
Advanced Prediction
Models

Deep Learning, Graphical Models and Reinforcement
Learning

CVPR 2017 Best Paper

2

Today’s Outline

• Introduction to Natural Language Processing

• Models with Simple Representations

• Word Embeddings and Word2Vec

3

Introduction to Natural
Language Processing

4

Natural Language Processing (NLP)

• Concerns will all aspects of natural languages

• We will only sample a very narrow set of topics in this
area

• We will sample a few ways to deal with text

• Text is a sequence of symbols

• Naïve way: represent them as one-hot encoded
vectors

• We will see some better methods today

5
1Figure: https://github.com/oxford-cs-deepnlp-2017/lectures

Motivation: Machine Translation

6
1Figure: https://github.com/oxford-cs-deepnlp-2017/lectures

Motivation: Query Answering

7
1Figure: https://github.com/oxford-cs-deepnlp-2017/lectures

Motivation: Speech to Speech

8
1Figure: https://github.com/oxford-cs-deepnlp-2017/lectures

Motivation: Visual Query Answering

9
1Figure: https://github.com/oxford-cs-deepnlp-2017/lectures

Motivation: Harder Text Problems

10
1Figure: https://github.com/oxford-cs-deepnlp-2017/lectures

Models with Simple
Representations

11

Side-stepping Word-word Relationships

• We will look at a few models that

• Don’t explicitly account for word-word relationships

• These are:

• Naïve Bayes Spam Filter

• Markov Language Model

• Latent Dirichlet Allocation

• Conditional Random Field based Classifier (appendix)

• CNN based Sentence Classifier

12

Naïve Bayes Spam Filter

13

1Reference: Alex Smola (2011)

Naïve Bayes Spam Filter

14

1Reference: Alex Smola (2011)

Naïve Bayes Spam Filter

15
1Reference: Alex Smola (2011)

A Character-level Language Markov Model

• Character-level language model allows you to
generate new text

• It can be modeled using a maximum likelihood based
method

• Pick a fixed order = 2

• For a training sequence, e.g., {h,e,l,l,o}

• Compute !({${|{ℎ, (}) =
#{-,.,/}

#{.,/}

• Do this for every three characters in the
vocabulary

• Generate new text by sampling!

16

Aside: Dirichlet Distribution

17

Latent Dirichlet Allocation

18

1Reference: David Sontag (2013)

Latent Dirichlet Allocation

19
1Reference: David Sontag (2013)

Latent Dirichlet Allocation

20

1Reference: David Sontag (2013)

Latent Dirichlet Allocation

21

1Reference: David Sontag (2013)

Latent Dirichlet Allocation

22

1Reference: David Sontag (2013)

Latent Dirichlet Allocation

23

1Reference: David Sontag (2013)

CNN based Sentence Classification

• Input is a sequence of words (variable)

• Output is a class label (fixed)

• Baseline 1:

• Ignore sequence

• Ignore semantic information

• Treat input as a fixed length bag of words

• This is a fixed size input and output classifier

24

CNN based Sentence Classification

• Baseline 2:

• Weighted average of the word vectors as a vector
for the sentence

• Still loses word order

• Retains some semantic information

• Again, a fixed size input and output classifier

25

CNN based Sentence Classification

• Can also use Convolutional Neural Network!

• For NLP, they became popular 2014

• Less prominent currently due to other techniques

• Recall

26
1Figure: http://deeplearning.stanford.edu/

Example I: Sentence Classification

• As you already know, CNNs capture

• Location invariance

• Example: In images, don’t care where the ‘cat’
is in the input

• Compositionality

• Example: In images, lower level features to
higher level patterns

• We will represent the sentence as a matrix

• Each row for one word

27

1Reference: https://arxiv.org/pdf/1408.5882.pdf

Example I: Sentence Classification

• Example CNN

28

1Reference: https://arxiv.org/pdf/1510.03820v4.pdf

Embeddings

29

A Different Way of Dealing with Words

• Want semantically similar words to be represented
similarly

• This is the idea behind Vector Space Models in NLP

• Distributional Hypothesis (Firth 1957)

• Words that appear in the same contexts share
semantic meaning

• Two types of approaches:

• Count based (PCA based)

• Prediction based (creating auxiliary task etc)

30

1Reference: https://www.tensorflow.org/tutorials/word2vec/

Dealing with Words

• A word embedding !: words → ℝ% is a function

• Parametric

• Dimension & can be high: e.g., 300

• Example:

• !(‘university’) = 0.3, −0.1,2.0,1.1, −1.5, …

• !(‘class’) = (0.5,1.1, −0.7,2.5,0.2, …)

31

Learning an Embedding

• How do we learn a good !?

• Start with the same intuitive idea as before

• Initialize such that ! outputs random vectors for
each word

• Change the parameters such that the embedding
vectors are meaningful for a task

32

Which Task? (I)

• Train a network to classify whether an input sequence
of 5 words is valid or not

• The input sequence is called an N-gram (5-gram)

• We get data, say from Wikipedia

• Example: “operates the largest medical school”

• Break ‘half’ of them by replacing a word in each
sequence with a random word

• Example: “operates the consistently medical
school”

33

Which Task? (II)

• Pass each word through W to get the vectors

• Pass the vectors through C (a classifier)

34

W

W

W

W

W

C

the

operates

medical

largest

hospital

valid/invalid

Which Task? (III)

• In order to do the classification correctly, parameters
for ! and " should be good

• The task itself is uninteresting and inconsequential

• We could have defined a different task

• Our objective is to learn a good !

35

Quality of Embedding (I)

• Say, we learned a good !

• See Word2Vec or GloVe (for pretrained
embeddings)

• How to visualize? Use t-SNE

36
1Reference for t-SNE: http://lvdmaaten.github.io/tsne/

37
1Figure: http://metaoptimize.s3.amazonaws.com/cw-embeddings-ACL2010/embeddings-mostcommon.EMBEDDING_SIZE=50.png

38
1Figure: http://metaoptimize.s3.amazonaws.com/cw-embeddings-ACL2010/embeddings-mostcommon.EMBEDDING_SIZE=50.png

Quality of Embedding (II)

• We see similar words are close together

39

Quality of Embedding (III)

• Look at words closest in the embedding to a given
word

• 10 nearest neighbors are listed here

40
1Figure: https://arxiv.org/pdf/1103.0398v1.pdf Page 23

An Attempt at Intuition (I)

• Is it natural for words with similar meanings to have
similar vectors (hence nearest neighbors)?

• Example:

• Change “operates the largest medical school” to
“operates the biggest medical school”

• If ! maps biggest and largest close by

• Then classifier " should still be able to work

41
1Reference: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

An Attempt at Intuition (II)

• Similar words getting mapped to close by vectors is
great!

• We are not just limited to synonyms

• Example 1: “the inside wall is blue” to “the inside wall
is red”

• Example 2: “the inside wall is blue” to “the inside
ceiling is red”

42
1Reference: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

How Much Data?

• Clearly, we have to see all words (for whom we need
embeddings)

• But we need not see their combinations

• Analogies allow us to generalize to new combination
of words

• This is similar to humans: we have seen all words but
have not seen all sentences with those words

43
1Reference: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

Difference of Vectors Property (I)

• Many word embeddings exhibit the following
property as a side-effect:

• Analogies are encoded in difference vectors

44
1Reference: https://www.aclweb.org/anthology/N/N13/N13-1090.pdf

Difference of Vectors Property (II)

• For a pair of words, subtract their difference and add
to another word. For example,
• !(“France”) – !(“Paris”) +!(“Rome”) ≈ !(“Italy”)

45
1Reference: https://arxiv.org/pdf/1301.3781.pdf

Use of Embeddings (I)

• Embeddings represent unstructured data
automatically in such a way that a subsequent task’s
performance is good

• We have already seen image embeddings

• Here, we are seeing word embeddings

• Once a word embedding ! is learned, we can use it
for many other NLP (Natural Language Processing)
tasks

• Transfer learning (just like for images!)

46

Use of Embeddings (I)

• Embeddings represent unstructured data
automatically in such a way that a subsequent task’s
performance is good

• We have already seen image embeddings

• Here, we are seeing word embeddings

• Once a word embedding ! is learned, we can use it
for many other NLP (Natural Language Processing)
tasks

• Transfer learning (just like for images!)

47

Use of Embeddings (II)

• Learn a good representation (i.e., !) on some task
and use it for other tasks

48

C

1Figure: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

Use of Embeddings (III)

• Key benefit of !

• Can train using more than one kind of data

• Thus, we can learn a way to map multiple kinds of
data into a single representation!

• Example: Bilingual word embedding1

• English words

• Mandarin words

• Embed both words in the same space

49
1Reference: http://ai.stanford.edu/~wzou/emnlp2013_ZouSocherCerManning.pdf

Bilingual Word Embedding (I)

• Train !"# and !$% simultaneously

• Impose the following: words that we know are
close translations should be close together

• Example:

50

!"#(‘university’) = 0.3, −0.1,2.0,1.1, −1.5, …

!$%(‘ ’) = 0.2, −0.1,2.2,1.0, −1.4, …

2Figure: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

1Pronounciation of : Dàxué

Bilingual Word Embedding (II)

• After training !"# and !$% we observe:

• Words that we didn’t know were translations end
up close together

• Example:

• We did not know and business are
translations. Still we get:

51

!"#(‘business’) = 0.7, −0.4,1.0,1.8, −0.8, …

!$%(‘ ’) = 0.8, −0.3,0.9,2.0, −0.9, …

1Pronounciation of : Shāngyè

Bilingual Word Embedding (III)

52
1Reference: http://ai.stanford.edu/~wzou/emnlp2013_ZouSocherCerManning.pdf

General Shared Embeddings

• We can also embed very different kinds of data into
the same space

• Example:

• Images and words

• Map the image of an object near the object
word vector

• Map the image of a dog near the dog word
vector

53

General Shared Embeddings

• Essentially the output of the image classifier is not a
score vector but a vector in the range(W)

54
1Figure: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

General Shared Embeddings

• When we test the model on new classes of images

• Note: new means not seen in training

• For example, we didn’t have images of cats

55
1Figure: http://nlp.stanford.edu/~socherr/SocherGanjooManningNg_NIPS2013.pdf

General Shared Embeddings

• Images of cats are mapped to regions where dog
vectors are!

56
1Figure: http://nlp.stanford.edu/~socherr/SocherGanjooManningNg_NIPS2013.pdf

t-SNE Visualization

Questions?

57

Word2Vec In Detail

58

Word2Vector

• A technique proposed by Google in 2013

• Is a predictive method rather than a count based
method

• Objective: Vector representations of words that
capture their co-occurence statistics

59

Word2Vector: Two Versions

• Continuous Bag of Words and Skip-Gram

• Lets go through the skip-gram model in some detail
now

60

W2V: The Skip-Gram Version

• This is a very simple neural network model to learn !

• We will train a single hidden layer NN to perform an
auxiliary task

• The goal will be to just learn the weights of the
network

• This will give us !

61

1Reference: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

W2V: The Auxiliary Task

• Task:
• Pick a word in the middle of a sentence
• Pick one of the nearby words at random
• Make network learn probability of every word in

our vocab of being this nearby word

• Input: a word pair (one hot encoded)

• Output: normalized scores (of length: vocab size)

• Meaning of ‘nearby’:
• Essentially defined using a window size
• Example: Window size 2 means 2 words to left

and 2 to right of the input word are nearby
62

W2V: The Auxiliary Task

• Feed word pairs

• Example: “The quick brown fox jumps over the lazy
dog”

63

1Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

W2V: The Network

• Say we have 10000 words in our vocab

• Then the input word is 10000 dimensional vector

• Example: Cat word will have ’Cat’ coordinate 1,
everything else 0

• The true label (word) is also 10000 dimensional
vector

• Network outputs 10000 scores which pass through
softmax

• Each coordinate is the probability that a particular
word is the randomly selected nearby word

64

W2V: The Network

• Notice: No nonlinearity in the hidden layer!

65

1Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

W2V: The Objective

• The objective is to maximize the normalized score
(recall normalization by softmax operation) of the
correct context word

• Say our training data is made with ! words, each
having a context window size 2

• That is, each word is associated with 4 other words

• Total training data is 4!

• The objective is
$

%
∑'($
% ∑)∈{,-,,$,$,-} log 3(5'6)|5')

66

W2V: The Hidden Layer

• Is represented by a weight matrix !"

• Lets represent it by its transpose (just for
convenience)

• ℎ
$
= &

$
!"

$
= &

$
! for each example

• Number of rows of ! is 10000

• Number of columns of ! is 300

• Then the rows of ! are our word vectors!

67

W2V: The Hidden Layer

• Our real goal was just to learn the hidden layer
weights

68

1Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

W2V: The Lookup

• Say word ‘Cat’ has coordinate ! for some ! ∈
{1, … , 10,000}

• If we multiply the 1*10000 dim one hot vector for the
word ‘Cat’ with W

• It will just select the !)* row of W

• The output of the hidden layer is the word vector!

• Example visualization

69

1Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

W2V: The Lookup

• Say word ‘Cat’ has coordinate ! for some ! ∈
{1, … , 10,000}

• If we multiply the 1*10000 dim one hot vector for the
word ‘Cat’ with W

• It will just select the !)* row of W

• The output of the hidden layer is the word vector!

• Example visualization

70

1Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

W2V: Auxiliary Task Again

• Output of the network is a bunch of normalized scores
(i.e., probabilities)

• Denote the probability that the this word is a
nearby word

• Example:

• Pick the word vector for ‘ants’

• Pic the output neuron for word ’car’

71

1Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

W2V: Intuition for Vectors

• If two different words have similar “contexts”

• Words that are likely to appear around them

• Then the output probability vector should be
similar

• For output vector to be similar

• The word vector (weights of hidden layer) should
be similar

• Since the inputs are 1-hamming distance apart
always

72

W2V: Intuition for Vectors

• Word2Vec is capturing nothing but the co-occurence
statistics!

• Example:

• Words like ‘university’ and ‘masters’ would have
similar contexts, hence similar word vectors

• This will also handle stemming!

• Example: words like ‘car’ and ‘cars’ will have
similar vectors because contexts would be similar

73

W2V: Practice

• The network is relatively large

• Two weight matrices

• 300*10000 parameters each

• Need a lot of data to train

• And engineering tricks are needed to deal with data

74

1Reference: http://arxiv.org/pdf/1310.4546.pdf

W2V: Engineering Tricks

• Subsample frequent words
• Example: Too many pairs like (‘the’,…). So delete them

proportional to how frequent they are

• Treat common phrases as single ‘words’

• Optimization trick: negative sampling

• Only update the weights of neurons corresponding
to a few (5-20) non-nearby words

• These few are sampled inversely proportional to
their frequency

75

W2V: From Google

• 100 Billion words from the Google News Dataset

• Vocab size totals about 3 million!

76

1Reference: https://github.com/chrisjmccormick/inspect_word2vec/tree/master/vocabulary
2word2Vec file: https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit

W2V: From Google

• 100 Billion words from the Google News Dataset

• Vocab size totals about 3 million!

77

1Reference: https://github.com/chrisjmccormick/inspect_word2vec/tree/master/vocabulary
2word2Vec file: https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit

W2V: The CBOW Version

• Continuous Bag of Words (CBOW) version of
Word2Vec

• Essentially, a slightly different prediction task

• There is another popular embedding called GLoVe

78
1Figure: https://arxiv.org/pdf/1301.3781.pdf
2Reference for GLoVe: http://nlp.stanford.edu/projects/glove/

Word2Vec Example Code

• For an implementation in Python see

• See
https://github.com/tensorflow/tensorflow/blob/master
/tensorflow/examples/tutorials/word2vec/word2vec_
basic.py

• Many other pretrained embeddings are also available

• See https://github.com/3Top/word2vec-api

79

NLP Ecosystem in Python

• There are many tools to choose from

• Gensim, NLTK, SpaCy, TextBlob, Pattern

• Also, there are many traditional NLP tasks and
techniques that may be helpful to know about:

• These include tokenizing, stop words, stemming,
Parts-of-speech tagging, chunking and chinking,
Named Entity Recognition, lemmatizing and
knowing the wordnet ecosystem among others.

80

Questions?

81

Summary

• Text processing is very useful in multiple applications

• We saw some models that did not need to understand
word meanings

• Naïve bayes, Markov assumption based, CRF, LDA

• The notion of embedding words (or characters or
phrases …) is useful and such embeddings can be
learned

• We saw how Word2Vec embeddings were created

82

Appendix

83

LDA: More Intuition (different notation)

84

1Reference: Percy Liang, CS221 (2015)

Conditional Random Field based Classifier

85
1Reference: David Sontag (2013)

Conditional Random Field based Classifier

86
1Reference: David Sontag (2013)

CRF for NLP: Log-linear Terms

87

1Reference: David Sontag (2013)

CRF for NLP: The Task

88

1Reference: David Sontag (2013)

and !"

CRF for NLP: The Task

89
1Reference: David Sontag (2013)

