
Advanced Prediction
Models

Deep Learning, Graphical Models and Reinforcement
Learning

Today’s Outline

• Recurrent Neural Networks

• Long-Short Term Memory based RNNs

• Sequence to Sequence Learning and other RNN
Applications

2

Recurrent Neural

Network

3

RNN Application Categories

• Input: Red, Output: Blue, RNN’s state: Green

4
1Figure: 1Figure: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Classi
fie

r

Fix
ed

 in
put

Fix
ed

 ou
tput

Seque
nce

 outp
ut

E.g
.: I

mage ca
ptio

nin
g

Seque
nce

 in
put

E.g
.: S

enti
ment

ana
lysis

Seque
nce

 in
put

Seque
nce

 outp
ut

E.g
.: M

achi
ne

 tr
ansl

atio
n

Seque
nce

 in
put

Seque
nce

 outp
ut

E.g
.: V

ideo cl
assi

fic
atio

n

The Idea of Persistence (I)

• Our thoughts have persistence

• We understand the present given what we have seen
in the past

• Feedforward neural networks and CNNs don’t
explicitly model persistence

• Example:

• classify every scene in a movie

• Output size (number of classes) is fixed

• Number of layers is fixed

• Unclear how a CNN can use information from
previous scenes 5

The Idea of Persistence (II)

• Architectures called Recurrent Neural Networks
address the idea of persistence explicitly

6
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unrolled Diagrams (I)

• Let ! repersent a base network with two inputs and
two outputs

• A loop based drawing of the architecture is as
follows:

7
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unrolled Diagrams (II)

• Here is the unrolled representation

8
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unrolled Diagrams (III)

• This sequential or repetitive structure is useful for
working with sequences

• Of images

• Of words

9
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unrolled Diagrams (V)

• At a stage, they accept an input and give an output,
which are parts of sequences

10
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Output

Input

! ! ! !

Vanilla RNN (I)

• Some quick notation

• Dark arrow represents a vector

• Box represents a (fully connected hidden) layer

11
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanilla RNN (II)

• Unrolled representation is key to understanding

• For vanilla RNN it is:

• Assuming a single hidden layer with tanh
nonlinearity

12
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Vanilla RNN using Numpy

13

• Training an RNN means finding ! (e.g., " and #) that give
rise to a desired behavior quantified by a loss function

Language Model (LM) Example

• Build a character-level language model
• Give RNN a large text dataset
• Model the probability of the next character given a

sequence of previous characters

• Application: allows us to generate new text, can be used
as a prior for classification tasks

• Note: This is a toy example

14
1Reference: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

LM Example: Data and Embedding

• Vocabulary: {h,e,l,o}

• Training sequence: {h,e,l,l,o}

• Four training examples:

• P(e|h) should be high

• P(l|he) should be high

• P(l|hel) should be high

• P(o|hell) should be high

• Embedding:

• Encode each character as a 4-dimensional vector
15

1Reference: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

LM Example: RNN

• Feed each vector into the RNN

• Output is a sequence of vectors
• Let dimension be 4
• Interpret as the confidence that the corresponding character is

the next in sequence 16

1Figure: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

We want green numbers
to be high and red
numbers to be low

LM Example: RNN

• Define loss as the cross entropy loss (i.e., multiclass
logistic) on every output vector simultaneously

• When first time {l} is input, the next character should
be {l}

• When the second time {l} is input, the next character
should be {o}

• Hence, we need state/persistence, which the RNN
hopefully captures

17

Questions?

18

Today’s Outline

• Recurrent Neural Networks

• Long-Short Term Memory based RNNs

• Sequence to Sequence Learning and other RNN
Applications

19

Long-Short Term Memory
RNNs

20

Long Term vs Short Term (I)

• Why are we looking at RNN?

• Hypothesis: enable the network to connect past
information to the current

• Can they persist both long and short range
information?

• It depends…

21

Long Term vs Short Term (II)

• Consider a model predicting next word based on
previous words

• Case A:

• R(“… advanced prediction”) = “models”

• Here, the immediate preceding words are helpful

• Case B:

• R(“I went to UIC… I lived in [?]”) = “Chicago”

• Here, more context is needed

• Recent info suggests [?] is a place.

• Need the context of UIC from further back 22

Long Term vs Short Term (II)

• Consider a model predicting next word based on
previous words

• Case A:

• R(“… advanced prediction”) = “models”

• Here, the immediate preceding words are helpful

• Case B:

• R(“I went to UIC… I lived in [?]”) = “Chicago”

• Here, more context is needed

• Recent info suggests [?] is a place.

• Need the context of UIC from further back 23

Long Term vs Short Term (III)

• Consider a model predicting next word based on
previous words

• Case A:

• Case B:

24
1Figures: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

A Special RNN: LSTM

• The gap between the relevant information and the point
where it is needed can become unbounded

• Empirical observation: Vanilla RNNs seem unable to learn to
connect long range information.

• This is a reason why we are looking at LSTMs (Long Short
Term Memory Cells)

25
1Reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Long Short Term Memory based RNN

• Potentially capable of learning long-term
dependencies

• Designed to avoid the long range issue that a vanilla
RNN faces

• How do they do that? We will address that now

26

LSTM: Block Level

• LSTM RNN have a similar structure to vanilla RNNs

• Only the repeating module is different

• Instead of a single neural layer, they have four

27
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Recall Notation

• Dark arrow represents a vector, output from one layer
and input to another

• Circle represents element-wise operations

• Example: sum of two vectors

• Box represents a (fully connected) hidden layer

28
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Cell State (I)

• There is a notion of cell state

• Horizontal line

29
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Cell State (I)

• There is a notion of cell state

• Horizontal line

30

LSTM: Cell State (II)

• Cell state:

• Runs straight down the unrolled network

• Minor interactions

• Information could flow along it unchanged

31
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Gates (I)

• The LSTM can add or remove information to the cell
state by regulating gates

• Gates optionally let information through

• Made of a sigmoid NN layer and a pointwise
multiplication

32
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Gates (I)

• The LSTM can add or remove information to the cell
state by regulating gates

• Gates optionally let information through

• Made of a sigmoid NN layer and a pointwise
multiplication

33

Mathematically,
! ", $ = $ ⊗ '()" + +)

$

"

!(", $)

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Gates (II)

• Gate:

• The sigmoid layer outputs numbers in (0,1)

• Determines how much of each component to let
through

• 0 means ‘do not let input through’

• 1 means ‘let input through’

34
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

&

'

((', &)

Mathematically,
(', & = & ⊗ +(,' + .)

LSTM: Gates (III)

• LSTM has three gates to control the cell state

35
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

!

"

#(", !)

LSTM: Forget Old Information

• First Step: what information to throw away from cell
state

• Decided by forget gate layer

• Input: ℎ"#$ and %"
• Output: a vector with entries in (0,1)

corresponding to entries in +"#$
• 1 corresponds to keep the input

• 0 corresponds to get rid of the input

36

LSTM: Forget Old Information

• Example: In the task of predicting the next word
based on all previous ones

• Cell state may include gender of current subject

• This will be useful to predict/use correct
pronouns (male: he, female: she)

• When a new subject is observed

• Need to forget the gender of old subject

37

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Remember New Information

• Next step: decide what new information we will store
in cell state

• Two ingredients

• Input gate layer

• Tanh layer

• Input gate layer

• Decides which values to update

• Tanh layer

• Creates a vector of new candidate values !"# that
can be added to the cell state 38

LSTM: Remember New Information

• Next step: decide what new information we will store
in cell state

• Two ingredients

• Input gate layer

• Tanh layer

• Input gate layer

• Decides which values to update

• Tanh layer

• Creates a vector of new candidate values !"# that
can be added to the cell state 39

LSTM: Remember New Information

• Next step: decide what new information we will store
in cell state

• Two ingredients

• Input gate layer

• Tanh layer

• Input gate layer

• Decides which values to update

• Tanh layer

• Creates a vector of new candidate values !"# that
can be added to the cell state 40

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Remember New Information

• Combine !"# with the output $# of the input gate layer to
get $#⊗ !"#

• In the language model example
• Add the gender of the new subject to the cell state (this

replaces the old one we are forgetting)
41

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Forget and Remember

• Last step:

• Modify the cell state

• !" ⊗ $%" are the new values, scaled by how much we
want to update each coordinate of cell state

42

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Output

• Output a filtered or transformed version of cell state

• Two stages:

• Pass the cell state through a tanh layer

• Scale it with a sigmoid layer output

• The sigmoid layer decides what parts of the
cell state we will output

43

LSTM: Output

• In the language model example

• Since it just saw a new subject, it may output
information related to actions (verbs)

• Output whether the subject is singular or plural
so verb can be modified appropriately

44

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM: Architecture Summary

45

Forget Modify cell state

Remember Output

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Other Variations in the Family of RNNs (I)

• The vanilla RNN and the LSTM we saw are just one of
many variations

• Example: Gated Recurrent Unit (GRU)

• Combines the forget and input gates

• Merges the cell state and hidden state

• …

46
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Other Variations in the Family of RNNs (II)

• One can also go deep by stacking RNNs on top of
each other

47

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Other Variations in the Family of RNNs (II)

• One can also go deep by stacking RNNs on top of
each other

48

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Other Variations in the Family of RNNs (II)

• One can also go deep by stacking RNNs on top of
each other

49
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Other Variations in the Family of RNNs (III)

• Extensive investigation has been done to see which
variations are the best1,2

• As a practitioner, use popular architectures as starting
points

• To recap, we are studying RNNs because we:

• Want a notion of state/persistence to capture long
term dependence

• Want to process variable length sequences

50

1Reference: http://arxiv.org/pdf/1503.04069.pdf
2Reference: http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

Training RNNs

• These networks consist of differentiable operations

• Suitably define loss

• Run backpropagation to find best parameters

51

LSTM Recap: Accounting for Dimensions

• Think of ℎ" as 2 dimensional and cell state as 2
dimensional

52
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Questions?

53

Today’s Outline

• Recurrent Neural Networks

• Long-Short Term Memory based RNNs

• Sequence to Sequence Learning and other RNN
Applications

54

Sequence to Sequence
Learning and other RNN
Applications

55

Example I: Sentence Classification

• We saw how to use a CNN for this task.

• Now, we can use an RNN as well:

56
1Additional Info: http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

Example II: Image Captioning

• Use CNNs and RNNs together to go from one data
type to another

57
1Figure: http://cs231n.stanford.edu/ Lecture 10

Example II: Image Captioning

58
1Figure: http://cs231n.stanford.edu/ Lecture 10

Example II: Image Captioning

59
1Figure: http://cs231n.stanford.edu/ Lecture 10

Example II: Image Captioning

60
1Figure: http://cs231n.stanford.edu/ Lecture 10

Example II: Image Captioning

61
1Figure: http://cs231n.stanford.edu/ Lecture 10

Example II: Image Captioning

62
1Figure: http://cs231n.stanford.edu/ Lecture 10

Example III: Auto-Reply

• In this family of applications, we want mapping
between variable length inputs to variable length
outputs

• Other applications:

• Translation

• Summarizing

• Speech transcription

• Question answering

63

Example III: Auto-Reply

• Auto-reply is a feature
where the computer
reads your email and
responds appropriately

64
1Figure: Quoc Le, Google Brain

Example III: Auto-Reply

• First version

• Note that the number of classes in output is the
number of words in the vocab!

65
1Figure: Quoc Le, Google Brain

Example III: Auto-Reply

• Second version

• Feed back the true output at each stage during initial training

66
1Figure: Quoc Le, Google Brain

Encoder Decoder

Example III: Auto-Reply

• As we saw with image captioning example,

• Given input sequence !, we first output "# which has
the highest probability

• Given ! and "#, we output "$, which has the highest
probability

• This is greedy

• Does not correct for mistakes

67
1Figure: Quoc Le, Google Brain

Example III: Auto-Reply

• Beam Search Decoding

• Retain ! best candidate output sequences up to the time we
see < end >

68
1Figure: Quoc Le, Google Brain

Example III: Auto-Reply

• Issue with second version: ℎ" is the only link

• In fact, it is a fixed length vector. Whereas input is
variable length

• Can be fixed with an ‘attention’ layer

69
1Figure: Quoc Le, Google Brain

Encoder Decoder

Example IV: Speech Transcription

• Traditional pipeline has

• Acoustic model !(#$%&$%|(#)*)

• Language model !((#)*)

• Feature engineering

• …

• Sequence to sequence learning can do ‘end-to-end’
without much feature engineering or blockwise
modeling

70

Example IV: Speech Transcription

• What we want is the following

71

1Figure: Quoc Le, Google Brain

Example IV: Speech Transcription

• Step 1: Get some fixed length vectors

72

1Figure: Quoc Le, Google Brain

Example IV: Speech Transcription

• Step 2: Pass through an encoder

73

1Figure: Quoc Le, Google Brain

Example IV: Speech Transcription

• Step 3: Decode

• This is only a high level idea. Many many challenges.

74

1Figure: Quoc Le, Google Brain

Questions?

75

Summary

• We motivated when RNNs can be used

• Understood the internal working of RNNs (incl. LSTMs)

• Looked at some details for of ‘sequence to sequence’
applications.

• These significantly extend beyond classification

76

Appendix

77

Sample Exam Questions

• What is the need for an RNN architecture?

• What shortcoming of vanilla RNNs does an LSTM RNN
attempt to fix?

• Describe how sentence classification can be done with
both an RNN and a CNN.

78

Yet Another Diagram of LSTM

79

By Tim Rocktäschel

Understanding LSTM: LSTMVis

• A visual tool to see which cell states do what

80

1Reference: https://github.com/HendrikStrobelt/LSTMVis

Tensorflow Seq2Seq/RNN Models

• For sequence to sequence modeling nuances,
especially about how to deal with variable length
training input and output data, see
https://www.tensorflow.org/tutorials/seq2seq/

81

Example III (Extension): Auto-Reply

• Third version: Attention Mechanism

• Ideally output could consider ‘attention’ to parts of history

82

1Figure: Quoc Le, Google Brain

Example III (Extension): Auto-Reply

• Could look at every state in the past

83

1Figure: Quoc Le, Google Brain

Example III (Extension): Auto-Reply

• So instead of returning a word, output the current
state

84

1Figure: Quoc Le, Google Brain

Example III (Extension): Auto-Reply

• Take inner products with previous states

85
1Figure: Quoc Le, Google Brain

Example III (Extension): Auto-Reply

• Take inner products with previous states

86
1Figure: Quoc Le, Google Brain

Example III (Extension): Auto-Reply

• Pass through a neural net layer to predict final word

87

1Figure: Quoc Le, Google Brain

Example III (Extension): Same with Translation!

• Same principle also applies for translation. The first
prediction learns to focus on certain part of the input

88

1Figure: Quoc Le, Google Brain

Example III (Extension): Auto-Reply

• The second prediction learns to focus on certain part
of the input

89
1Figure: Quoc Le, Google Brain

Example V: Object Recognition with Visual
Attention

• Even if we do not have sequences, we can still use
RNNs to process the single fixed input in a sequence

90
1Figure: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
2Reference: http://arxiv.org/abs/1412.7755

