a function
of occlusion

Visualize: By Occlusion

* Occlusion in grey is slid over the images and plot
probability of correct class

True Label: Afghan Hound
o W,

-

"Figure: http://cs231n.github.io /understanding-cnn/

Visualize: Synthesize Images

* Find images that activate a neuron the most

Gradient Ascent

gorilla

* Seed with ‘natural’ image priors

"Figure: http://yosinski.com /deepvis

18

Visualize: Synthesize Images

* Find images that activate a neuron the most

goose

* Seed with ‘natural’ image priors

19

"Figure: http://yosinski.com /deepvis

e

B

134

Visualize: Images that Activate a
Neuron

* Track which images maximally activate a neuron
. Unders’rond what the neuron is tracking

anEssSae

shpooL Activation values and receptive fields of some neurons in Alexnet

(May not be a good idea...)
21
"Figure: http://cs231n.github.io /understanding-cnn/

Questions?

Today’s Outline

* Visualizing CNNs
* Transfer Learning

* Neural Net Training Tricks
* Data Augmentation
* Weight Initialization /Batch Normalization /Dropout

Transfer Learning

24

Transfer Learning

* Very few people train a deep feedforward net or a
CNN from scratch

* Myth: “We need a lot of data to use Deep Neural
Networks”

* We will see two approaches if we have small data
* Feature extraction
* Fine-tuning

* Both these are loosely termed as Transfer learning

25

Transfer by Feature Extraction (l)

* Get a pretrained CNN

* Example: VGG or AlexNet that was trained on
Imagenet

* Remove the last FC (that outputs 1000 dim score)

* Pass new training data to get embeddings

, CONV g POOL CONV g4 POOL g4 CONV g POOL ,

, CONV g4 POOL CONV g4 POOL CONV g4 POOL

26

Image Embeddings

* We can think of the penultimate hidden layer
activations (a 4096 dim vector) as an embedding of

the image
Elgy ol
192 192 128 2048 \ | 2038 Her=a
113 ok 13
3‘]13 3" "...13 dense| [|derke
1000
192 192 128 Max L L
Max 128 Max pooling 4998 2048
pooling pooling
* This is the activation vector or the representation or
the CNN code of the image
27

'Figure: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Transfer by Feature Extraction (ll)

* Input these to a linear or non-linear classifier!

More generic features More specific features

A A
| 1 1
4 CONV & POOL & CONV & POOL & CONV & POOL g ,

, CONV & POOL & CONV £d POOL & CONV @& POOL , ,

* For example, for imagenet output 1000 dim scores

* For our datq, output say 2 scores (cat vs dog)

28

Transfer by Fine-tuning

* Retrain or finetune additional layers of the pre-
trained if we have more data

, CONV & POOL & CONV £d POOL & CONV @& POOL ,,

, CONV g4 POOL & CONV Ed POOL @ CONV & POOL ,

e
Backpropagate

* We can even go all the way back to the first layer if

there is a lot of training data available N

Benefits of Transfer

* We can get a significant boost in performance
compared to hand engineered classification/machine-
learning pipelines

(CNN |
| Representation |
Learn Extract Features
w- A Part Strong Normalized RGB, gradient, -*
nnotations DPM
=0 Pose LBP
’UJ Best state of the art 00 CNN off-the-shelf 0§85 CNN off-the-shelf + augmentation 00 Specialized CNN »
100, . -
2 : - < . ;’5‘_‘
60, 8 | Eom
0. S &y 0y .
e, Con g bor. o4, 7
Cg (S Ry e Cg
O/% 4 ugy,. Gs & Ibeg [Qsta
'S, . Q
160 8§ dlb 661-1-@ Q@tl‘ .QC'@ Q
Q.. . VQ/ FL) ef
RN Yag g, 30
'Figure: https:// arxiv.org/abs/1403.6382 Yo

Aside: Other Vision Tasks

* Some example vision tasks are given below

Classification Object Detection Instance

Classification

+ Localization

Segmentation

| B 0\0: £ W T
. -
) k o B
) -~ e »
. - »
O 4 a7
Pl
/

...

CAT, DOG, DUCK CAT, DOG, DUCK

L% AN /)
Y Y

Single object Multiple objects

31
"Figure: http://cs231n.stanford.edu/

Transfer Learning Choices

* When to transfer

_ Similar dataset Different dataset

Small data Feature extract NA

Large data Fine-tune a bit Fine-tune a lot

* How to transfer

* Get pre-trained models for popular software
systems

This is key for projects! 32

VGG Net Example

2" in the 2014 ILSVRC classification task
e 3x3 conv filters with stride 1

* RelU non-linearity
5 POOL layers
* 3 FC layers

image
conv-64
conv-64
maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

"Figure: http://www.robots.ox.ac.uk /%7Evgg /research /very_deep/

FC-4096
FC-4096
FC-1000

softmax

Questions?

Today’s Outline

* Visualizing CNNs
* Transfer Learning

* Neural Net Training Tricks
* Data Augmentation
* Weight Initialization /Batch Normalization /Dropout

Neural Net Training
Tricks

Neural Nets in Practice

* There are a few empirically validated techniques that

improve the performance (classification accuracy) of
feedforward nets and CNNs

* We will look at some of these
* Data: data augmentation
* Model: initalization, batch normalization, dropout

* For our discussion, we will fix the optimization
technique to be a gradient based method. We will
revisit related algorithmic enhancements later.

Data

* Data:
* How is it handled?
* What is it quality?

* Handling:
* Deep nets may need to read lots of data (images),
so keep them in contiguous spaces of hard-disk

* Quality:
* Collect as much clean data as possible. At the
same time, unclean may also be good enough

Next: Extract the most out of existing data for CNNs 38

Augmenting Data (I)

m—mﬁ CONV ga POOL & CONV & POOL ﬁﬂg

39

Augmenting Data (I)

m—mﬁ conv Y rooL Y conv BY rooL B

And

Where X; = g(x) is a transformation

40

Augmenting Data (ll)

* We are changing the input without changing the label
* We then add this new example to our training set

* Widely used technique!
Flip Random crop

4

Random scale 4l

Augmenting Data (lll)

* At test time, average the predictions of a fixed set of

transformations

* Example (for Resnet, the ILSVRC 2015 winner):
* Image at 5 scales: 224,256,384,460 and 640
* At each scale, get 10 224*224 crops

42

Augmenting Data (IV)

* Other ways to augment data include
* Changing contrast and color

* Mix translations, rotations, stretching, shearing,
distortions

* This is very useful for small datasets

* From one point of view, this is essentially
* Adding some noise during training
* Marginalizing noise out at test

Model

* We have already seen few choices
* Activation function or nonlinearities
* Number of layers and number of neurons per layer

e CNN filter choices ...

* There are other choices while training deep neural nets
(including CNNs) that also make a difference

* Weight initialization
* Batch normalization

* Dropout

44

Model: Weight Initialization

* Weight initialization plays a key role in training deep
networks

* Example: W = 0 may be bad «f 3

global maximum

local maximum

* Not just the issue of local optima

local minimum

global minimum

-6 C l l | | .

0 0.2 0.4 0.6 0.8 1 1.2

* But also the magnitudes of gradients in backprop
* Activation statistics (mean and variance) influence
gradients

e Heuristics available in the literature to initialize W

45

Model: Batch Normalization

* Activations magnitudes and their statistics depend on
the dataset, the network and the nonlinearity used

* Their statistics influence gradient propagation, hence
also learning

* |s there a way to control them?
* Yes, through batch normalization!

Model: Batch Normalization

* |ldea: Make each activation unit-Gaussian by subtracting the
mean and then dividing by standard deviation
Batch-size = N
Number of output neurons = D

y J?z)/(x —E[x])+ﬁ

JVar[x]

=

N XD N XD
* Is a differentiable function: hence no issue with
backpropagation
* At test time, there is no batch. Use the training data means
and variances

Model: Batch Normalization

* Previously,

* Now

* Insert a Batch Normalization layer between CONYV
and nonlinearity (ReLU)

coNnv I BN+RelU ' PooL [Ed conv Y BN+RelU U POOL

* Empirically observed: improved gradient flows, less

sensitive to initialization. N

Model: Dropout (Regularization)

* |dea: During training, every time we forward pass, we
set the output of a few neurons to zero with some
probability

Hidden Ri===n

Input

Input

Without dropout One pass with dropout

49

"Figure: http://cs231n.stanford.edu/

Model: Dropout (Regularization)

* Intuitively, it is

* Making us use smaller capacity of the network.
Hence, can think of it as a regularization

* Forcing all the neurons to be useful. Hence there is
over-representation or redundency

* Also think of it as

* Subsampling a part of the network for each
example

* Thus, we get an ensemble of neural networks that
share parameters

Model: Dropout (Regularization)

* Higher probability means stronger regularization

* At test time,
* Instead of doing many forward passes
* Perform no dropout
* Scale all activations by the probability of dropout

* Example:
* Say dropout with probability p
* Originally: f(x, Wy, by, Wy, by) = Womax(0, W;x + by) + b,
* With dropout: W, * p * max(0, W;x + b;) + b,

Summary (l)

* CNN are very effective in image related applications.
* State of the art!
* Exploit specific properties of images
* Hierarchy of features
* Locality
* Spatial invariance
* Lots of design choices that have been empirically

validated and are intuitive. Still, there is room for
improvement.

Summary (ll)

* We saw
* Visualizations to understand how CNNs work

* Transfer learning applied to CNNs (important for
applications)

* An excellent way to get a deep learning solution
working

* There is no need for large datasets to get started

Summary (ll)

* Neural Nets Training Tricks
* Revisited data: data augmentation
* Revisited models: initialization, batch norm, dropout

* To train state of the art deep learning systems, you
have to rethink:

* (a) data, (b) models, and (c) optimization'
* What is the most bang per buck for your business?

* If the deep learning system is core to the business, look at
engineering best practices (we saw some today)

"We did not cover this in this lecture

Appendix

Sample Questions

* How does a 2 layer feedforward net differ from a
linear classifier?

* Describe why nonlinearities are introduced in a neural
network? Why is the ReLU non-linearity called a
gradient gate?

* Describe the parameter sharing property of a
convolutional layer

* How is backpropagation used while optimizing the
parameters of a neural network?

Adyvice

* In spite of all these design choices, for 20% of the
applications, pick an architecture that works well on
an established dataset (e.g., Imagenet)

* Focus on the application and business considerations,
not architectural decisions!

Ref: http://cs23 1n.github.io/convolutional-networks/

Practical Considerations

* Model choice: nonlinearity, number of layers, number
of neurons

* Data preprocessing: batch normalization, subtracting
mean of inputs

* Parameter initialization: random or zeroes?
* Learning rate: How to change?
* Batch normalization: re-normalizing activations

* Monitoring learning: plot graphs of training and
validation

* Cross validation: hyper-parameter tuning is non-trivial

Partial Robustness to Input Size

* The input image size determines the tensors in
intermediate stages
* Example
* Alexnet requires 224*224%*3 sized images

* What if we have a larger sized image?

* We can ‘convert’ FC layers to equivalent CONV
layers for efficiency

* Then slide the original CNN over the larger image!
* This leads to a ‘single’ forward pass

Partial Robustness to Input Size

* Instead of a single vector of scores, now we get a
bunch of scores

Score vector

Score vector

60

