Advanced Prediction
Models

Deep Learning, Graphical Models and Reinforcement
Learning

Today’s Outline

* Unsupervised Learning Landscape
* Avutoencoders and Variational Autoencoders (VAE)

* Generative Adversarial Networks (GAN)

Unsupervised Learning
Landscape

Unsupervised Learning

* Supervised learning
* Involves feature and label pairs as training data

* Goal is to find a map from feature to label /value

* Unsupervised learning
* Involves only feature vectors
* Example: images
* Goalis to learn some patterns of data
* There is no objective measure of success

'Reference: CS231n (Stanford, Spring 17)

Unsupervised Learning Tasks

* Clustering

* Association rules K
« TR,
* Dimensionality reduction s
o o o xx > ® %
* Density estimation R o WL
% $+i*#
o ++ *
* Embedding " Wk,
t—zﬁh ++¢..1£
* Sampling %5
AR A

K-means clustering

'Reference: CS231n (Stanford, Spring 17)

Unsupervised Learning Tasks

* Clustering
* Association rules
* Dimensionality reduction

i Densi’ry esﬁmqﬁon MARKET BASKET ANALYSIS

* Embedding \ '2 %
B

- =

o D 7Y)ﬁ

=

* Sampling

—
ot
—
(&
\:"'
"

98% of people who purchased items A and B

also purchased item C

6
"Figure:mathworks.com/matlabcentral /mlc-downloads/downloads /submissions /42541 /versions /3 /screenshot.jp¢

Unsupervised Learning Tasks

* Clustering

* Association rules

* Dimensionality reduction
* Density estimation

* Embedding
* Sampling

'Reference: CS231n (Stanford, Spring 17)

original data space

component space

I o I ¢ Ta = 7 I N - -
T ’ SR
A = a5
- Wl - HSp =t ——t———1
1 e
PC1

Unsupervised Learning Tasks

* Clustering
e Association rules

* Dimensionality reduction

* Density estimation
* Embedding

* Sampling 1-d density estimation

“ s . se e ';)/A .o \,%

2-d density estimation
'Reference: CS231n (Stanford, Spring 17)

Unsupervised Learning Tasks

* Clustering

e Association rules

* Dimensionality reduction

* Density estimation
* Embedding
* Sampling

'Reference: CS231n (Stanford, Spring 17)

L2 Loss function:

|z —&)|* ~—

Reconstructed [% |
input data ;
Decoder
Features | L]
A
Encoder
Input data [T

Reconstructed data

o RS

BN Lalls
i 2 A
-EQfIE

Encoder: 4-layer conv
Decoder: 4-layer upconv

: Inputfdita

(R |

BEL&NES

[yl M2 NS Wy

sl « HIG3
9

Unsupervised Learning Tasks

* Clustering
* Association rules
* Dimensionality reduction

* Density estimation

* Embedding ﬂ“g E“ﬂu
" Semelns e g X W e Y Y
LAY B 1Al
BEE@MIER

TReference: https:/ /www.youtube.com/watch2v=rs3al7bACGc

Learning a Distribution

* Given (large amount of) data drawn from P, we
want to estimate P,, such that samples from P,,, are as
similar as possible to samples from P,

* Two approaches:
* Explicit
* |f we construct P, explicitly, we can address all
the other tasks mentioned
* Implicit
* We can directly generate a sample from B,
without explicitly defining it!

11
TReference: lan Goodfellow (NIPS 2016 Tutorial)

Explicit and Implicit Approaches

l ‘ Direct ‘

Maximum Likelihood‘ |
| / \ / GAN

Explicit density Implicit density

N\ N

' 1 . — |Markov Chain
Tractable density ' Approximate density commateifimeiccae

bt A | GSN
-Fully visible belief nets

_NADE ‘ . ./ \ . i
"MADE Variational Markov Chain

-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables

models (nonlinear ICA)

12
TReference: lan Goodfellow (NIPS 2016 Tutorial)

Explicit and Implicit Approaches

* When would we be okay with an implicit approach
* Simulate possible futures for planning

* When samples themselves are useful for other

tasks...
A l ' , l‘. | <
: '.“'1 t, J;l ,,»-_r,' "!

K_‘..-

Y, .

>

’r_. - | . .
!ﬁi -
.(“-;?-‘ﬁ : : -

TReference: lan Goodfellow (NIPS 2016 Tutorial)

13

Explicit and Implicit Approaches

* When would we be okay with an implicit approach
* Simulate possible futures for planning

* When samples themselves are useful for other
tasks...

original bicubic SRResNet SRGAN
 (21.59dB/0.6423)

(23.44dB/0.7777)

(20.34dB/0.6562)

¥,

14

TReference: lan Goodfellow (NIPS 2016 Tutorial), Ledig et al. 2016

Explicit and Implicit Approaches

* When would we be okay with an implicit approach
* Simulate possible futures for planning

* When samples themselves are useful for other
tasks...

Input Ground truth

Labels to Street Scene

TReference: lan Goodfellow (NIPS 2016 Tutorial)

15

Explicit and Implicit Approaches

* We will look at one model under each approach and
work with image data

* Explicit: Variational Autoencoders (VAE)

* Implicit: Generative Adversarial Networks (GAN)

* Both use neural networks as a core object

TReference: lan Goodfellow (NIPS 2016 Tutorial)

16

More than Memorization

* Either model (VAE or GAN) will essentially build the
yellow box below:

generated distribution true data distribution
A
. . p(x)
unit gaussnar/
generative
Q model L
|| (neural net) W e P4

\ image space image space

TReference: https://blog.openai.com/generative-models/

Questions?

Today’s Outline

* Unsupervised Learning Landscape
* Avutoencoders and Variational Autoencoders (VAE)

* Generative Adversarial Networks (GAN)

19

Autoencoders and
Variational Autoencoders

Neural Net as a Transformation Map

* NN is a function that maps an input to output

* Here is a decenvelutionel /transposed-convolutional

network
3
rLl
128
256 —
,—J—
512
i : ’ 1 Stride 2
' ‘ s 32
4 8 = :
100 z —=> i S fo BN e 5
i:: 5 = |
B \\8 N 1 h\\\\\ ‘§\
Code Project and Stride 2 3 Stride 2
reshape Deconv 1
Deconv 2 64
Deconv 3
Deconv 4 L
Image
21

TReference: http://kvfrans.com/variational-autoencoders-explained /

Neural Net as a Transformation Map

* Transposed convolution is also a linear map

256

512
1024 . : ‘
I . \
4
100 z —>
Code Project and Stride 2

16-dim vec =

Deconv 2

(u‘o.o 0 0
woy wop 0
woy woy 0
0 wy2 O
wio 0 wop
wy Wi Wog
w12 w1 wo2
0 wy2 0
wag 0wy
wyy wap Wy
w22 w21 w12

0 wys 0
0 0 w0
0 0wy
0 0 wo 2
\ 0 0 0

\T

Wo2
0

wio
w1

w2
0

w20

ws
w2 /

Deconv 3

Deconv 4

*4-dim vec

'Reference: http://deeplearning.net/software /theano_versions/dev /tutorial /conv_arithmetic.html#transposed-convolution-arithmetic

Image

22

Transformation from a Single Vector

* For example, set inputs to all ones

* Train network to reduce MSE between its output and

target image

* Then information related to image is captured in

network parameters

—_ deconv —

layer

deconv
layer

vector of ones

TReference: http://kvfrans.com/variational-autoencoders-explained /

target image

Transformation from Multiple Vectors

* Do the same with multiple input vectors (e.g., one hot
encoded)

* These input vectors are called codes. The network is
called a decoder.

* |In an autoencoder, we also have an ‘encoder’ that
takes original images and ‘codes’ them

Encoder Decoder
Network — - Network
(conv) (deconv)

latent vector / variables

24

TReference: http://kvfrans.com/variational-autoencoders-explained /

Autoencoder: The Obijective

* Captures information in training data

* The latent variable z (also called code) can be

thought of as embedding

* Keep the dimension of z smaller than input X,

otherwise we have a trivial solution

* If we choose a larger dimension, add noise to x

during training (this is called a denoising

autoencoder) Reconstructed | z |
input data A
Decoder
Features | 2
A
Encoder
Input data \ €T |

TReference: http://kvfrans.com/variational-autoencoders-explained /

Autoencoder: The Architecture

* No labels are needed here

L2 Loss function:

|z —2|* <

!

Reconstructed 7
input data
I Decoder
Features 2
I Encoder
T

Input data

1Reference: CS231n (Stanford, Spring 2017)

26

Autoencoder: Uses

Loss function
(Softmax, etc)

Predicted Label | ¥ Y|
A

Classifier Fine-tune

Encoder can be .er.woder.
used to initialize a Features 2 jointly with
supervised model ' classifier
I Encoder
Input data [T }

 J

* Reduction in dimension achieved by the encoder is useful
* Just like PCA
* Captures meaningful variations in the data via the
embeddings

* Named ‘autoencoder’ because it attempts to reconstructs
original data

e Cannot generate new sqmples ye’r!
TReference: CS231n (Spring 2017)

Variational Autoencoder

* Probabilistic extension of autoencoding
* The intuitive idea is to make Z random, and in
particular make P, a Gaussian

* |If we can manage this, then we can sample from P,
and generate new images

* Two high level changes needed
* Architecture
* Loss function

TReference: http:/ /kvfrans.com/variational-autoencoders-explained /

Variational Autoencoder: Loss

e lLoss will be sum of two losses
* Reconstruction loss

* Latent loss (how far from Gaussian the distribution
obtained from encoder is)

* Measured using KL divergence

* Encoder generates the mean and covariance of
the Gaussian

* We will look at the math behind this shortly

TReference: http://kvfrans.com/variational-autoencoders-explained /

Variational Autoencoder: Architecture

* Architecture involves a sampling in between

mean vector

sampled
latent vector

A N
Encoder N Decoder
Network Network
N A
(conv) (deconv)

standard deviation
vector

TReference: http://kvfrans.com/variational-autoencoders-explained /

30

Variational Autoencoder: Architecture

* Architecture involves a sampling in between

* Can still backprop given realized sample

mean vector

sampled
latent vector

A N
Encoder N Decoder
Network Network
N A
(conv) (deconv)

standard deviation
vector

31

TReference: http:/ /kvfrans.com/variational-autoencoders-explained /

Variational Autoencoder: Generalization

* This sampling allows for generalization
* Gaussian noise ensures we dare not remembering
only the training data

* Once we have trained, we can sample from a
Gaussian and pass it through the decoder to get a
new image

TReference: http:/ /kvfrans.com/variational-autoencoders-explained /

9%
[\

Variational Autoencoder: Samples

* Experiments on MNIST

* Samples generated during training (left, center)

and original data

QOAO~M 0k O
~Hh s> -
NS b 0Q
el 2Ll AR,

NMNMmQLARN D
IO\ S By o0 vo —
MG oM N
Lk vale P RV W 1))

QQ~muaxrxnh ™
~ OO o~-T -
LM b PQ L
~—=bmaOW;m
Wm0 LMWL N
O Uy oo —
i ronning NN
CFodocerIQl

QO oM,

RO~
SRR BRL BY LR
SO S
MmO ™y~

®Q QM %N,

CH R R R

B, oms

TReference: http://kvfrans.com/variational-autoencoders-explained /

VAE: Derivation

e Assume a model as below

* Variable x represents image, Z represents the latent
variable

* We want to estimate 8

Sample from
true conditional €I
po-(x | (%) !
Sample from
true prior >
po+(2)

34
TReference: CS321n (Stanford, Spring 2017)

VAE: Derivation

* Let P, be Gaussian
* Let P(x|z) be a neural network: decoder

* We can ’rroin by quimizing likelihood of training
data pg(x fpg 2)pg(x|2)dz

Sample from
true conditional €I

po-(z | 2) 1

Sample from
true prior >

po~(2)

TReference: CS321n (Stanford, Spring 2017)

VAE: Derivation

* Let P, be Gaussian
* Let P(x|z) be a neural network: decoder

* We can ’rroin by quimizing likelihood of training
data pg(x fpg 2)pg(x|2)dz

Sample from
true conditional €I

po-(z | 2) 1

Sample from
true prior >

po~(2)

36
TReference: CS321n (Stanford, Spring 2017)

VAE: Derivation

* We will also make the encoder probabilistic

Sample z from z|:1: ~ N(Mzh;, Ez|_,,,) Sample x|z from atlz ~ pxlz, Zm|z)
Hz|z Zz|$ Hz|z EIZ
Encoder network Decoder network
99 (2|) po(z|2)
(parameters ¢) (parameters)
T 2

37
TReference: CS321n (Stanford, Spring 2017)

Aside: Notion of Information

* Information: —log P(x)
* Entropy: —), P(x)log P(x)

* KL divergence:

* A notion of dissimilarity between two distributions

P
+ Dy (pllg) = L P(x) log

TReference: lan Goodfellow (NIPS 2016 Tutorial)

VAE: Derivation

log pe(z'?) = Biyrigylzla®) [log p()(af("'))} (pg(z'") Does not depend on z)

39
TReference: CS321n (Stanford, Spring 2017)

VAE: Derivation

log pe(z'¥) = B veigy (2] ™) [log])9(1'('i))] (pg(z'") Does not depend on z)

W i S .

Do\ I pA y

= 1. [log“)(l |)1_)0()
po(z |)

] (Bayes’ Rule)

TReference: CS321n (Stanford, Spring 2017)

40

VAE: Derivation

log pe(z'¥) = B gy (zla®) [logz)g(w(i))] (po(z') Does not depend on z)

5 (2) | e
Do\ L A Z
=E, |lo Pol |)Po() (Bayes’ Rule)
po(z | V)
B [pa(zV | 2)pe(2) gp(z |)
= E, |log : .
po(z | 2®)) qg(z | z?)

TReference: CS321n (Stanford, Spring 2017)

] (Multiply by constant)

41

VAE: Derivation

log pg(z'?) = Bivigyl2ja®) [logpg(;r(i))] (po(z') Does not depend on z)

o | 2)po(2)
0 -
po(z | ()
1 po(2 | 2)pe(2) go(2 | z()
0g : .
po(z | @) gy(z | z®)

[
&

] (Bayes’ Rule)

I
=

18]

] (Multiply by constant)

[
2

- | (i) o | 2
log pe(z*) | z)] —E, [log 42|)] + E, [log 4z | 2 :)} (Logarithms)
\ po(z) po(z |)

42
TReference: CS321n (Stanford, Spring 2017)

VAE: Derivation

log pg(z'?) = Bivigyl2ja®) [logpg(:c(i))] (po(z') Does not depend on z)

j (2)
E. |log po(z™ | z)?g(z)] (Bayes’ Rule)
I po(z | z()

Po(ﬂ?(i) | z)po(2) %(z | Cv(i))
po(z | @) gy(z | z®)

I
=

18]

log

[
2

po(2)

I
&

18]

TReference: CS321n (Stanford, Spring 2017)

] (Multiply by constant)

g¢(z | z¥)
po(z | ()

- | (i)
log pe(z | z)] —E, [log 42|)] +E, [log

} (Logarithms)

logpo(2® | 2)| — Dir(go(z | 2@) || po(2)) + Drcr(go(z | 2@) || po(z | z?))

43

VAE: Derivation

* The first two terms constitute a lower bound for the
data likelihood that we can maximize tractably

=E, {1081)9(-1'(") | 2)} Drr(gs(z | 2' ||1)0)) 3 DAL(%(~ | 2 ||1)0(3 | -IV'('.))Z

N

L(zD,0,¢) >0
0%, 9" = arg Illd\z L(z,0,0)

log pe(z) > L(z'?, 6, ¢)
\Variational lower bound (“ELBQO”) Training: MaX|m|ze Iower bound

* The first term of L is essentially reconstruction error

* The second term of L is making the encoder network
close to Gaussian prior

44
TReference: CS321n (Stanford, Spring 2017)

VAE: Derivation

* |n summary,

Sample x|z from .’B|z ~ N(,ux|z, 2:,:|z)

A

Z

N

Hz|z

23a:lz

Decoder network

po(z|2)

Sample z from z|.’1: ~ N(,Uz|m, Zzlm)

Encoder network

94(2|)

Input Data

TReference: CS321n (Stanford, Spring 2017)

~_

2z

/\

Hz|x

~_

2z|:1:

i

3
3
l”" 2 32
g 64 s12 512 &
/ ﬁ 6 Ei Decoder
5 p ‘]: 4 £ 32
& 7 64 z 64 128

Encoggr
W

VAE: Samples

* We can create new samples!

A

4

Sample x|z from :B|Z ~ N(/Lx|z, Zx|z)

/

~

Hzx|z

chlz

Decoder network

po(z|2) \/

Z

Sample z from z ~ N'(0, I)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

TReference: CS321n (Stanford, Spring 2017)

46

: Experiments

VAE

* Some generated samples

dz

Data manifold for 2-

Labeled Faces in the Wild

32x32 CIFAR-10

AN NNNANANNNNNSNSNSNNNNS
VAV LELLLLLLU N NSNS~
QAL LLLLOVYS Y N~~~
QUAVVDININio ot @BV v~~~
QAVVUINHININKEEEBIVVY W - ——
QO0DNINNNMKEBBIIVIS W —— 4
QOOOIMIMMMMMEMBOIID D - —
QOODMM MMM N0 WM D DD 0w e e
QOODMMMN MMM MD DD e e
QODOMM MMM NN 00D DD e e
QOMME MMM N0 L0 LW e e o e
QO MMM 0000 000060 oo -
OAliedod o8 0% 00 070000 00 b O O O~ 0 o o
N L L N N R Nl Ul
&211321‘.‘199779777774
Jadaddodogrorrorrrasaannn~
SAddadddocrrrrrrdrIIONN
Sddddgoorororrrrdrrrnan
SAdITTTrTrrrrrrrrrr22NN
S B g gl gl < ol ol ol ol ol ol ol ol S N N NN

- >

e

N

£
@
>

Vary z,

//arxiv.org/pdf/1606.05908 .pdf

https:

Further reading

47

TReference: CS321n (Stanford, Spring 2017)

Questions?

Today’s Outline

* Unsupervised Learning Landscape
* Avutoencoders and Variational Autoencoders (VAE)

* Generative Adversarial Networks (GAN)

49

Generative Adversarial
Networks

GANs: Two Scenarios

* Overall Idea: Instead of working with an explicit
density function, GANs take an ‘adversarial’ or
‘game-theoretic’ approach

TReference: lan Goodfellow (NIPS 2016 Tutorial)

51

GANs: Two Scenarios

D tries to make
D(G(z)) near 0,
D(x) tries to be G tries to make
near 1 D(G(z)) near 1
leferentlable
function D
. v sampled from T sampled from
b data model
leferentlable
function G

f

(Input noise z >

TReference: lan Goodfellow (NIPS 2016 Tutorial)

52

The Generator and the Discriminator

* Assume X = G@g(Z)

e Differentiable

* Dg,(X) takes values in {0,1}

Discriminator“ Data
\ Model
% distribution

L]
D

[L]
e

AN

TReference: lan Goodfellow (NIPS 2016 Tutorial)

53

The Generator and the Discriminator

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

Dlscnmlnator Network

Real Images
(from training set)

Fake Images
(from generator) |

Generator Network
A After training, use generator network to
Random noise z generate new images

TReference: CS231n (Stanford, Spring 2017)

The Generator and the Discriminator

Real world
images

N

—

Sample

Generator

G(z2)

Differentiable module

Real D(x)

Discriminator

$S07

Sample

Latent random variable
OO0

k/ Differentiable module

Fake D(G(Z))

55

'Reference: https://www.slideshare.net/xavigiro /deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

The Objectives

* The generator and the discriminator are playing o
minimax game.

* J(D) = —Ep,logD(x) — Ep, log(1 — D(x))
* Where P, (x) is the derived distribution using
G(z) and P,

* J(G) = —J(D)

TReference: lan Goodfellow (NIPS 2016 Tutorial)

56

The Objectives

* The optimal strategy for the discriminator at
equilibrium is

. _ Pg(x)
D(x) = 5 o+rmem

TReference: lan Goodfellow (NIPS 2016 Tutorial)

57

The Objectives

* The optimal strategy for the discriminator at
equilibrium is

. _ Pg(x)
D(x) = 5 o+rmem

* The optimal strategy for the generator is to find
parameters such that

* Py = Py

TReference: lan Goodfellow (NIPS 2016 Tutorial)

58

The Training Procedure

* Create a minibatch of real data

* Create a minibatch of generated data
* Score the discriminator

* Backprop to update the parameter 6,
* Score the generator

* Backprop to update the parameter 6,

TReference: lan Goodfellow (NIPS 2016 Tutorial)

59

The Training Procedure

Minimax objective function:
min 0 | Egnp,q, 108 Do, (%) + Esnp(e) log(1 — Do, (Go, (2))]

0, 064

Alternate between:
1. Gradient ascent on discriminator

max [Emwdm log Dy, () + E.np(z) log(1 — De,(Go, (z)))]

2. Gradient descent on generator
n;in]Ezwp(z) log(l - D9d (Geg (Z)))

60
TReference: lan Goodfellow (NIPS 2016 Tutorial)

The Training Procedure

Realworld ——
images

Real
o O e
Discriminator . 4
w
Fake
Generator

Backprop error to
update discriminator
weights

Latent random variable
OO0

61
'Reference: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

The Training Procedure

Latent random variable

'Reference

Generator

Sample

Discriminator

Real

O
SSO7

Fake

OO

<

Backprop error to
update generator
weights

62

: https:/ /www.slideshare.net/xavigiro /deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Example Generator Architecture

* DCGAN

3
'J.’
64
1024 _-B
f S :’1’ -
4 S5t
100 Z :>
5
Code Project and Stride 2 . Stride 2
reshape Deconv 1
Deconv 2 64
Deconv 3
Deconv 4 L
Image

63
TReference: lan Goodfellow (NIPS 2016 Tutorial)

GAN Properties: Latent Space

* Consider Deep Convolutional Generative Adversarial

Network (DCGAN)

* You can walk from one point to another in the
bedroom latent space (e g., 6™ omd 10™ rows)

64
"References: http://arxiv.org/abs/1511.06434 and https://github.com/Newmu/dcgan_code

GAN Properties: Latent Space Arithmetic as

a Byproduct

Man
with glasses

Woman with Glasses

65
TReference: lan Goodfellow (NIPS 2016 Tutorial)

GAN Properties: Mode Collapse Issue

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

TReference: lan Goodfellow (NIPS 2016 Tutorial)

66

GAN: Experiments

* Experiments on CIFAR-10 (only generated images below)

* Code: https:/ /github.com /kvfrans /generative-adversial

67
'Reference: http://kvfrans.com/generative-adversial-networks-explained /

Questions?

VAE and GAN

* VAEs
* Are generative models that use regularized log
likelihood to approximate performance score

* Tend to achieve higher likelihoods of data, but the
generated samples don’t have real-world
properties like sharpness

* Can compare generated images with original
images, which is not possible with GANs

* Part of graphical models with principled theory

VAE and GAN

* GANs

* Are generative models that use a supervised learning
classifier to approximate performance score

* No constraint that a ‘bed’ should look like a ‘bed’

* Try to solve an intractable game, vastly more difficult
to train

* Tend to have sharper image samples

 Start with latent variables and transform them
deterministically

* There is no Markov chain style of sampling required

* They are asymptotically consistent (will converge to
P;), whereas VAEs are not

* Many many variations have been proposed in the past
3 years (>150I)

TReference: lan Goodfellow (NIPS 2016 Tutorial)

VAE and GAN

VAE
Encoder Z = Decoder
I v : Given an X easy to find z.
v : Interpretable probability P(X)
X: Usually outputs blurry Images
GAN
z Generator Discriminator
v : Very sharp images {

X: Given an X difficult
to find z. (Need to
backprop.)

v IX: No explicit P(X).

71

Summary

* Both models are recent (VAEs from 2013, GANs from
2014) and have initiated very exciting new directions
in machine learning and Al

* Useful in many applications such as

* Image denoising

* Image Super-resolution
* Reinforcement learning
* Generating embeddings
* Artistic help

* Eventually help the computer understand the world
better

TReference: https://blog.openai.com/generative-models/

Appendix

Sample Exam Questions

* What are the uses of generative models?

* What is the difference between a regular
autoencoder and a variational autoencoder?

* What is the qualitative objective of the discriminator
in a GAN? What is the qualitative objective of the
generator?

e Describe some differences between a VAE model and

a GAN.

Maximum Likelihood Estimation |

TReference: lan Goodfellow (NIPS 2016 Tutorial)

75

Maximum Likelihood Estimation |l

Step 1: observe a set of samples Step 2: assume a GMM model
40
p(x|0) = Y wiN (z|pi, %)
o ™ ’

7 Step 3: perform maximum likelihood learning

o] . g Z log p(6|z"))

max
-10

x(J) €Dataset

-20 T T T T
-20 -10 0 10 20 30

76
TReference: ICCV 2017 GAN Tutorial, Ming-Yu et al.

KL Divergence

q" = argmin,Dx1(p||q) q" = argmin, Dx1.(q||p)
— p(x) ,\\ — p(z)
™ > *
E - - q*(z) £ | - g (x)
o = \
Q Q
A A
> >
3 3
4y 4]
e o)
S S
Ay ol

Maximum likelihood Reverse KL

77
TReference: lan Goodfellow (NIPS 2016 Tutorial)

