Advanced Prediction Models

Deep Learning, Graphical Models and Reinforcement Learning

Today's Outline

- Complex Decisions
- Reinforcement Learning Basics
 - Markov Decision Process
 - (State Action) Value Function
- Q Learning Algorithm

Complex Decisions

Complex Decisions Making is Everywhere

Complex Decisions Making is Everywhere

• Chess, Go, Atari

Complex Decision Making can be addressed using RL

http:	https://www.technologyreview.com/s/603501/10-breakthrough-technologies-2017-reinforcement-learning/								
	MIT Technology Review	Past Lists+ Topics+	Top Stories						
	10 Breakthrough Technologies	The List × Years +							
		Reversing Paralysis							
		Self-Driving Trucks							
		Paying with Your Face							
		Practical Quantum Computers							
March/April 2017 Issu	9	The 360-Degree Selfie							
		Hot Solar Cells	- Fe						
		Gene Therapy 2.0							
		The Cell Atlas							
	Reinforcement	Botnets of Things							
	By experimenti figuring out how	Reinforcement Learning	7						
	no programmer could teach them.								

¹Reference: technologyreview.com/s/603501/10-breakthrough-technologies-2017-reinforcement-learning/

Playing Atari Using RL (2013)

¹Figure: Defazio Graepel, Atari Learning Environment

AlphaGo Conquers Go (2016)

¹Reference: DeepMind, March 2016

• Videos

Need for Reinforcement Learning

¹Reference: https://medium.com/@awjuliani/simple-reinforcement-learning-with-tensorflow-part-1-5-contextual-bandits-bff01d1aad9c

Questions?

Today's Outline

- Complex Decisions
- Reinforcement Learning Basics
 - Markov Decision Process
 - (State Action) Value Function
- Q Learning Algorithm

RL Overview

- Reinforcement Learning (RL) addresses a version of the problem of sequential decision making
- Ingredients:
 - There is an environment
 - Within which, an agent takes actions
 - This action influences the future
 - Agent gets a (potentially delayed) feedback signal
- How to select actions to maximize total reward?
- RL provides several sound answers to this question

The Environment

- Sees Agent's action A_t and generates an observation S_{t+1} and a reward R_{t+1}
- Subscript t indexes time. Current observation S_t is called state

Assume the future (at times t + 1, t + 2,) is independent of the past (..., t - 2, t - 1) given the present (t): this is called the Markov assumption

$$P(S_{t+1}|S_t) = P(S_{t+1}|S_1, S_2, \dots S_t)$$

• Assume everything relevant is observed

The Agent

- Agent observes R_{t+1} , S_{t+1} and these are not i.i.d. across time
- Agent's objective is to maximize expected total future reward $E[R_{t+1} + \gamma R_{t+2} + \cdots]$
- Agent's actions affect what it sees in the future (S_{t+1})
- Maybe better to trade off current reward R_{t+1} to gain more rewards in the future

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximise cumulative reward
- Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)

All goals can be described by the maximisation of expected cumulative reward

¹Reference: David Silver, 2015

The Goal

- Goal: select actions to maximise total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward
- Examples:
 - A financial investment (may take months to mature)
 - Refuelling a helicopter (might prevent a crash in several hours)
 - Blocking opponent moves (might help winning chances many moves from now)

The Interactions

• Pictorially

The Interactions

• Pictorially

The Interactions

• Pictorially

RL versus other Machine Learning Settings

What makes reinforcement learning different from other machine learning paradigms?

- There is no supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters (sequential, non i.i.d data)
- Agent's actions affect the subsequent data it receives

RL versus other Machine Learning Settings

- An RL agent may include one or more of these components:
 - Policy: agent's behaviour function
 - Value function: how good is each state and/or action
 - Model: agent's representation of the environment

- A policy is the agent's behaviour
- It is a map from state to action, e.g.
- Deterministic policy: $a = \pi(s)$
- Stochastic policy: $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$

Components of RL: Policy

- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent's location

Components of RL: Policy

- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent's location

¹Reference: David Silver, 2015

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And therefore to select between actions, e.g.

$$m{v}_{\pi}(m{s}) = \mathbb{E}_{\pi}\left[m{R}_{t+1} + \gamma m{R}_{t+2} + \gamma^2 m{R}_{t+3} + ... \mid m{S}_t = m{s}
ight]$$

Components of RL: Value Function

		<mark>-14</mark>	<mark>-1</mark> 3	-12	-11	-10	-9		
Start	-16	<mark>-1</mark> 5			- <mark>1</mark> 2		-8		
		- <mark>16</mark>	-17			-6	-7		
			-18	- <mark>1</mark> 9		-5			
		-24		-20		-4	-3		
		-23	-22	-21	-22		-2	-1	Goal
Numbers represent value $v_{\pi}(s)$ of each state s									

A model predicts what the environment will do next
\$\mathcal{P}\$ predicts the next state
\$\mathcal{R}\$ predicts the next (immediate) reward, e.g.
\$\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]\$
\$\mathcal{R}_s^a = \mathbb{E}[R_{t+1} | S_t = s, A_t = a]\$

Components of RL: Model

- Dynamics: how actions change the state
- Rewards: how much reward from each state

- Grid layout represents transition model $\mathcal{P}^{a}_{ss'}$
- Numbers represent immediate reward R^a_s from each state s (same for all a)

Questions?

Today's Outline

- Complex Decisions
- Reinforcement Learning Basics
 - Markov Decision Process
 - (State Action) Value Function
- Q Learning Algorithm

Components of RL: MDP Framework

- We will now revisit these components formally
 - Policy $\pi(a|s)$
 - Value function $v_{\pi}(s)$
 - Model $\mathcal{P}^a_{ss'}$ and \mathcal{R}^a_s

- In the framework of Markov Decision Processes
- And then we will address the question of optimizing for the best π in realistic environments

Towards a Markov Decision Process

- MDPs are a useful way to describe the RL problem
- MDPs can be understood via the following progression
 - Start with a Markov Chain
 - State transitions happen autonomously
 - Add Rewards
 - Becomes a Markov Reward Process
 - Add Actions that influences state transitions
 - Becomes a Markov Decision Process

For a Markov state *s* and successor state *s*['], the *state transition probability* is defined by

$$\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$$

State transition matrix \mathcal{P} defines transition probabilities from all states s to all successor states s',

$$\mathcal{P} = from \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \vdots & & \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix}$$

where each row of the matrix sums to 1.

¹Reference: David Silver, 2015

Example Markov Chain

¹Reference: David Silver, 2015

Sample episodes for Student Markov Chain starting from $S_1 = C1$

 $S_1, S_2, ..., S_T$

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 C3 Pub C2 Sleep

Example Markov Chain

A Markov reward process is a Markov chain with values.

Definition

A Markov Reward Process is a tuple $\langle S, \mathcal{P}, \mathcal{R}, \gamma \rangle$

S is a finite set of states

• \mathcal{P} is a state transition probability matrix, $\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$

• \mathcal{R} is a reward function, $\mathcal{R}_s = \mathbb{E}[R_{t+1} \mid S_t = s]$

• γ is a discount factor, $\gamma \in [0, 1]$

Markov Chain with Rewards

Definition

The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Markov Chain with Rewards

Definition

The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + ... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

The value function v(s) gives the long-term value of state s

Definition

The state value function v(s) of an MRP is the expected return starting from state s

$$v(s) = \mathbb{E}\left[G_t \mid S_t = s\right]$$

Example Markov Reward Process

The value function can be decomposed into two parts:

- immediate reward R_{t+1}
- discounted value of successor state $\gamma v(S_{t+1})$

$$\begin{split} v(s) &= \mathbb{E} \left[G_t \mid S_t = s \right] \\ &= \mathbb{E} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right] \\ &= \mathbb{E} \left[R_{t+1} + \gamma \left(R_{t+2} + \gamma R_{t+3} + \dots \right) \mid S_t = s \right] \\ &= \mathbb{E} \left[R_{t+1} + \gamma G_{t+1} \mid S_t = s \right] \\ &= \mathbb{E} \left[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s \right] \end{split}$$

Recursions in Markov Reward Process

$$v(s) = \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s\right]$$

$$v(s) = \mathcal{R}_s + \gamma \sum_{s' \in S} \mathcal{P}_{ss'} v(s')$$

A Markov decision process (MDP) is a Markov reward process with decisions. It is an *environment* in which all states are Markov.

Definition

- A Markov Decision Process is a tuple $\langle S, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$
 - S is a finite set of states
 - \mathcal{A} is a finite set of actions
 - \mathcal{P} is a state transition probability matrix, $\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$

■ \mathcal{R} is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1} | S_t = s, A_t = a]$ ■ γ is a discount factor $\gamma \in [0, 1]$.

Example Markov Decision Process

Markov Decision Process: Policy

- Now that we have introduced actions, we can discuss policies again
- Recall

Definition

A policy π is a distribution over actions given states,

$$\pi(a|s) = \mathbb{P}\left[A_t = a \mid S_t = s\right]$$

A policy fully defines the behaviour of an agent

MDP is an MRP for a Fixed Policy

- Given an MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ and a policy π
- The state sequence $S_1, S_2, ...$ is a Markov process $\langle S, \mathcal{P}^{\pi} \rangle$
- The state and reward sequence $S_1, R_2, S_2, ...$ is a Markov reward process $\langle S, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$

MDP is an MRP for a Fixed Policy

- Given an MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ and a policy π
- The state sequence $S_1, S_2, ...$ is a Markov process $\langle S, \mathcal{P}^{\pi} \rangle$
- The state and reward sequence $S_1, R_2, S_2, ...$ is a Markov reward process $\langle S, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$
- where

$$egin{aligned} \mathcal{P}^{\pi}_{s,s'} &= \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{P}^{a}_{ss'} \ \mathcal{R}^{\pi}_{s} &= \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{R}^{a}_{s} \end{aligned}$$

Markov Decision Process: Value Function

• We can also talk about the value function(s)

Definition

The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$v_{\pi}(s) = \mathbb{E}_{\pi}\left[G_t \mid S_t = s
ight]$$

Markov Decision Process: Value Function

• We can also talk about the value function(s)

Definition

The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$v_{\pi}(s) = \mathbb{E}_{\pi}\left[G_t \mid S_t = s\right]$$

Definition

The action-value function $q_{\pi}(s, a)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}\left[G_t \mid S_t = s, A_t = a\right]$$

*Also called the Bellman Expectation Equations

The state-value function can again be decomposed into immediate reward plus discounted value of successor state,

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[\mathsf{R}_{t+1} + \gamma \mathsf{v}_{\pi}(\mathsf{S}_{t+1}) \mid \mathsf{S}_{t} = s \right]$$

The action-value function can similarly be decomposed,

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}\left[R_{t+1} + \gamma q_{\pi}(S_{t+1},A_{t+1}) \mid S_t = s, A_t = a\right]$$

Recursions in MDP

*Also called the Bellman Expectation Equations

The optimal state-value function $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

The optimal action-value function $q_*(s, a)$ is the maximum action-value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

Markov Decision Process: Objective

*Also called the Bellman Optimality Equation

An optimal policy can be found by maximising over $q_*(s, a)$,

$$\pi_*(a|s) = \left\{ egin{array}{ccc} 1 & ext{if } a = rgmax \ q_*(s,a) \ & a \in \mathcal{A} \ 0 & otherwise \end{array}
ight.$$

Questions?

Today's Outline

- Complex Decisions
- Reinforcement Learning Basics
 - Markov Decision Process
 - (State Action) Value Function
- Q Learning Algorithm

Finding the Best Policy

- Need to be able to do two things ideally
 - Prediction:
 - For a given policy, evaluate how good it is
 - Compute $q_{\pi}(s, a)$
 - Control:
 - And make an improvement from π
- We will focus on the Q Learning algorithm
 - It does prediction and control 'simultaneously'

Intuition for an Iterative Algorithm

Intuition for an Iterative Algorithm

- If we know the model
 - Turn the Bellman Optimality Equation into an iterative update
 - This is called Value Iteration

$$q_*(s,a) = \mathcal{R}^a_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}^a_{ss'} \max_{a'} q_*(s',a')$$

- If we do not know the model
 - Do sampling to get an incremental iterative update
 - Choose next actions to ensure exploration

- If we do not know the model
 - Do sampling to get an incremental iterative update
 - Choose next actions to ensure exploration

- If we do not know the model
 - Do sampling to get an incremental iterative update
 - Choose next actions to ensure exploration

- If we do not know the model
 - Do sampling to get an incremental iterative update
 - Choose next actions to ensure exploration

- Initialize Q, which is a table of size #states×#actions
- Start at state S₁

- Initialize Q, which is a table of size #states \times #actions
- Start at state S₁
- For t = 1, 2, 3, ...
 - Take A_t chosen uniformly at random with probability ϵ

Explore

- Initialize Q, which is a table of size #states×#actions
- Start at state S₁
- For t = 1, 2, 3, ...
 - Take A_t chosen uniformly at random with probability ϵ

Exploit

• Take $\operatorname{argmax}_{a \in A} Q(S_t, a)$ with probability $1 - \epsilon$

- Initialize Q, which is a table of size #states×#actions
- Start at state S₁
- For t = 1, 2, 3, ...
 - Take A_t chosen uniformly at random with probability ϵ
 - Take $\operatorname{argmax}_{a \in A} Q(S_t, a)$ with probability 1ϵ
 - Update Q:

•
$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha_t (R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) - Q(S_t, A_t))$$

Temporal difference error


```
Exploit
```

- Initialize Q, which is a table of size #states×#actions
- Start at state S₁
- For t = 1, 2, 3, ...
 - Take A_t chosen uniformly at random with probability ϵ
 - Take $\operatorname{argmax}_{a \in A} Q(S_t, a)$ with probability 1ϵ
 - Update Q:

•
$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha_t (R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) - Q(S_t, A_t))$$

Temporal difference error

- Parameter ϵ is the exploration parameter
- Parameter α_t is the learning rate

Explore

Exploit

- Initialize Q, which is a table of size #states \times #actions
- Start at state S₁
- For t = 1, 2, 3, ...
 - Take A_t chosen uniformly at random with probability ϵ
 - Take $\operatorname{argmax}_{a \in A} Q(S_t, a)$ with probability 1ϵ
 - Update Q:

•
$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha_t (R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) - Q(S_t, A_t))$$

Temporal difference error

Explore

Exploit

- Parameter ϵ is the exploration parameter
- Parameter α_t is the learning rate
- Under appropriate assumptions¹, $\lim_{t \to \infty} Q = Q^*$

¹Reference: Christopher J. C. H. Watkins and Peter Dayan, 1992
The Q Learning Algorithm: Recap

- Bellman Optimality Equation gives rise to the Q-Value Iteration algorithm
- Making this algorithm incremental, sampled and adding ϵ -greedy exploration gives Q Learning Algorithm

Questions?

Summary

- RL is a great framework to make agents intelligent
- Specify goals and provide feedback
- Many challenges still remain: exciting opportunity to contribute towards next generation of artificially intelligent and autonomous agents.
- In the next lecture, we will see that deep learning function approximation based RL agents show promise in large complex tasks: representations matter!
 - Applications such as
 - Self-driving cars
 - Intelligent virtual agents

Appendix

Sample Exam Questions

- What is the difference between a Markov Chain and a Markov Reward Process?
- What is the difference between a Markov Chain and a Markov Decision Process?
- Why is exploration needed in the reinforcement learning setting?
- What does the optimal state-action value function signify?
- What are the two objects (distributions) of an RL model?
- What is the difference between supervised learning and reinforcement learning?

Additional Resources

- An Introduction to Reinforcement Learning by Richard Sutton and Andrew Barto
 - <u>http://incompleteideas.net/sutton/book/the-book.html</u>
- Course on Reinforcement Learning by David Silver at UCL (includes video lectures)
 - http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
- Research Papers
 - Deep RL collection: <u>https://github.com/junhyukoh/deep-</u> reinforcement-learning-papers
 - [MKSRVBGRFOPBSAKKWLH2015] Mnih et al. Human-level control through deep reinforcement learning. Nature, 518:529–533, 2015.
 - [SHMGSDSAPLDGNKSLLKGH2016] Silver et al. Mastering the game of Go with deep neural networks and tree search. Nature, 529: 484–489, 2016.

Cons of RL

- Reinforcement Learning requires experiencing the environment many many times
- This is because it is a trial and error based approach

- Impractical for many complex tasks
- Unless one has access to simulators where an RL agent can practice a billon times

RL versus other Machine Learning Settings

- There is a notion of exploration and exploitation, similar to Multi-armed bandits and Contextual bandits
 - Exploration finds more information about the environment
 - Exploitation exploits known information to maximise reward
 - It is usually important to explore as well as exploit
- Key difference: actions influence future contexts
 - Reinforcement learning is like trial-and-error learning
 - The agent should discover a good policy
 - From its experiences of the environment
 - Without losing too much reward along the way

RL versus other Sequential Decision Making Settings

Two fundamental problems in sequential decision making

- Reinforcement Learning:
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning:
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)
 - The agent improves its policy
 - a.k.a. deliberation, reasoning, introspection, pondering, thought, search

Types of RL Agents

- There are many ways to design them, so we roughly categorize then as below:
- Value Based
 - No Policy (Implicit)
 - Value Function
- Policy Based
 - PolicyNo Value Function
- Actor Critic
 - Policy
 - Value Function

Model Free

- Policy and/or Value FunctionNo Model
- Model Based
 - Policy and/or Value Function
 - Model

Relating the Two Value Functions I

Relating the Two Value Functions II

Recursion in MDP: Value Function Version

An optimal policy can be found by maximising over $q_*(s, a)$,

$$\pi_*(a|s) = \left\{ egin{array}{ccc} 1 & ext{if } a = rgmax \ q_*(s,a) \ & a \in \mathcal{A} \ 0 & otherwise \end{array}
ight.$$