Advanced Prediction
Models

Deep Learning, Graphical Models and Reinforcement
Learning



Today’s Outline

* Visualizing CNNs
* Transfer Learning

* Neural Net Training Tricks
* Data Augmentation
* Weight Initialization /Batch Normalization /Dropout



Quick Review:
Convolutional Neural
Networks



Recap of CNN Architecture

* Typically a CONV is followed by a POOL

* Closer to the output, use FC layers
* In CONY, smaller filters are preferred (say 3 * 3 * z)

* Input image should ideally be divisible by 2 many
times
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Example: A CNN Architecture
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. Figure: http://cs23 1n.github.io /convolutional-networks
* A different sequence of layers // / /

* Number of filters (layer depth) is 10

* Activation tensors (flattened along depth) are shown



Example: CONV Layer Parameter Count

* Input tensor of size 90 * 90 * 10

* Say we have 5 filters, eachis 3 * 3 * 10
e Stride is 1 and zero padding is 1

* Then output tensor will be 90 * 90 * 5

* We can calculate manually for other strides and padding
values

* Number of parametersis 5% (3 *3 10 + 1) = 455

* Contrast with Fully connected net:
* Number of inputs is 31000
* Number of hidden layer neurons is 40500
* Hence, the number of parametersis > 3,280,500,000



CNN and Backpropagation

* Backpropagation through a CONYV layer
* Constitutes a set of matrix-matrix products and
whatever is the behavior for the nonlinearity
* Backpropagation through a POOL layer

* Essentially like ReLU where one can keep track of
the index of the maximum

* (You will not have to do this by hand in real-life)



Questions?



Visualizing CNNs



Combating Non-Interpretability

e Common criticism: learned features are not
interpretable

* We will look at a few attempts
* Look at activations
* Look at weights
* Look at images in an embedded space
* Look at impact of occlusion
* Look at images that activate neurons highly



An Example CNN Visualization Tool

* Online tool by Adam Harley
* http://scs.ryerson.ca/~aharley /vis/conv/flat.html
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http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Visualize: Activations

* Useful to debug ‘dead’ filters (e.g., when using RelLU)

* Input is a cat image
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"Figure: http://cs231n.github.io /understanding-cnn/



Visualize: Weights

* Useful to debug if training needs to be run more (if
patterns are noisy)

1** CONV 274 CONV

"Figure: http://cs231n.github.io /understanding-cnn/



Visualize: Low-Dimensional
Embeddings

CNN
* |nput: Image
* Output: Scores

The input to the layer that computes scores:
e s= Wmax(0,h)+ b=Wa+b>b

Activation a can be considered as a representation of
the input image

Embed a’s into a 2D space
* Such that distance properties are preserved



Visualize: Low-Dimensional

Embeddings
* In Alexnet, the output of layer before FC layer is 4096 dim

* The t-SNE embedding is shown below:
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e Similarities are class-
pixel based

* Implies: images close to each other are similar for the CNN
"Figure: http://cs231n.github.io /understanding-cnn/



Visualize: By Occlusion

* To figure out which part of the image is leading to a
certain classification

* Plot the probability of class of interest as a function
of occlusion



Visualize: By Occlusion

* Occlusion in grey is slid over the images and plot
probability of correct class
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"Figure: http://cs231n.github.io /understanding-cnn/




Visualize: Synthesize Images

* Find images that activate a neuron the most

Gradient Ascent

gorilla

* Seed with ‘natural’ image priors

"Figure: http://yosinski.com /deepvis
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Visualize: Synthesize Images

* Find images that activate a neuron the most

goose

* Seed with ‘natural’ image priors
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"Figure: http://yosinski.com /deepvis
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Visualize: Images that Activate a
Neuron

* Track which images maximally activate a neuron
. Unders’rond what the neuron is tracking

anEssSae

shpooL  Activation values and receptive fields of some neurons in Alexnet

(May not be a good idea...)
21
"Figure: http://cs231n.github.io /understanding-cnn/



Questions?
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Transfer Learning

24



Transfer Learning

* Very few people train a deep feedforward net or a
CNN from scratch

* Myth: “We need a lot of data to use Deep Neural
Networks”

* We will see two approaches if we have small data
* Feature extraction
* Fine-tuning

* Both these are loosely termed as Transfer learning

25



Transfer by Feature Extraction (l)

* Get a pretrained CNN

* Example: VGG or AlexNet that was trained on
Imagenet

* Remove the last FC (that outputs 1000 dim score)

* Pass new training data to get embeddings

, CONV g POOL CONV g4 POOL g4 CONV g POOL ,

, CONV g4 POOL CONV g4 POOL CONV g4 POOL
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Image Embeddings

* We can think of the penultimate hidden layer
activations (a 4096 dim vector) as an embedding of

the image
Elgy ol
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pooling pooling
* This is the activation vector or the representation or
the CNN code of the image
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'Figure: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf



Transfer by Feature Extraction (ll)

* Input these to a linear or non-linear classifier!

More generic features More specific features

A A
| 1 1
4 CONV & POOL & CONV & POOL & CONV & POOL g ,

, CONV & POOL & CONV £d POOL & CONV @& POOL , ,

* For example, for imagenet output 1000 dim scores

* For our datq, output say 2 scores (cat vs dog)
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Transfer by Fine-tuning

* Retrain or finetune additional layers of the pre-
trained if we have more data

, CONV & POOL & CONV £d POOL & CONV @& POOL ,,

, CONV g4 POOL & CONV Ed POOL @ CONV & POOL ,

e
Backpropagate

* We can even go all the way back to the first layer if

there is a lot of training data available N



Benefits of Transfer

* We can get a significant boost in performance
compared to hand engineered classification/machine-
learning pipelines
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Aside: Other Vision Tasks

* Some example vision tasks are given below

Classification Object Detection Instance

Classification

+ Localization

Segmentation
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Single object Multiple objects
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"Figure: http://cs231n.stanford.edu/



Transfer Learning Choices

* When to transfer

_ Similar dataset Different dataset

Small data Feature extract NA

Large data Fine-tune a bit Fine-tune a lot

* How to transfer

* Get pre-trained models for popular software
systems

This is key for projects! 32



VGG Net Example

2" in the 2014 ILSVRC classification task
e 3x3 conv filters with stride 1

* RelU non-linearity
5 POOL layers
* 3 FC layers

image
conv-64
conv-64
maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool

"Figure: http://www.robots.ox.ac.uk /%7Evgg /research /very_deep/

FC-4096
FC-4096
FC-1000

softmax
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Neural Net Training
Tricks



Neural Nets in Practice

* There are a few empirically validated techniques that

improve the performance (classification accuracy) of
feedforward nets and CNNs

* We will look at some of these
* Data: data augmentation
* Model: initalization, batch normalization, dropout

* For our discussion, we will fix the optimization
technique to be a gradient based method. We will
revisit related algorithmic enhancements later.



Data

* Data:
* How is it handled?
* What is it quality?

* Handling:
* Deep nets may need to read lots of data (images),
so keep them in contiguous spaces of hard-disk

* Quality:
* Collect as much clean data as possible. At the
same time, unclean may also be good enough

Next: Extract the most out of existing data for CNNs 38




Augmenting Data (I)

m—mﬁ CONV ga POOL & CONV & POOL ﬁﬂg
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Augmenting Data (I)

m—mﬁ conv Y rooL Y conv BY rooL B

And

Where X; = g(x) is a transformation
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Augmenting Data (ll)

* We are changing the input without changing the label
* We then add this new example to our training set

* Widely used technique!
Flip Random crop

4

Random scale 4l



Augmenting Data (lll)

* At test time, average the predictions of a fixed set of

transformations

* Example (for Resnet, the ILSVRC 2015 winner):
* Image at 5 scales: 224,256,384,460 and 640
* At each scale, get 10 224*224 crops

42



Augmenting Data (IV)

* Other ways to augment data include
* Changing contrast and color

* Mix translations, rotations, stretching, shearing,
distortions

* This is very useful for small datasets

* From one point of view, this is essentially
* Adding some noise during training
* Marginalizing noise out at test



Model

* We have already seen few choices
* Activation function or nonlinearities
* Number of layers and number of neurons per layer

e CNN filter choices ...

* There are other choices while training deep neural nets
(including CNNs) that also make a difference

* Weight initialization
* Batch normalization

* Dropout

44



Model: Weight Initialization

* Weight initialization plays a key role in training deep
networks

* Example: W = 0 may be bad «f 3

global maximum

local maximum

* Not just the issue of local optima

local minimum

global minimum

-6 C l l | | .

0 0.2 0.4 0.6 0.8 1 1.2

* But also the magnitudes of gradients in backprop
* Activation statistics (mean and variance) influence
gradients

e Heuristics available in the literature to initialize W

45



Model: Batch Normalization

* Activations magnitudes and their statistics depend on
the dataset, the network and the nonlinearity used

* Their statistics influence gradient propagation, hence
also learning

* |s there a way to control them?
* Yes, through batch normalization!



Model: Batch Normalization

* |ldea: Make each activation unit-Gaussian by subtracting the
mean and then dividing by standard deviation
Batch-size = N
Number of output neurons = D

y J?z)/(x —E[x])+ﬁ

JVar[x]

=

N XD N XD
* Is a differentiable function: hence no issue with
backpropagation
* At test time, there is no batch. Use the training data means
and variances



Model: Batch Normalization

* Previously,

* Now

* Insert a Batch Normalization layer between CONYV
and nonlinearity (ReLU)

coNnv I BN+RelU ' PooL [Ed conv Y BN+RelU U POOL

* Empirically observed: improved gradient flows, less

sensitive to initialization. N



Model: Dropout (Regularization)

* |dea: During training, every time we forward pass, we
set the output of a few neurons to zero with some
probability

Hidden Ri===n

Input

Input

Without dropout One pass with dropout

49

"Figure: http://cs231n.stanford.edu/



Model: Dropout (Regularization)

* Intuitively, it is

* Making us use smaller capacity of the network.
Hence, can think of it as a regularization

* Forcing all the neurons to be useful. Hence there is
over-representation or redundency

* Also think of it as

* Subsampling a part of the network for each
example

* Thus, we get an ensemble of neural networks that
share parameters



Model: Dropout (Regularization)

* Higher probability means stronger regularization

* At test time,
* Instead of doing many forward passes
* Perform no dropout
* Scale all activations by the probability of dropout

* Example:
* Say dropout with probability p
* Originally: f(x, Wy, by, Wy, by) = Womax(0, W;x + by) + b,
* With dropout: W, * p * max(0, W;x + b;) + b,



Summary (l)

* CNN are very effective in image related applications.
* State of the art!
* Exploit specific properties of images
* Hierarchy of features
* Locality
* Spatial invariance
* Lots of design choices that have been empirically

validated and are intuitive. Still, there is room for
improvement.



Summary (ll)

* We saw
* Visualizations to understand how CNNs work

* Transfer learning applied to CNNs (important for
applications)

* An excellent way to get a deep learning solution
working

* There is no need for large datasets to get started



Summary (ll)

* Neural Nets Training Tricks
* Revisited data: data augmentation
* Revisited models: initialization, batch norm, dropout

* To train state of the art deep learning systems, you
have to rethink:

* (a) data, (b) models, and (c) optimization'
* What is the most bang per buck for your business?

* If the deep learning system is core to the business, look at
engineering best practices (we saw some today)

"We did not cover this in this lecture



Appendix



Sample Questions

* How does a 2 layer feedforward net differ from a
linear classifier?

* Describe why nonlinearities are introduced in a neural
network? Why is the ReLU non-linearity called a
gradient gate?

* Describe the parameter sharing property of a
convolutional layer

* How is backpropagation used while optimizing the
parameters of a neural network?



Adyvice

* In spite of all these design choices, for 20% of the
applications, pick an architecture that works well on
an established dataset (e.g., Imagenet)

* Focus on the application and business considerations,
not architectural decisions!

Ref: http://cs23 1n.github.io/convolutional-networks/



Practical Considerations

* Model choice: nonlinearity, number of layers, number
of neurons

* Data preprocessing: batch normalization, subtracting
mean of inputs

* Parameter initialization: random or zeroes?
* Learning rate: How to change?
* Batch normalization: re-normalizing activations

* Monitoring learning: plot graphs of training and
validation

* Cross validation: hyper-parameter tuning is non-trivial



Partial Robustness to Input Size

* The input image size determines the tensors in
intermediate stages
* Example
* Alexnet requires 224*224%*3 sized images

* What if we have a larger sized image?

* We can ‘convert’ FC layers to equivalent CONV
layers for efficiency

* Then slide the original CNN over the larger image!
* This leads to a ‘single’ forward pass



Partial Robustness to Input Size

* Instead of a single vector of scores, now we get a
bunch of scores

Score vector

Score vector
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