Advanced Prediction Models

Deep Learning, Graphical Models and Reinforcement Learning

CVPR 2017 Best Paper

Densely Connected Convolutional Networks

Gao Huang* Cornell University

gh349@cornell.edu

Zhuang Liu* Tsinghua University

liuzhuangthu@gmail.com

Laurens van der Maaten Facebook AI Research

lvdmaaten@fb.com

Kilian Q. Weinberger Cornell University

kgw4@cornell.edu

Abstract

Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections—one between each layer and its subsequent layer—our network has $\frac{L(L+1)}{2}$ direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less memory and computation to achieve high performance. Code is available at https://github.com/liuzhuang13/DenseNet.

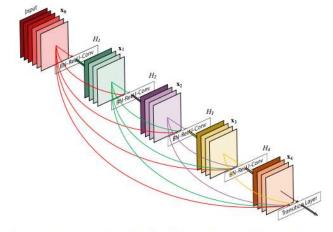


Figure 1. A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

Networks [33] and Residual Networks (ResNets) [11] have surpassed the 100-layer barrier.

As CNNs become increasingly deep, a new research problem emerges: as information about the input or gradient passes through many layers, it can vanish and "wash out" by the time it reaches the end (or beginning) of the network. Many recent publications address this or related

Today's Outline

- Introduction to Natural Language Processing
- Models with Simple Representations
- Word Embeddings and Word2Vec

Introduction to Natural Language Processing

Natural Language Processing (NLP)

Concerns will all aspects of natural languages

We will only sample a very narrow set of topics in this area

- We will sample a few ways to deal with text
 - Text is a sequence of symbols
 - Naïve way: represent them as one-hot encoded vectors
 - We will see some better methods today

Motivation: Machine Translation

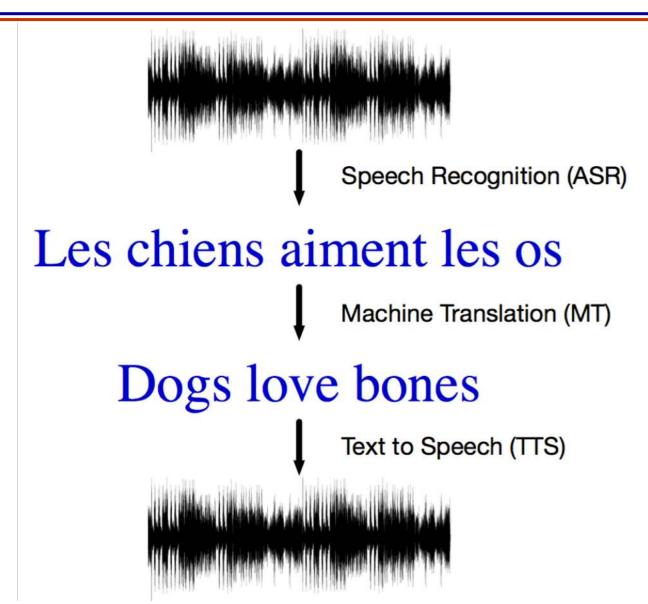
Motivation: Query Answering

Document The BBC producer allegedly struck by Jeremy Clarkson will not press charges against the "Top Gear" host, his lawyer said Friday. Clarkson, who hosted one of the most-watched television shows in the world, was dropped by the BBC Wednesday after an internal investigation by the British broadcaster found he had subjected producer Oisin Tymon "to an unprovoked physical and verbal attack." ...

Query Who does the article say will not press charges against Jeremy Clarkson?

Answer Oisin Tymon

Motivation: Speech to Speech



Motivation: Visual Query Answering

What is the man holding?

Does it appear to be raining?

Does this man have 20/20 vision?

Figure: https://github.com/oxford-cs-deepnlp-2017/lectures

Motivation: Harder Text Problems

Sense

I saw her duck

Idioms

He kicked a goal
He kicked the ball
He caught the ball
He kicked the bucket

Reference

The ball did not fit in the box because it was too [big/small].

1 Figure: https://github.com/oxford-cs-deepnlp-2017/lectures

Models with Simple Representations

Side-stepping Word-word Relationships

- We will look at a few models that
 - Don't explicitly account for word-word relationships
- These are:
 - Naïve Bayes Spam Filter
 - Markov Language Model
 - Latent Dirichlet Allocation
 - Conditional Random Field based Classifier (appendix)
 - CNN based Sentence Classifier

Naïve Bayes Spam Filter

Key assumption
 Words occur independently of each other
 given the label of the document

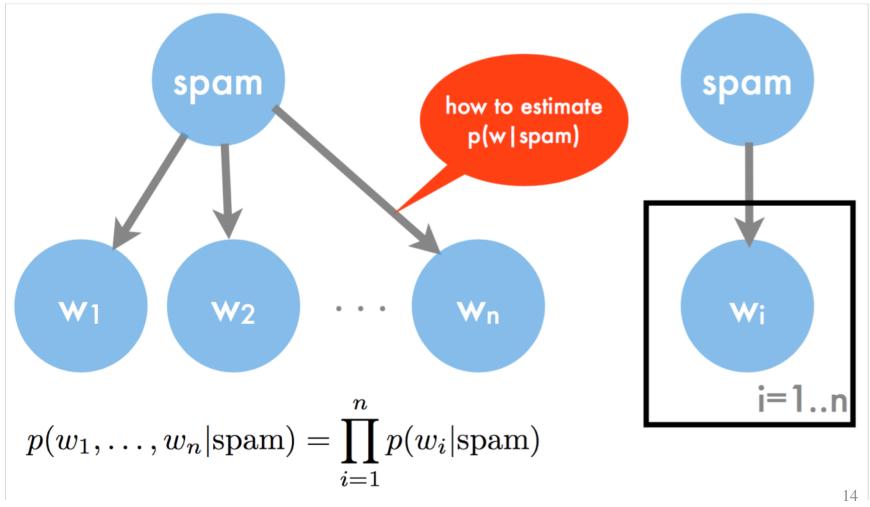
$$p(w_1, \dots, w_n | \text{spam}) = \prod p(w_i | \text{spam})$$

Spam classification via Bayes Rule

$$p(\operatorname{spam}|w_1,\ldots,w_n) \propto p(\operatorname{spam}) \prod_{i=1}^n p(w_i|\operatorname{spam})$$

Parameter estimation
 Compute spam probability and word distributions for spam and ham

Naïve Bayes Spam Filter



¹Reference: Alex Smola (2011)

Naïve Bayes Spam Filter

- Two classes (spam/ham)
- Binary features (e.g. presence of \$\$\$, viagra)
- Simplistic Algorithm
 - Count occurrences of feature for spam/ham
 - Count number of spam/ham mails spam probability

feature probability

$$p(x_i = \text{TRUE}|y) = \frac{n(i, y)}{n(y)} \text{ and } p(y) = \frac{n(y)}{n}$$

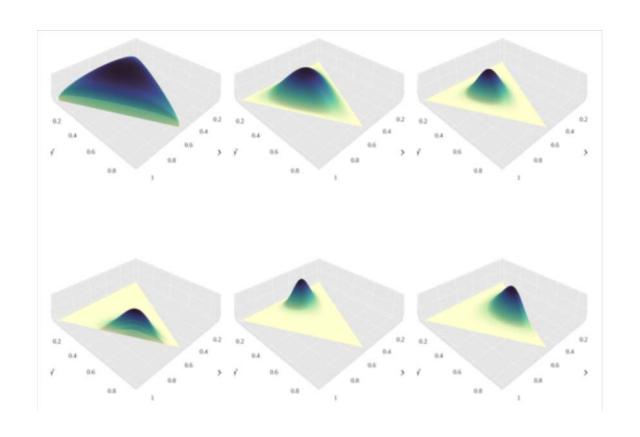
$$p(y|x) \propto \frac{n(y)}{n} \prod_{i:x_i = \text{TRUE}} \frac{n(i,y)}{n(y)} \prod_{i:x_i = \text{FALSE}} \frac{n(y) - n(i,y)}{n(y)}$$

15

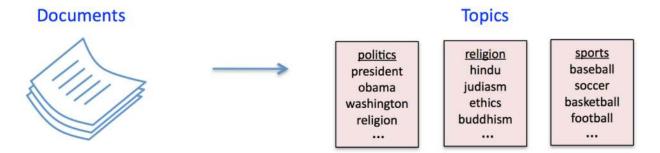
A Character-level Language Markov Model

- Character-level language model allows you to generate new text
- It can be modeled using a maximum likelihood based method
- Pick a fixed order = 2
- For a training sequence, e.g., {h,e,l,l,o}
 - Compute $P(\{l\{|\{h,e\}\}) = \frac{\#\{l,h,e\}}{\#\{h,e\}}$
 - Do this for every three characters in the vocabulary
- Generate new text by sampling!

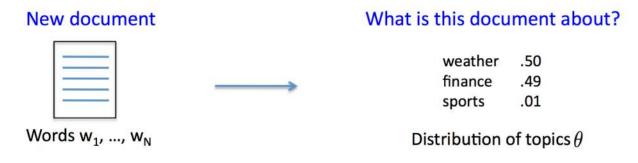
Aside: Dirichlet Distribution



 Topic models are powerful tools for exploring large data sets and for making inferences about the content of documents



 Many applications in information retrieval, document summarization, and classification



LDA is one of the simplest and most widely used topic models

1 Sample the document's **topic distribution** θ (aka topic vector)

$$\theta \sim \text{Dirichlet}(\alpha_{1:T})$$

where the $\{\alpha_t\}_{t=1}^T$ are fixed hyperparameters. Thus θ is a distribution over T topics with mean $\theta_t = \alpha_t / \sum_{t'} \alpha_{t'}$

② For i = 1 to N, sample the **topic** z_i of the i'th word

$$z_i|\theta \sim \theta$$

 \odot ... and then sample the actual **word** w_i from the z_i 'th topic

$$w_i|z_i\sim\beta_{z_i}$$

where $\{\beta_t\}_{t=1}^T$ are the *topics* (a fixed collection of distributions on words)

... and then sample the actual **word** w_i from the z_i 'th topic

$$w_i|z_i\sim \beta_{z_i}$$

where $\{\beta_t\}_{t=1}^T$ are the *topics* (a fixed collection of distributions on words)

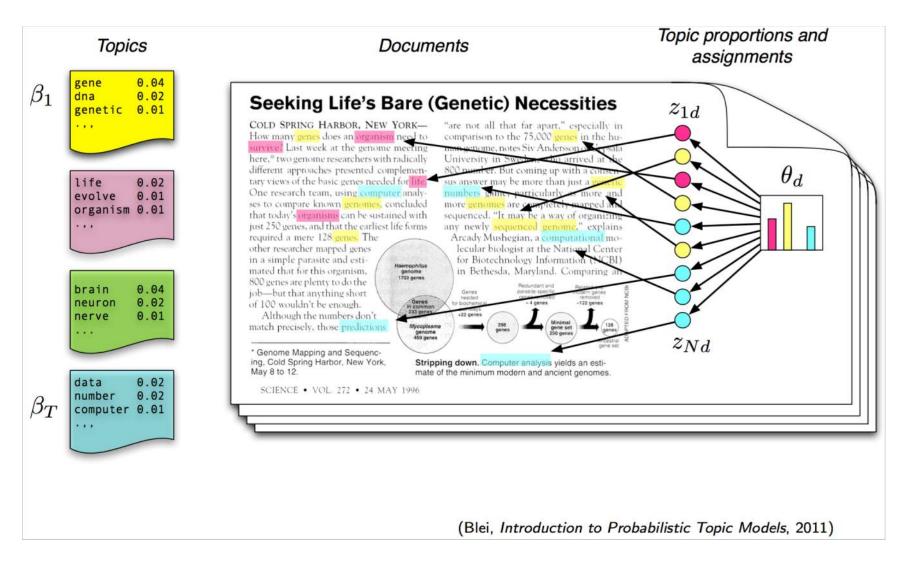
Documents

Topics

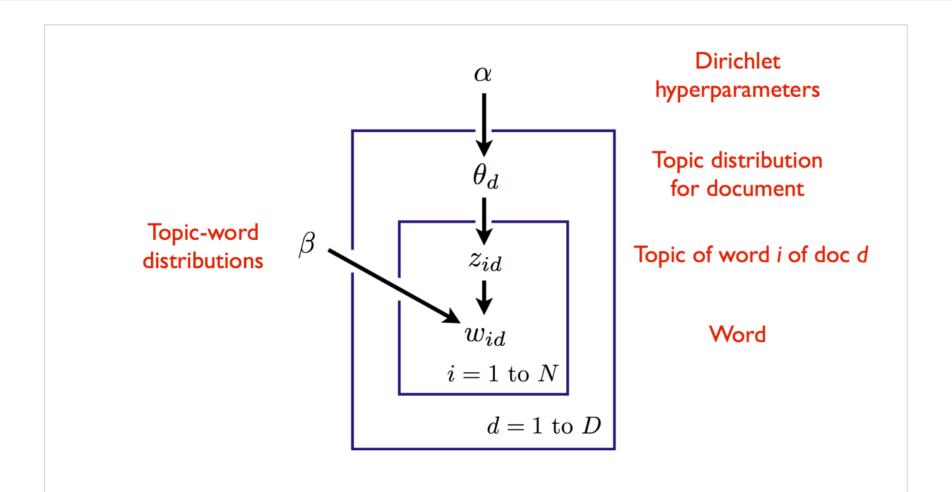
politics .0100 religion .0500 president .0095 bindu .0092 judiasm .0080 ethics .0075 religion .0060 buddhism .0016

sports .0105 baseball .0100 soccer .0055 basketball .0050 football .0045

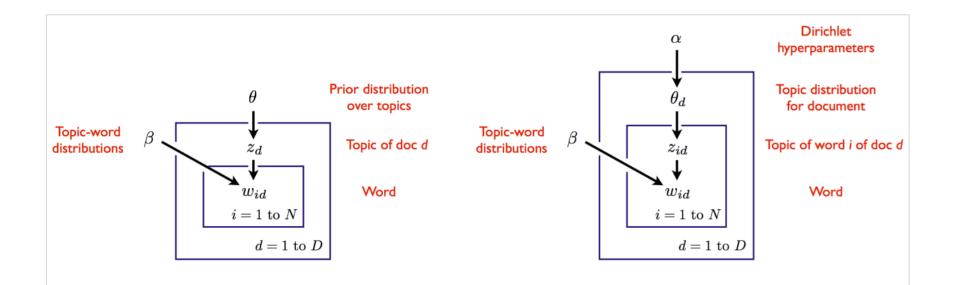
$$\beta_t = \left\{ p(w \mid z = t) \right\}$$



21



Variables within a plate are replicated in a conditionally independent manner



- Model on left is a mixture model
 - Called multinomial naive Bayes (a word can appear multiple times)
 - Document is generated from a single topic
- Model on right (LDA) is an admixture model
 - Document is generated from a <u>distribution</u> over topics

CNN based Sentence Classification

- Input is a sequence of words (variable)
- Output is a class label (fixed)

- Baseline 1:
 - Ignore sequence
 - Ignore semantic information
 - Treat input as a fixed length bag of words
 - This is a fixed size input and output classifier

CNN based Sentence Classification

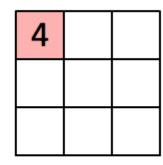
- Baseline 2:
 - Weighted average of the word vectors as a vector for the sentence
 - Still loses word order
 - Retains some semantic information
 - Again, a fixed size input and output classifier

CNN based Sentence Classification

- Can also use Convolutional Neural Network!
 - For NLP, they became popular 2014
 - Less prominent currently due to other techniques
- Recall

1 _{×1}	1 _{×0}	1 _{×1}	0	0
O _{×0}	1 _{×1}	1,0	1	0
0 _{×1}	O _{×0}	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

Image



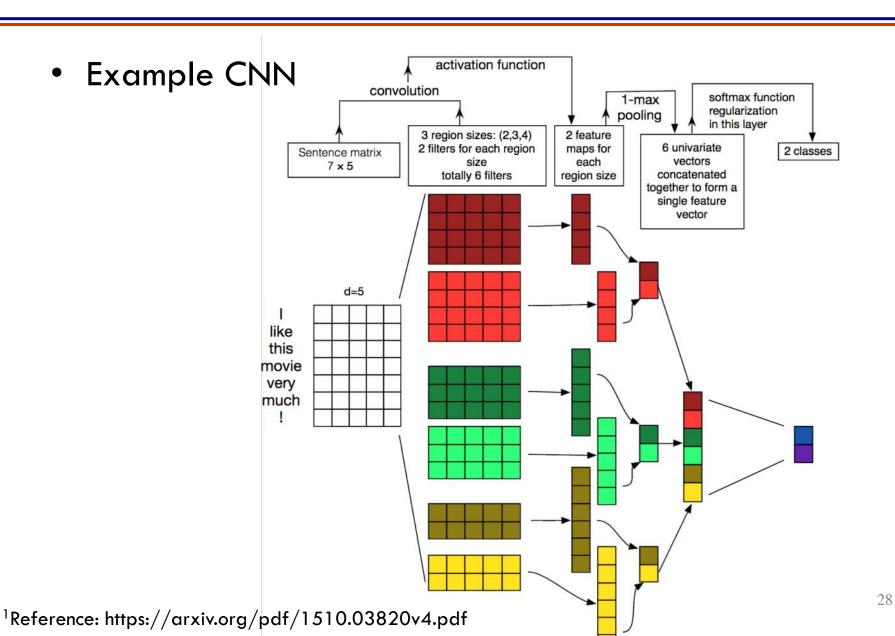
Convolved Feature

Example I: Sentence Classification

- As you already know, CNNs capture
 - Location invariance
 - Example: In images, don't care where the 'cat' is in the input
 - Compositionality
 - Example: In images, lower level features to higher level patterns

- We will represent the sentence as a matrix
 - Each row for one word

Example I: Sentence Classification



Embeddings

A Different Way of Dealing with Words

- Want semantically similar words to be represented similarly
 - This is the idea behind Vector Space Models in NLP
- Distributional Hypothesis (Firth 1957)
 - Words that appear in the same contexts share semantic meaning
- Two types of approaches:
 - Count based (PCA based)
 - Prediction based (creating auxiliary task etc)

Dealing with Words

- A word embedding W: words $\to \mathbb{R}^n$ is a function
 - Parametric
- Dimension n can be high: e.g., 300

- Example:
 - W('university') = (0.3, -0.1, 2.0, 1.1, -1.5, ...)
 - W('class') = (0.5, 1.1, -0.7, 2.5, 0.2, ...)

Learning an Embedding

• How do we learn a good W?

- Start with the same intuitive idea as before
 - Initialize such that W outputs random vectors for each word
 - Change the parameters such that the embedding vectors are meaningful for a task

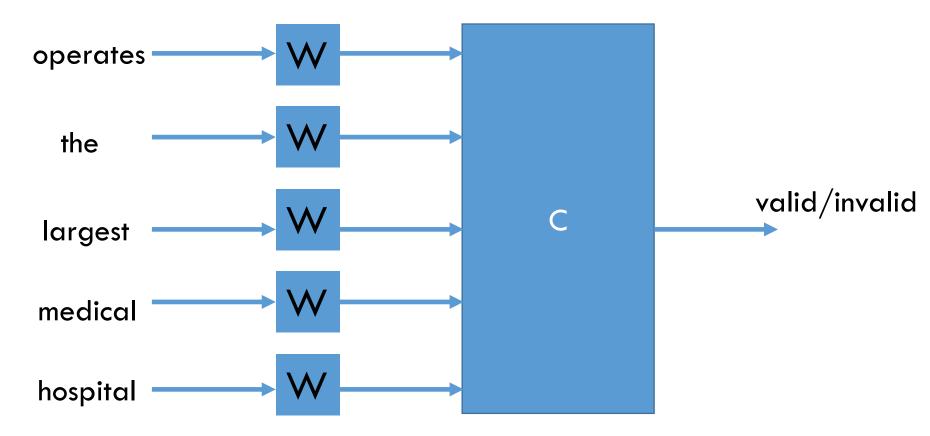
Which Task? (I)

- Train a network to classify whether an input sequence of 5 words is valid or not
 - The input sequence is called an N-gram (5-gram)

- We get data, say from Wikipedia
 - Example: "operates the largest medical school"
- Break 'half' of them by replacing a word in each sequence with a random word
 - Example: "operates the consistently medical school"

Which Task? (II)

- Pass each word through W to get the vectors
- Pass the vectors through C (a classifier)



Which Task? (III)

• In order to do the classification correctly, parameters for W and $\mathcal C$ should be good

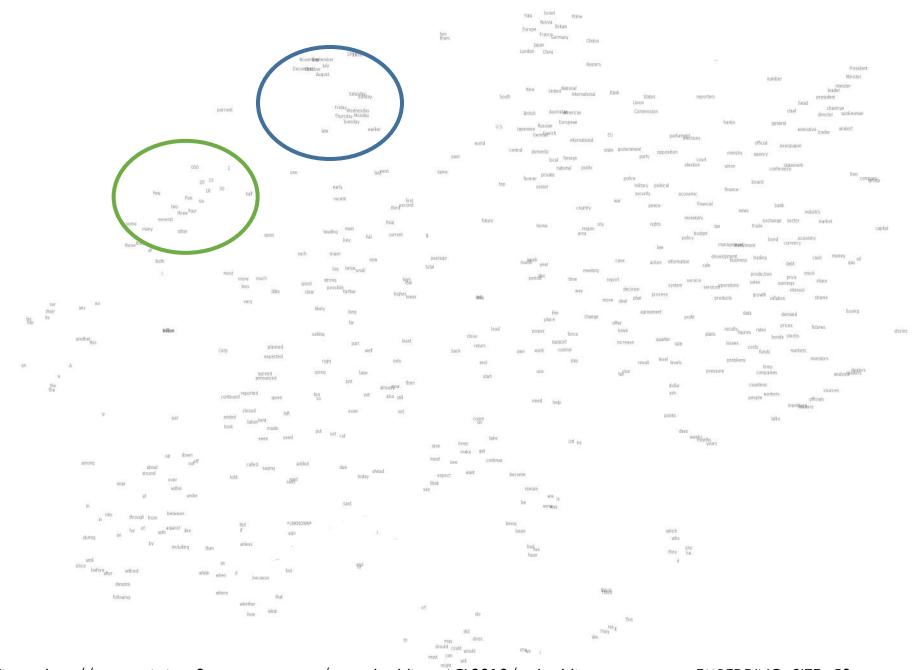
- The task itself is uninteresting and inconsequential
 - We could have defined a different task

• Our objective is to learn a good W

Quality of Embedding (I)

- Say, we learned a good ${\it W}$
 - See Word2Vec or GloVe (for pretrained embeddings)
- How to visualize? Use t-SNE

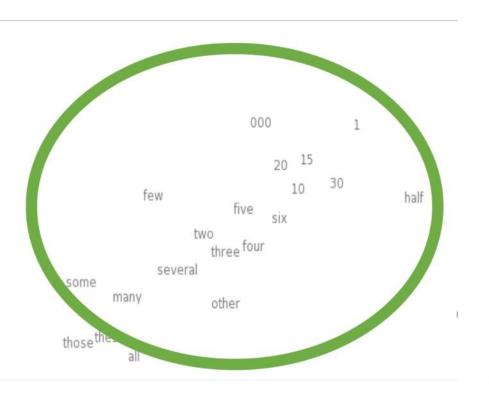
¹Figure: http://metaoptimize.s3.amazonaws.com/cw-embeddings-ACL2010/embeddings-mostcommon.EMBEDDING_SIZE=50.png

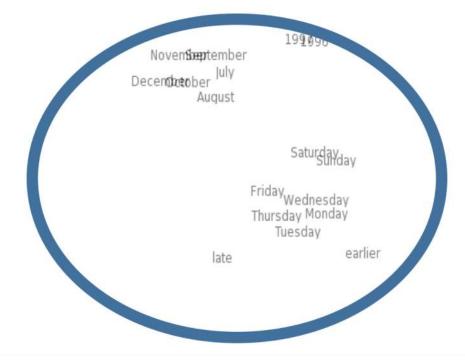


¹Figure: http://metaoptimize.s3.amazonaws.com/cw-embeddings-ACL2010/embeddings-mostcommon.EMBEDDING_SIZE=50.png

Quality of Embedding (II)

We see similar words are close together





Quality of Embedding (III)

- Look at words closest in the embedding to a given word
- 10 nearest neighbors are listed here

FRANCE	JESUS	XBOX	REDDISH	SCRATCHED	MEGABITS
454	1973	6909	11724	29869	87025
AUSTRIA	GOD	AMIGA	GREENISH	NAILED	OCTETS
BELGIUM	SATI	PLAYSTATION	BLUISH	SMASHED	MB/S
GERMANY	CHRIST	MSX	PINKISH	PUNCHED	BIT/S
ITALY	SATAN	IPOD	PURPLISH	POPPED	BAUD
GREECE	KALI	SEGA	BROWNISH	CRIMPED	CARATS
SWEDEN	INDRA	PSNUMBER	GREYISH	SCRAPED	KBIT/S
NORWAY	VISHNU	HD	GRAYISH	SCREWED	MEGAHERTZ
EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGARY	PARVATI	GEFORCE	SILVERY	SLASHED	$_{\rm GBIT/S}$
SWITZERLAND	GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

An Attempt at Intuition (I)

• Is it natural for words with similar meanings to have similar vectors (hence nearest neighbors)?

Example:

- Change "operates the largest medical school" to "operates the biggest medical school"
- If W maps biggest and largest close by
- Then classifier C should still be able to work

An Attempt at Intuition (II)

 Similar words getting mapped to close by vectors is great!

We are not just limited to synonyms

 Example 1: "the inside wall is blue" to "the inside wall is red"

 Example 2: "the inside wall is blue" to "the inside ceiling is red"

How Much Data?

 Clearly, we have to see all words (for whom we need embeddings)

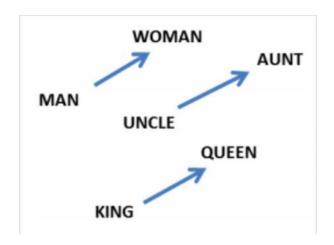
But we need not see their combinations

Analogies allow us to generalize to new combination of words

 This is similar to humans: we have seen all words but have not seen all sentences with those words

Difference of Vectors Property (I)

- Many word embeddings exhibit the following property as a side-effect:
 - Analogies are encoded in difference vectors



$$W(\text{``woman"}) - W(\text{``man"}) \simeq W(\text{``aunt"}) - W(\text{``uncle"})$$

$$W(\text{``woman"}) - W(\text{``man"}) \simeq W(\text{``queen"}) - W(\text{``king"})$$

Difference of Vectors Property (II)

- For a pair of words, subtract their difference and add to another word. For example,
 - $W(\text{"France"}) W(\text{"Paris"}) + W(\text{"Rome"}) \approx W(\text{"Italy"})$

Relationship	Example 1	Example 2	Example 3
	•	•	-
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Use of Embeddings (I)

- Embeddings represent unstructured data automatically in such a way that a subsequent task's performance is good
 - We have already seen image embeddings
 - Here, we are seeing word embeddings

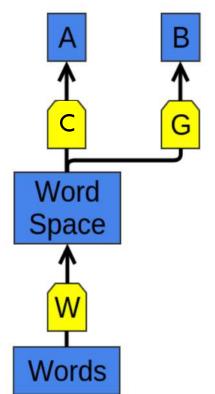
Use of Embeddings (I)

- Embeddings represent unstructured data automatically in such a way that a subsequent task's performance is good
 - We have already seen image embeddings
 - Here, we are seeing word embeddings

- Once a word embedding W is learned, we can use it for many other NLP (Natural Language Processing) tasks
 - Transfer learning (just like for images!)

Use of Embeddings (II)

• Learn a good representation (i.e., W) on some task and use it for other tasks



The use of word representations... has become a key "secret sauce" for the success of many NLP systems in recent years, across tasks including named entity recognition, part-of-speech tagging, parsing, and semantic role labeling. (Luong et al. (2013))

W and F learn to perform task A. Later, G can learn to perform B based on W.

Use of Embeddings (III)

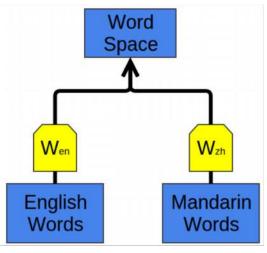
- Key benefit of W
 - Can train using more than one kind of data
- Thus, we can learn a way to map multiple kinds of data into a single representation!
- Example: Bilingual word embedding¹
 - English words
 - Mandarin words
 - Embed both words in the same space

Bilingual Word Embedding (I)

- Train W_{en} and W_{zh} simultaneously
 - Impose the following: words that we know are close translations should be close together
 - Example:

$$W_{en}$$
 ('university') = (0.3, -0.1, 2.0, 1.1, -1.5, ...)

$$W_{zh}('$$
 大学 ') = $(0.2, -0.1, 2.2, 1.0, -1.4, ...)$



¹Pronounciation of 大学: Dàxué

²Figure: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

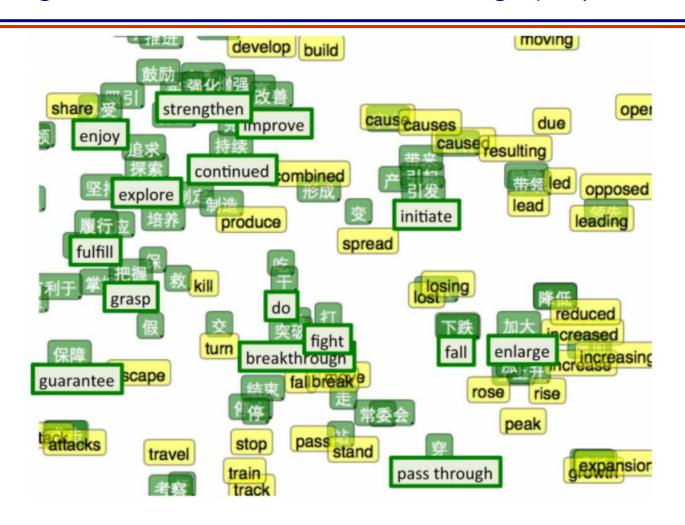
Bilingual Word Embedding (II)

- After training W_{en} and W_{zh} we observe:
 - Words that we didn't know were translations end up close together
 - Example:
 - We did not know 商业 and business are translations. Still we get:

$$W_{en}$$
 ('business') = $(0.7, -0.4, 1.0, 1.8, -0.8, ...)$

$$W_{zh}(' \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) = (0.8, -0.3, 0.9, 2.0, -0.9, ...)$$

Bilingual Word Embedding (III)



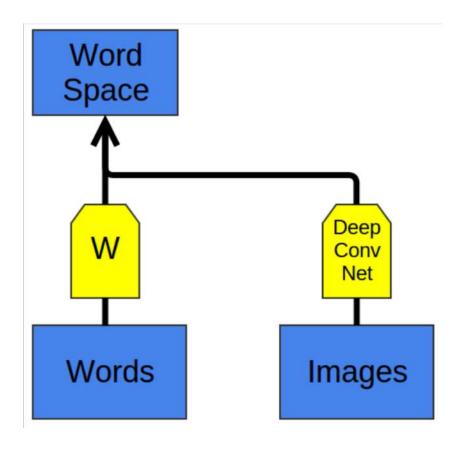
t-SNE visualization of the bilingual word embedding. Green is Chinese, Yellow is English.

 We can also embed very different kinds of data into the same space

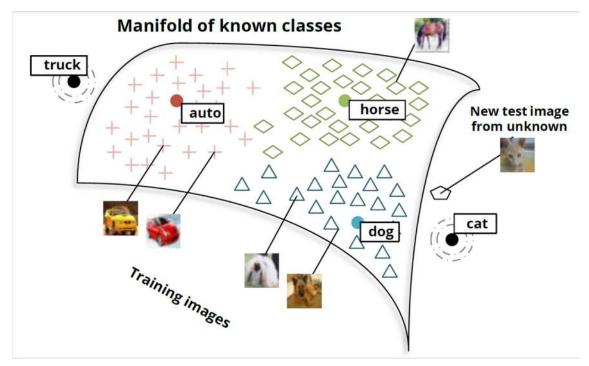
Example:

- Images and words
 - Map the image of an object near the object word vector
 - Map the image of a dog near the dog word vector

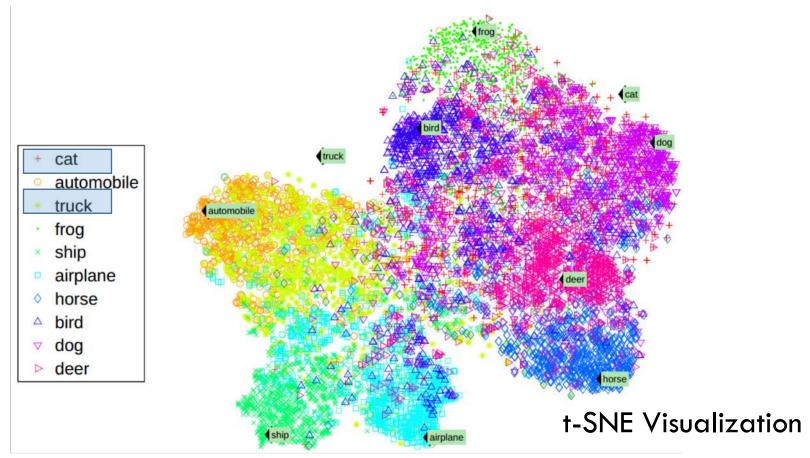
 Essentially the output of the image classifier is not a score vector but a vector in the range(W)



- When we test the model on new classes of images
 - Note: new means not seen in training
- For example, we didn't have images of cats



 Images of cats are mapped to regions where dog vectors are!



Questions?

Word2Vec In Detail

Word2Vector

- A technique proposed by Google in 2013
- Is a predictive method rather than a count based method

 Objective: Vector representations of words that capture their co-occurence statistics

Word2Vector: Two Versions

Continuous Bag of Words and Skip-Gram

 Lets go through the skip-gram model in some detail now

W2V: The Skip-Gram Version

ullet This is a very simple neural network model to learn W

We will train a single hidden layer NN to perform an auxiliary task

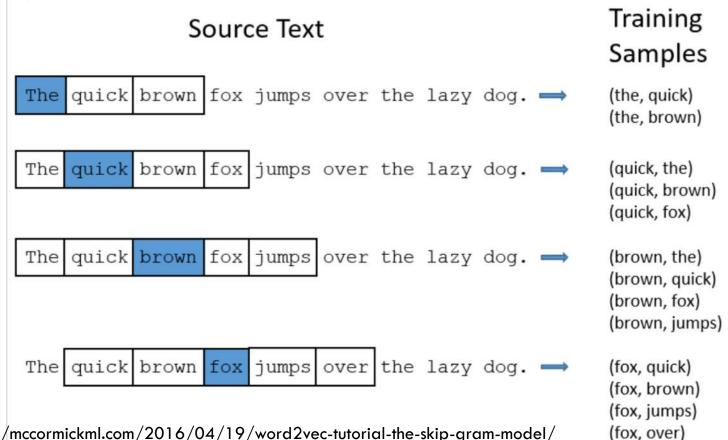
- The goal will be to just learn the weights of the network
 - This will give us W

W2V: The Auxiliary Task

- Task:
 - Pick a word in the middle of a sentence
 - Pick one of the nearby words at random
 - Make network learn probability of every word in our vocab of being this nearby word
- Input: a word pair (one hot encoded)
- Output: normalized scores (of length: vocab size)
- Meaning of 'nearby':
 - Essentially defined using a window size
 - Example: Window size 2 means 2 words to left and 2 to right of the input word are nearby

W2V: The Auxiliary Task

- Feed word pairs
- Example: "The quick brown fox jumps over the lazy dog"

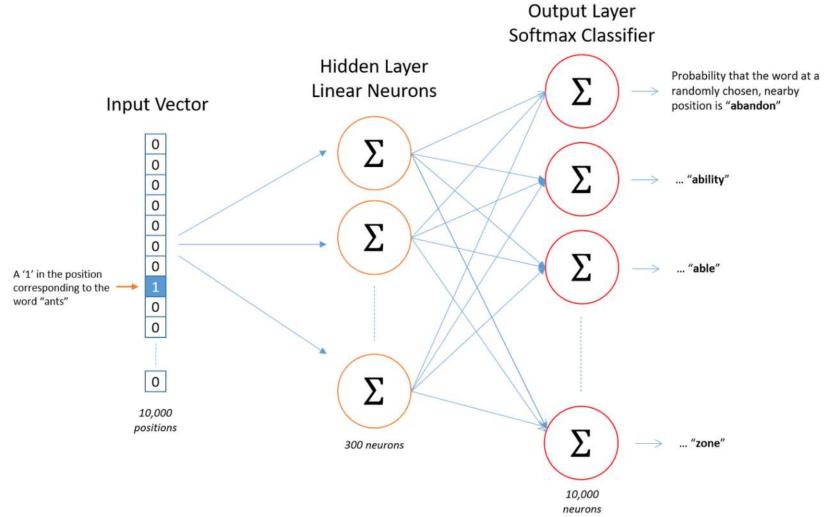


W2V: The Network

- Say we have 10000 words in our vocab
- Then the input word is 10000 dimensional vector
 - Example: Cat word will have 'Cat' coordinate 1, everything else 0
- The true label (word) is also 10000 dimensional vector
- Network outputs 10000 scores which pass through softmax
 - Each coordinate is the probability that a particular word is the randomly selected nearby word

W2V: The Network

Notice: No nonlinearity in the hidden layer!



W2V: The Objective

 The objective is to maximize the normalized score (recall normalization by softmax operation) of the correct context word

- Say our training data is made with T words, each having a context window size 2
 - That is, each word is associated with 4 other words
 - Total training data is 4T
- The objective is $\frac{1}{T}\sum_{t=1}^T\sum_{j\in\{-2,-1,1,2\}}\log p(w_{t+j}|w_t)$

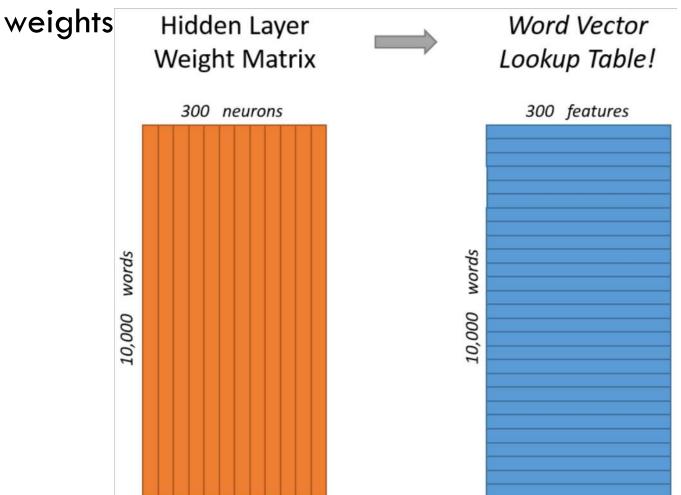
W2V: The Hidden Layer

- Is represented by a weight matrix W_0
 - Lets represent it by its transpose (just for convenience)
 - $h^T = x^T W_0^T = x^T W$ for each example
 - Number of rows of W is 10000
 - Number of columns of W is 300

• Then the rows of W are our word vectors!

W2V: The Hidden Layer

Our real goal was just to learn the hidden layer



W2V: The Lookup

- Say word 'Cat' has coordinate c for some $c \in \{1, ..., 10,000\}$
- If we multiply the 1*10000 dim one hot vector for the word 'Cat' with W
- It will just select the cth row of W
 - The output of the hidden layer is the word vector!

W2V: The Lookup

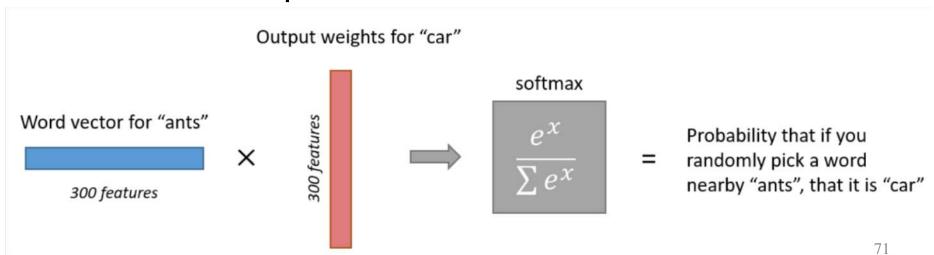
- Say word 'Cat' has coordinate c for some $c \in \{1, ..., 10,000\}$
- If we multiply the 1*10000 dim one hot vector for the word 'Cat' with W
- It will just select the c^{th} row of W
 - The output of the hidden layer is the word vector!
- Example visualization

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 17 & 24 & 1 \\ 23 & 5 & 7 \\ 4 & 6 & 13 \\ 10 & 12 & 19 \\ 11 & 18 & 25 \end{bmatrix} = \begin{bmatrix} 10 & 12 & 19 \end{bmatrix}$$

¹Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

W2V: Auxiliary Task Again

- Output of the network is a bunch of normalized scores (i.e., probabilities)
 - Denote the probability that the this word is a nearby word
- Example:
 - Pick the word vector for 'ants'
 - Pic the output neuron for word 'car'



¹Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

W2V: Intuition for Vectors

- If two different words have similar "contexts"
 - Words that are likely to appear around them
 - Then the output probability vector should be similar
- For output vector to be similar
 - The word vector (weights of hidden layer) should be similar
 - Since the inputs are 1-hamming distance apart always

W2V: Intuition for Vectors

 Word2Vec is capturing nothing but the co-occurence statistics!

- Example:
 - Words like 'university' and 'masters' would have similar contexts, hence similar word vectors

- This will also handle stemming!
 - Example: words like 'car' and 'cars' will have similar vectors because contexts would be similar

W2V: Practice

- The network is relatively large
 - Two weight matrices
 - 300*10000 parameters each

- Need a lot of data to train
- And engineering tricks are needed to deal with data

W2V: Engineering Tricks

- Subsample frequent words
 - Example: Too many pairs like ('the',...). So delete them proportional to how frequent they are
- Treat common phrases as single 'words'
- Optimization trick: negative sampling
 - Only update the weights of neurons corresponding to a few (5-20) non-nearby words
 - These few are sampled inversely proportional to their frequency

W2V: From Google

- 100 Billion words from the Google News Dataset
- Vocab size totals about 3 million!

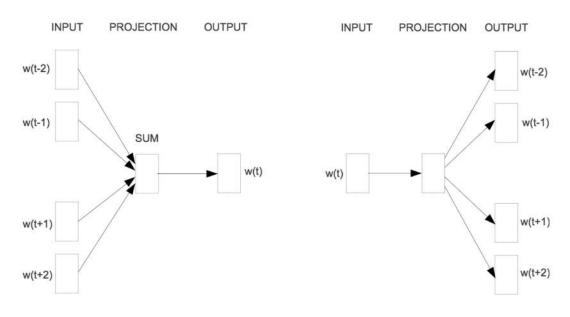
```
Slate_tablet
Entertained
kohl_eyeliner
DC_Probable_Starters
Entertainer
Gas_Powered
```

W2V: From Google

- 100 Billion words from the Google News Dataset
- Vocab size totals about 3 million!

W2V: The CBOW Version

- Continuous Bag of Words (CBOW) version of Word2Vec
 - Essentially, a slightly different prediction task



CBOW Skip-gram

There is another popular embedding called GLoVe

Word2Vec Example Code

- For an implementation in Python see
 - See

```
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/word2vec/word2vec/basic.py
```

- Many other pretrained embeddings are also available
 - See https://github.com/3Top/word2vec-api

NLP Ecosystem in Python

- There are many tools to choose from
 - Gensim, NLTK, SpaCy, TextBlob, Pattern

- Also, there are many traditional NLP tasks and techniques that may be helpful to know about:
 - These include tokenizing, stop words, stemming, Parts-of-speech tagging, chunking and chinking, Named Entity Recognition, lemmatizing and knowing the wordnet ecosystem among others.

Questions?

Summary

- Text processing is very useful in multiple applications
- We saw some models that did not need to understand word meanings
 - Naïve bayes, Markov assumption based, CRF, LDA
- The notion of embedding words (or characters or phrases ...) is useful and such embeddings can be learned
- We saw how Word2Vec embeddings were created

Appendix

LDA: More Intuition (different notation)

Question: given a text document, what topics is it about?

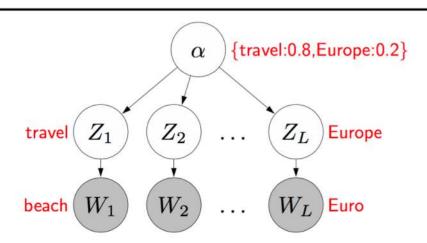
Probabilistic program: latent Dirichlet allocation7

Generate a distribution over topics $\alpha \in \mathbb{R}^K$

For each position $i = 1, \ldots, L$:

Generate a topic $Z_i \sim p(Z_i \mid \alpha)$

Generate a word $W_i \sim p(W_i \mid Z_i)$



Conditional Random Field based Classifier

- Conditional random fields are undirected graphical models of conditional distributions $p(Y \mid X)$
 - Y is a set of target variables
 - X is a set of observed variables
- We typically show the graphical model using just the Y variables
- Potentials are a function of X and Y

Conditional Random Field based Classifier

 A CRF is a Markov network on variables X ∪ Y, which specifies the conditional distribution

$$P(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{c \in C} \phi_c(\mathbf{x}_c, \mathbf{y}_c)$$

with partition function

$$Z(\mathbf{x}) = \sum_{\hat{\mathbf{y}}} \prod_{c \in C} \phi_c(\mathbf{x}_c, \hat{\mathbf{y}}_c).$$

- As before, two variables in the graph are connected with an undirected edge if they appear together in the scope of some factor
- The only difference with a standard Markov network is the normalization term – before marginalized over X and Y, now only over Y

CRF for NLP: Log-linear Terms

- Factors may depend on a large number of variables
- We typically parameterize each factor as a log-linear function,

$$\phi_c(\mathbf{x}_c, \mathbf{y}_c) = \exp{\{\mathbf{w} \cdot \mathbf{f}_c(\mathbf{x}_c, \mathbf{y}_c)\}}$$

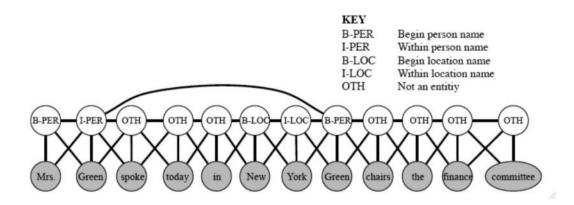
- $\mathbf{f}_c(\mathbf{x}_c, \mathbf{y}_c)$ is a feature vector
- w is a weight vector which is typically learned we will discuss this extensively in later lectures

CRF for NLP: The Task

- Given a sentence, determine the people and organizations involved and the relevant locations:
 - "Mrs. Green spoke today in New York. Green chairs the finance committee."
- Entities sometimes span multiple words. Entity of a word not obvious without considering its context
- CRF has one variable X_i for each word, and Y_i encodes the possible labels of that word
- The labels are, for example, "B-person, I-person, B-location, I-location, B-organization, I-organization"
 - Having beginning (B) and within (I) allows the model to segment adjacent entities

CRF for NLP: The Task

The graphical model looks like (called a *skip-chain CRF*):



There are three types of potentials:

- $\phi^1(Y_t, Y_{t+1})$ represents dependencies between neighboring target variables [analogous to transition distribution in a HMM]
- $\phi^2(Y_t, Y_{t'})$ for all pairs t, t' such that $x_t = x_{t'}$, because if a word appears twice, it is likely to be the same entity
- $\phi^3(Y_t, X_1, \dots, X_T)$ for dependencies between an entity and the word sequence [e.g., may have features taking into consideration capitalization]

Notice that the graph structure changes depending on the sentence!