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Today’s Outline

• Motivation

• Primer on Graphs

• Directed Graphical Models

• Undirected Graphical Models
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Recent Turing Award (highest in the CS discipline)
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1Reference: David Sontag, (2013) 



Why Graphical Models

• We have seen deep learning techniques for 
unstructured data
• Predominantly vision and text/audio
• We will see control in the last part of the course
• (Reinforcement Learning)

• For structured data, graphical models are the most 
versatile framework
• Successfully applications: 
• Kalman filtering in engineering
• Decoding in cell phones (channel codes)
• Hidden Markov models for time series
• …
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Graphical Models vs Deep Learning

6
1Reference: Andreas Geiger, Autonomous Vision Group, MPI (2017)
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Graphical Models Landscape

• Three parts to the story:

• Representation (this lecture)

• Capture uncertainty (joint distribution)

• Capture conditional independences (metadata)

• Visualization of metadata for a distribution

• Inference

• Create data structures for computing marginal 
or conditional distributions quickly

• Learning

• Learning the parameters of the distribution can 
be aided by graph techniques
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Graphical Models Landscape
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Application 1: Hidden Markov Model

11

1Reference: David Sontag (2013)



Application 1: Hidden Markov Model
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1Reference: David Sontag (2013)



Application 2: Naïve Bayes Spam Filter
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1Reference: Alex Smola (2011)



Application 3: Latent Dirichlet Allocation

14

1Reference: David Sontag (2013)



Application 4: Conditional Random Field

15
1Reference: David Sontag (2013)



Questions?
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Primer on Graphs
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Graph

• A network with

• Edges (links)

• Vertices (nodes)

• Heavily used in Computer Science for algorithms and 
data structures

• Here, we will only need the terminology of graphs.

• As we will see, their primary purpose will be 
visualization and encoding domain knowledge
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Undirected Graph

• An undirected graph

• Edges have no direction information

20
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Notation for Undirected Graphs

• Set of vertices denoted 1,… ,$

• Size of graph is $

• Edge is an (unordered) pair (&, ')

• (&, ') is the same as (', &)

• indicates that i and j are directly connected

• Maximum number of edges: $($ − 1)/2 (order $,)

• & and ' connected if there is a path of edges between 
them

• Subgraph of G:

• restrict attention to certain vertices and edges 
between them
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Path

• A sequence of vertices where each successive pair are 
connected by an edge

• For example, (3,4,5) is not a path. (3,1,4,5) is a path
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Neighbor

• All vertices that share an edge with the node are its 
neighbors. Denote as !"ℎ$(&)

• For example, (3,4,2) are neighbors of 1.

• !"ℎ$(1) = (3,4,2) 23

1 2

3 4

5



Cliques and Independent Sets

• A clique in a graph G is a set of vertices:

• informal: that are all directly connected to each other

• formal: whose induced subgraph is complete

• an edge is a clique of just 2 vertices

• Independent set:

• set of vertices whose induced subgraph is empty (no 
edges)

• Maximum clique or independent set: largest in the graph

• Maximal clique or independent set: can’t grow any larger

24



Cliques and Independent Sets

• A clique in a graph G is a set of vertices:

• informal: that are all directly connected to each other

• formal: whose induced subgraph is complete

• an edge is a clique of just 2 vertices

• Independent set:

• set of vertices whose induced subgraph is empty (no 
edges)

• Maximum clique or independent set: largest in the graph

• Maximal clique or independent set: can’t grow any larger

25



Directed Acyclic Graph

• A directed graph

• Edges have directions or orientations

• Edge (u,v) means u →v 

• May also have edge (v,u)

• Common for capturing asymmetric relations

• A directed acyclic graph (DAG)

• No directed cycles

• No way to follow the oriented edges and come 
back to the starting node
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DAG

• A directed acyclic graph (DAG)
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DAG Paths vs Directed Paths

• Path: 

• Same as undirected graph. Ignore directions

• Example: (3,1,2) is a path

• Directed path

• Take direction into account. E.g., (5,4,1,3) is a 
directed path

28
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Parents of a Node

• Notation:

• !"($) = Parents of node $

• In this graph, parents of & are (', ))

• Neighbors of that vertex that point to that 
vertex
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Parents of a Node

• In the below graph, parents of A is the empty set !

• In the graph on the right, "#(%&) = (%))
30
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Descendants of a Node

• All nodes that can be reached by following the arrow 
directions

• In the below graph, descendants of A are {", $}

• In the graph on the right, Desc('() = ('+)
31
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Connected Graphs

• G (directed or undirected) is connected if there is a 
path between any two vertices. 

• Otherwise, we have connected components.

• subgraphs determined by mutual connectivity

• Complete graph: edge between all pairs of vertices
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Tree Graph (Singly-Connected)

• If for any vertex pair, there is no more than one path 
between them. This is also called a tree.

• Otherwise, it is multiply-connected. Also called loopy.

• Similar definition for undirected graphs as well.
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Questions?
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Directed (Probabilistic) 
Graphical Models
Based on notes by MathematicalMonk1

36
1Reference: https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA



DPGM

• DPGM: Directed Probabilistic Graphical Model

• Also called a Bayesian Network or Belief Net

• Nothing Bayesian here

• Directed graphs tell us about conditional 
independence properties of a probability distribution
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Why Conditional Independence?

• Why do we care about conditional independence?

• Because we can perform tractable or efficient 
inference (we will address this next lecture!)
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Joint Distribution

• Let !, #, $ be RVs

• Joint distribution

• % ! = ', # = (, $ = )

• = % ) ', ( % ', (

• = %()|', ()%((|')%(')

• This is a factorization

• We can always do this
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Factorizations are not Unique

• !(#|%, ')!('|%)!(%)

• Create a node for each factor

• Graph has directed edges

• No cycles

• Can’t return to a node

• Nothing special about this factorization

• We could have factored in a completely different 
way
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Conditional Independence Changes the Graph

• If ! is conditionally independent of " given #

• Use notation C ⊥ " | #

• Then '()|*, ,) = '()|*)

• So we got a different graph

• Not every distribution could have lead to this graph.
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Non-unique Graphs

• Given ! = !#, … , !& ∼ (, and a DAG G

• We say ! respects G (or ( respects G) if

• ( )#, … , )& = ∏((),|./ (),)) ∀2 = 1,… , 4

• The graph G does not uniquely determine the 
probability distribution P

• Also, the graph G does not imply that any RVs are 
conditionally dependent. 

• At most, it only implies conditional independence
42
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Non-unique Graphs: Example

• Say A,B,C are independent

• !(#, %, &) = !(#)!(%)!(&)

• Let X = (A,B,C)

• Then X respects the graph G

• X also respects G’
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Non-unique Graphs: Example

• Graph G’ is not saying C depends on A and B

• It only says that the distribution of X = (A,B,C) factors 
in a way that can be represented by G’

• X also respects G’’
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Example: Linear Regression

• Graphical model for (Bayesian) linear regression

• Data: !" , $" "%&
' where !" is ( dimensional

• Model: )* ! = ,-. !

• Linear in , (not a matrix, a random vector)

• Let , ∼ 0(0, 34
56)

• Let 8" ∼ 0(,-. !" , 3
5)

• Let 8" be conditionally independent of 89 given ,

46
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Example: Linear Regression

• !(#, %&, … . , %)) = !(#)∏!(%-|#)

• Can also use a plate notation

• Stack the plates on top of each other

• Variable / is called a latent or hidden variable

• Variables 0- are called observed variables 47
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Example: Student Network

48

1Reference: David Sontag (2013)



Example: Car Network

49
1Reference: David Sontag (2013)



Conditional Independence (I)

• Given a graphical model, we can determine if two sets 
of RVs are conditionally independent or not

• !(#, %, &) = !(#|&)!(%|&)!(&) is a joint distribution 
that respects this graph

• What happens when we condition on C?

• ! #, % & =
* +,,,-

* -
= ! # & !(%|&)

• Thus, A and B are conditionally independent given C
• Use notation A ⊥ 0 | 1 50
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Conditional Independence (II)

• Given a graphical model, we can determine if two sets of RVs 
are conditionally independent or not

• ! ", $, % = ! " ! % " ! $ % = [! " % ! % ]!($|%) is 
the joint distribution that respects this graph

• What happens when we condition on C?

• ! ", $ % =
, -,.,/

, /
= ! " % !($|%)

• Thus, A and B are conditionally independent given C

• Use notation A ⊥ 2 | 3
51
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Conditional Independence (III)

• Given a graphical model, we can determine if two sets of 
RVs are conditionally independent or not

• ! ", $, % = ! " !($)! % ", $ is the joint distribution that 
respects this graph

• What happens when we condition on C?

• ! ", $ % =
) *,+,,

) ,
≠ ! " % !($|%)

• Cannot say A & B are conditionally independent given C52
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Head-to-Head Example

• Say ! ∼ #$%&
'

(
, # ∼ #$%&(

'

(
)

• Say , = 1 if ! = # and 0 otherwise

• Conditioned on C
• If we know A, we know B.
• They are dependent!

• Similarly, if we know B, we know A.

• Hence, A ⊥ # | , (i.e., not true for every distribution 
that respects the graph)

• But unconditionally, A ⊥ #

• 3 4, 5 = ∑7 3 4, 5, 8 = ∑7 3 4 3(5)3 8 4, 5

• = 3 4 3(5)∑7 3 8 4, 5 = 3 4 3(5)
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Conditional Independence: Summary for 3 
Node Graphical models

• Given a graphical model, we can determine if two sets 
of RVs are conditionally independent or not
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D-Separation Criterion: N Node Setting

• We saw how conditional independence properties 
unfold due to graph structure

• This was only for three node graphs

• We will now move to larger DAGs

• We will look at the general idea of d-separation

55



D-Separation (I)

• Helps you read off the conditional independence 
properties

• Notation

• Sets of RVs A,B and C

• Disjoint

• Not necessarily covering all

56

!"

!#

!$

!%

!& A

B

C



D-Separation (II)

• A path between two vertices is 
blocked with respect to ! if it passes 
through a node v such that

• v ∈ !, arrows are head-to-tail or 
tail-to-tail

• OR, $ ∉ !, arrows are head-to-
head, and Descendants(v) ∉ !

• Example

• &', &) and &* are in head-tail

• So path is blocked
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D-Separation (III)

• Definition of D-Separation
• A and B are d-separated by C if all paths from 

vertices in A to vertices in B are blocked with 
respect to C

• Key result
• If A and B are d-separated by C, then A ⊥ # | %

• Note: the above result is only ‘necessary’ not 
‘sufficient’
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D-Separation Example I

• Let C = {!"}

• Is A ⊥ % | ' ?

• We can check that by checking d-
separation for all pairs of vertices 
X) ⊥ !* | ' ?

• + = {5}

• 0 = {2,4}

• Easy to see that 
• !4, !5 are blocked by C
• !6, !5 are not blocked by C

• Hence, not d-separated

• Hence cannot say A ⊥ % | ' 59
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D-Separation Example II

• Let C = {!"}

• Is A ⊥ % | ' ?

• We can check that by checking d-
separation for all pairs of vertices 
X) ⊥ !* | ' ?

• + = {1}

• 0 = {2,4}

• We can see that 
• !4, !5 are not blocked by C
• !4, !6 are blocked by C

• Hence, not d-separated

• Hence cannot say A ⊥ % | '
60
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DAG and Probability (I)

• We have showed that the structure of the DAG 
corresponds to a set of conditional independence 
assumptions

• We can read conditional independence easily!

• We just need to specify !(#$|&'(#$))

• This does not mean that non-parent variables have no 
influence

• Thus, the DAG does not imply

• ! ) ', + = ! ) '

61
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DAG and Probability (II)

• DPGMs are good for representing independence, not 
for representing dependence

• We have seen this

• Multiple graphs for the same distribution

• D-separation only says conditional independence 
if true. If not true, then no conclusion is drawn.
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Filter view of DPGM

• Only distributions that satisfy conditional 
independences are allowed to pass

• One graph can describe many probability 
distributions

• Edge cases:
• When DAG is fully connected, all distributions pass
• When DAG is fully disconnected, only the product 

distribution (∏" #(%")) passes
63

1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Continuous Distributions

• We never had to state whether !(#|%) was 
continuous or discrete

• The graph is agonistic to the support of the random 
variables!
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Questions?
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Undirected (Probabilistic) 
Graphical Models
Based on notes from Bjoern Andres and Bernt Schiele (2016) 

67
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



UPGM

• Also called Markov Networks or Markov Random 
Fields

• No edge directions

• Again, diagrams of probability distributions that 
capture conditional independences

68
1Reference: Daphne Koller (2011)



UPGM vs DPGM

• DPGMs have been used in data analytics, ML, statistics

• UPGMs have been used in computer vision and physics, and 
have applications in data analytics as well

• DPGM
• Factor of the distribution was a (cond.) distribution

• UPGM
• Factor (also called potential) need not be a distribution

• Let !(#, %, &) =
)

*
+) #, % +,(%, &)

• Here - is the normalization constant or partition function. 
- = ∑/,0,1+) #, % +,(%, &)

69
1Reference: Daphne Koller (2011)



Notion of a Potential

• Potential !(#) is a non-negative function of variable 
#. Joint potential !(#%, … , #() is a non-negative 
function of a set of variables.

• Let )(*, +, ,) =
%

.
!% *, + !/(+, ,)

70
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Potentials Over Cliques

• For RVs !", … , !% , an UPGM is defined as a product 
of potentials over the cliques of graph G

• & !", … , !% =
"

(
∏*+*(-* )

• Here / = ∑12,…,13∏*+*({56: !6 ∈ -*} )

• Special cases:
• When cliques are of size 2: the UPGM is called a 

pairwise UPGM
• When all potentials are strictly positive: the 

distribution is called a Gibbs distribution
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Example Potentials

72

1Reference: David Sontag (2013)



Marginalization

• Marginalizing over B makes A and C graphically 
dependent

• ! ", $ = ∑' !(", ), $) =
+

,
-.(", $)
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Conditional Independence (I)

• Conditioning on B makes A and C independent

• !(#, %|') = !(#|')!(%|')

• Key: This is different from the head-to-head directed 
graph example, where conditioning introduced 
dependency!
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Conditional Independence (II)

• Global Markov property

• Two sets of nodes (say A and B) are conditionally 
independent given a third set C if

• All nodes in A and B are connected through 
nodes in C

• Local Markov property

• Conditioning on the neighbors of X makes X 
independent of the rest of the graph.

• ! "# "$, …"#'$, "#($ , ") = !("#|-.ℎ0("#))
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Global Markov Property

• In the following graph G, as a consequence of global 
Markov property:

• {"#, "%, "&} ⊥ {"), "*, "+}|"-

76
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Local Markov Property

• In the following graph G, as a consequence of local 
Markov property:

• !" ⊥ {!%, !'}|{!*, !+, !,, !-}

• !% ⊥ {!", !,, !-, !'}

77

1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Graph to Distribution

• So, the undirected graph specifies a set of conditional 
independence statements

• We can write down a joint distribution using the graph

• For example, we may consider a factorization 
involving maximal cliques.
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Graph to Distribution

• ! "#, … , "& =
#

(
)#("#, "+, ",))+("+, ",, ".)),("., "/, "0)).("/, "0, "&)

• But, we could have also considered some other factorization

79
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Filter view of UPGM

• Only distributions that satisfy conditional 
independences are allowed to pass

80

1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Limitations of DPGM and UPGM

• Cannot always represent all conditional independences 
of a given joint distribution

• Example: we cannot draw a DPGM for the following 
distribution
• !(#, %, &, ') with # ⊥ &|{%, '} and % ⊥ '|{#, &}

• Another example: we cannot represent the following 
using a UPGM
• !(#, %, &) with # ⊥ &|{%} and # ⊥ &

• Homework: verify the above two statements!
81

1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



DPGM vs UPGM

82

Property UPGMs DPGMs

Form Prod. potentials Prod. potentials

Potentials Arbitrary Cond. probabilities

Cycles Allowed Forbidden

Partition func. Z = ? Z = 1

Indep. check Graph separation D-separation

Indep. props. Some Some

Inference MCMC, BP, etc. Convert to UPGM

1Reference: Pedro Domingos, CSE 515 (2017)



Questions?
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Summary

• What are graphical models good at?
• Capture complexity and uncertainty
• Capture conditional independences
• We can visualize what’s happening with a 

distribution

• They unify many probabilistic techniques: mixture 
models, factor analysis, hidden Markov models, 
Kalman filters etc.

• Today we saw: visualization, conditional 
independence properties

• Next: computations (inference and learning)
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Sample Exam Questions

• What is the need for graphical models?

• What is the significance of 'hidden' and 'Markov' in a 
HMM?

• What is the use of a Latent Dirichlet Allocation model?

• What is a clique?

• Which distributions respect a graph?

• What is the difference between a head-to-head and a 
tail-to-tail configuration in DPGMs?

• How is the factorization in a UPGM different from the 
factorization in a DPGM?

• How would you find conditional independence 
relationships in a UPGM?
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Appendix
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Additional Resources

• Book 1: Graphical models, exponential families, and 
variational inference by Martin J. Wainwright and 
Michael I. Jordan

• See 
https://people.eecs.berkeley.edu/~wainwrig/Pap
ers/WaiJor08_FTML.pdf

• Book 2: Bayesian Reasoning and Machine Learning by 
David Barber

• See 
http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/p
mwiki.php?n=Brml.Online
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Review: Probability
Based on Sam Roweis’s slides (2002)
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Probability

89
1Reference: Sam Roweis (2002); Also see https://en.wikipedia.org/wiki/Cox%27s_theorem



Probability
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1Reference: Sam Roweis (2002); Also see https://en.wikipedia.org/wiki/Cox%27s_theorem



Probability
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1Reference: David Sontag (2013)



Probability
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1Reference: David Sontag (2013)



Random Variables
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1Reference: Sam Roweis (2002)



Random Variables
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1Reference: Sam Roweis (2002)



Expectation
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1Reference: Sam Roweis (2002)



Expectation

96
1Reference: Sam Roweis (2002)



Joint Probability
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1Reference: Sam Roweis (2002)



Conditional Probability
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1Reference: Sam Roweis (2002)



Marginal Probability
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1Reference: Sam Roweis (2002)



Bayes Rule
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1Reference: Sam Roweis (2002)



Conditional Independence
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1Reference: Sam Roweis (2002)



Independent Event Examples

102

1Reference: Alex Smola (2011)

• Independent event example

• Hardware failures events in different data centers

• Dependent event examples

• Queries to a search engine and news

• Tweets and news

• IM and email communications



Independent Event Examples

103

1Reference: David Sontag(2013)



Independent Event Examples
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1Reference: David Sontag(2013)



Relation to Statistics

105
1Reference: Sam Roweis (2002)



Relation to Statistics
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1Reference: Sam Roweis (2002)



Conditional Probability Table
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1Reference: Sam Roweis (2002)



Conditional Probability Table
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1Reference: Sam Roweis (2002)



Likelihood Function
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1Reference: Sam Roweis (2002)



Complete Data, IID Sampling
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1Reference: Sam Roweis (2002)



Maximum Likelihood
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1Reference: Sam Roweis (2002)



What to do with a Distribution

112

1Reference: Sam Roweis (2002)



What to do with a Distribution

113

1Reference: Sam Roweis (2002)



Aside: Observed vs Hidden Variables

114

1Reference: Sam Roweis (2002)

• Observed variables:

• For example, inputs in regression or classification 

• Unobserved variables:

• Also called hidden or latent

• Can be marginalized out

• Can make the modeling of observed variables 
easier (e.g., Gaussian mixture models)


