Advanced Prediction Models

Deep Learning, Graphical Models and Reinforcement Learning

Today's Outline

- Unsupervised Learning Landscape
- Autoencoders and Variational Autoencoders (VAE)
- Generative Adversarial Networks (GAN)

Unsupervised Learning Landscape

Unsupervised Learning

- Supervised learning
 - Involves feature and label pairs as training data
 - Goal is to find a map from feature to label/value
- Unsupervised learning
 - Involves only feature vectors
 - Example: images
 - Goal is to learn some patterns of data
 - There is no objective measure of success

- Clustering
- Association rules
- Dimensionality reduction
- Density estimation
- Embedding
- Sampling

- Clustering
- Association rules
- Dimensionality reduction
- Density estimation
- Embedding
- Sampling

- Clustering
- Association rules
- Dimensionality reduction
- Density estimation
- Embedding
- Sampling

- Clustering
- Association rules
- Dimensionality reduction
- Density estimation
- Embedding
- Sampling

- Clustering
- Association rules
- Dimensionality reduction
- Density estimation
- Embedding
- Sampling

- Clustering
- Association rules
- Dimensionality reduction
- Density estimation
- Embedding
- Sampling

Learning a Distribution

• Given (large amount of) data drawn from P_d , we want to estimate P_m such that samples from P_m are as similar as possible to samples from P_d

- Two approaches:
 - Explicit
 - If we construct P_m explicitly, we can address all the other tasks mentioned
 - Implicit
 - We can directly generate a sample from P_m without explicitly defining it!

- When would we be okay with an implicit approach
 - Simulate possible futures for planning
 - When samples themselves are useful for other tasks...

- When would we be okay with an implicit approach
 - Simulate possible futures for planning
 - When samples themselves are useful for other tasks...

- When would we be okay with an implicit approach
 - Simulate possible futures for planning
 - When samples themselves are useful for other tasks...

- We will look at one model under each approach and work with image data
 - Explicit: Variational Autoencoders (VAE)
 - Implicit: Generative Adversarial Networks (GAN)
- Both use neural networks as a core object

More than Memorization

• Either model (VAE or GAN) will essentially build the yellow box below:

Questions?

Today's Outline

- Unsupervised Learning Landscape
- Autoencoders and Variational Autoencoders (VAE)
- Generative Adversarial Networks (GAN)

Autoencoders and Variational Autoencoders

Neural Net as a Transformation Map

- NN is a function that maps an input to output
- Here is a deconvolutional/transposed-convolutional network

Neural Net as a Transformation Map

Transformation from a Single Vector

- For example, set inputs to all ones
- Train network to reduce MSE between its output and target image
- Then information related to image is captured in network parameters

vector of ones

target image

¹Reference: http://kvfrans.com/variational-autoencoders-explained/

Transformation from Multiple Vectors

- Do the same with multiple input vectors (e.g., one hot encoded)
- These input vectors are called codes. The network is called a decoder.
- In an autoencoder, we also have an 'encoder' that takes original images and 'codes' them

latent vector / variables

Autoencoder: The Objective

- Captures information in training data
- The latent variable z (also called code) can be thought of as embedding
- Keep the dimension of z smaller than input x, otherwise we have a trivial solution
 - If we choose a larger dimension, add noise to \boldsymbol{x} during training (this is called a denoising

Reconstructed \hat{x} input data

Decoder

Features zEncoder

Input data

x

Autoencoder: The Architecture

No labels are needed here

Autoencoder: Uses

- Reduction in dimension achieved by the encoder is useful
 - Just like PCA
 - Captures meaningful variations in the data via the embeddings
- Named 'autoencoder' because it attempts to reconstructs original data
- Cannot generate new samples yet!

Variational Autoencoder

- Probabilistic extension of autoencoding
- The intuitive idea is to make z random, and in particular make P_z a Gaussian
 - If we can manage this, then we can sample from ${\cal P}_{\!\scriptscriptstyle Z}$ and generate new images

- Two high level changes needed
 - Architecture
 - Loss function

Variational Autoencoder: Loss

- Loss will be sum of two losses
 - Reconstruction loss
 - Latent loss (how far from Gaussian the distribution obtained from encoder is)
 - Measured using KL divergence
 - Encoder generates the mean and covariance of the Gaussian

We will look at the math behind this shortly

Variational Autoencoder: Architecture

Architecture involves a sampling in between

Variational Autoencoder: Architecture

- Architecture involves a sampling in between
- Can still backprop given realized sample

Variational Autoencoder: Generalization

- This sampling allows for generalization
 - Gaussian noise ensures we are not remembering only the training data
- Once we have trained, we can sample from a Gaussian and pass it through the decoder to get a new image

Variational Autoencoder: Samples

- Experiments on MNIST
 - Samples generated during training (left, center) and original data

VAE: Derivation

- Assume a model as below
- Variable x represents image, z represents the latent variable
- We want to estimate θ^*

VAE: Derivation

- Let P_z be Gaussian
- Let P(x|z) be a neural network: decoder
- We can train by maximizing likelihood of training data $p_{ heta}(x) = \int p_{ heta}(z) p_{ heta}(x|z) dz$

VAE: Derivation

- Let P_z be Gaussian
- Let P(x|z) be a neural network: decoder
- We can train by maximizing likelihood of training data $p_{ heta}(x) = \int p_{ heta}(z) p_{ heta}(x|z) dz$

• We will also make the encoder probabilistic

Aside: Notion of Information

- Information: $-\log P(x)$
- Entropy: $-\sum P(x) \log P(x)$
- KL divergence:
 - A notion of dissimilarity between two distributions
 - $D_{KL}(p||q) = \sum P(x) \log \frac{P(x)}{Q(x)}$

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \qquad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$
$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \qquad (\text{Bayes' Rule})$$

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule})$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant})$$

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule})$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Logarithms})$$

$$\begin{split} \log p_{\theta}(x^{(i)}) &= \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad \text{(Bayes' Rule)} \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad \text{(Multiply by constant)} \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad \text{(Logarithms)} \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z)) + D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z \mid x^{(i)})) \end{split}$$

 The first two terms constitute a lower bound for the data likelihood that we can maximize tractably

$$=\underbrace{\mathbf{E}_{z}\left[\log p_{\theta}(x^{(i)}\mid z)\right]-D_{KL}(q_{\phi}(z\mid x^{(i)})\mid\mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)},\theta,\phi)}+\underbrace{D_{KL}(q_{\phi}(z\mid x^{(i)})\mid\mid p_{\theta}(z\mid x^{(i)}))}_{>0}\\ \log p_{\theta}(x^{(i)})\geq \mathcal{L}(x^{(i)},\theta,\phi)\\ \text{Variational lower bound ("ELBO")}$$

- The first term of $\mathcal L$ is essentially reconstruction error
- The second term of $\mathcal L$ is making the encoder network close to Gaussian prior

In summary,

¹Reference: CS321n (Stanford, Spring 2017)

VAE: Samples

We can create new samples!

Sample z from $z \sim \mathcal{N}(0, I)$

Kingma and Welling, "Auto-Encoding Variational Bayes", ICLR 2014

VAE: Experiments

Some generated samples

Labeled Faces in the Wild

Further reading: https://arxiv.org/pdf/1606.05908.pdf

Questions?

Today's Outline

- Unsupervised Learning Landscape
- Autoencoders and Variational Autoencoders (VAE)
- Generative Adversarial Networks (GAN)

Generative Adversarial Networks

GANs: Two Scenarios

 Overall Idea: Instead of working with an explicit density function, GANs take an 'adversarial' or 'game-theoretic' approach

GANs: Two Scenarios

The Generator and the Discriminator

- Assume $X = G_{\theta_g}(z)$
- Differentiable

• $D_{\theta_d}(X)$ takes values in $\{0,1\}$

The Generator and the Discriminator

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Real or Fake

Discriminator Network

Fake Images
(from generator)

Generator Network

After training, use generator network to generate new images

The Generator and the Discriminator

The Objectives

 The generator and the discriminator are playing a minimax game.

- $J(D) = -E_{P_d} \log D(x) E_{P_m} \log(1 D(x))$
 - Where $P_m(x)$ is the derived distribution using G(z) and P_z
- J(G) = -J(D)

The Objectives

 The optimal strategy for the discriminator at equilibrium is

•
$$D(x) = \frac{P_d(x)}{P_d(x) + P_m(x)}$$

The Objectives

 The optimal strategy for the discriminator at equilibrium is

•
$$D(x) = \frac{P_d(x)}{P_d(x) + P_m(x)}$$

- The optimal strategy for the generator is to find parameters such that
 - $P_d = P_m$

- Create a minibatch of real data
- Create a minibatch of generated data
- Score the discriminator
- ullet Backprop to update the parameter $heta_d$
- Score the generator
- Backprop to update the parameter $heta_g$

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

Example Generator Architecture

DCGAN

GAN Properties: Latent Space

- Consider Deep Convolutional Generative Adversarial Network (DCGAN)
 - You can walk from one point to another in the bedroom latent space (e.g., 6th and 10th rows)

GAN Properties: Latent Space Arithmetic as a Byproduct

GAN Properties: Mode Collapse Issue

GAN: Experiments

- Experiments on CIFAR-10 (only generated images below)
 - Code: https://github.com/kvfrans/generative-adversial

Questions?

VAE and GAN

VAEs

- Are generative models that use regularized log likelihood to approximate performance score
- Tend to achieve higher likelihoods of data, but the generated samples don't have real-world properties like sharpness
- Can compare generated images with original images, which is not possible with GANs
- Part of graphical models with principled theory

VAE and GAN

GANs

- Are generative models that use a supervised learning classifier to approximate performance score
 - No constraint that a 'bed' should look like a 'bed'
- Try to solve an intractable game, vastly more difficult to train
- Tend to have sharper image samples
- Start with latent variables and transform them deterministically
- There is no Markov chain style of sampling required
- They are asymptotically consistent (will converge to P_d), whereas VAEs are not
- Many many variations have been proposed in the past 3 years (>150!)

VAE and GAN

Summary

- Both models are recent (VAEs from 2013, GANs from 2014) and have initiated very exciting new directions in machine learning and AI
- Useful in many applications such as
 - Image denoising
 - Image Super-resolution
 - Reinforcement learning
 - Generating embeddings
 - Artistic help
- Eventually help the computer understand the world better

Appendix

Sample Exam Questions

- What are the uses of generative models?
- What is the difference between a regular autoencoder and a variational autoencoder?
- What is the qualitative objective of the discriminator in a GAN? What is the qualitative objective of the generator?
- Describe some differences between a VAE model and a GAN.

Maximum Likelihood Estimation I

Maximum Likelihood Estimation II

Step 2: assume a GMM model

$$p(x|\theta) = \sum_{i} \pi_{i} \mathcal{N}(x|\mu_{i}, \Sigma_{i})$$

Step 3: perform maximum likelihood learning

$$\max_{\theta} \sum_{x^{(j)} \in \text{Dataset}} \log p(\theta|x^{(j)})$$

KL Divergence

