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For fundamental contributions to artificial intelligence through the
development of a calculus for probabilistic and causal reasoning.

o 8. 8 9

Judea Pearl created the representational and computational foundation for the processing of information under
uncertainty.

He is credited with the invention of Bay tworks, a mathematical formalism for defining complex probability
models, as well as the principal algorithms used for inference in these models. This work not only revolutionized
the field of artificial intelligence but also became an important tool for many other branches of engineering and
the natural sciences. He later created a mathematical framework for ca lere that has had significant
impact in the social sciences

Judea Pearl was bom on September 4, 1936, in Tel Aviv, which was at that time administered under the British
Mandate for Palestine. He grew up in Bnei Brak, a Biblical town his grandfather went 10 reestablish in 1924. In
1956, after serving in the Israeli army and joining a Kibbutz, Judea decided to study engineering. He attended the
Technion, where he met his wife, Ruth, and received a B.S. degree in Electrical Engineering in 1960. Recalling
the Technion faculty members in a 2012 interview in the Technion Magazine, he emphasized the thrill of
discovery
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Why Graphical Models

* We have seen deep learning techniques for
unstructured data

* Predominantly vision and text/audio
* We will see control in the last part of the course
* (Reinforcement Learning)

* For structured data, graphical models are the most
versatile framework

* Successfully applications:
* Kalman filtering in engineering
* Decoding in cell phones (channel codes)
* Hidden Markov models for time series



Graphical Models vs Deep Learning

Graphical Models Deep Neural Networks

= Probabilistic ® Deterministic

® Dependencies btw. RVs ® |nput/Output Mapping

= Low capacity ® High capacity

® Domain knowledge: easy | ® Domain knowledge: hard
to encode

TReference: Andreas Geiger, Autonomous Vision Group, MPI (2017)
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Graphical Models Landscape

* Three parts to the story:
* Representation (this lecture)
* Capture uncertainty (joint distribution)
* Capture conditional independences (metadata)
* Visualization of metadata for a distribution
* Inference

* Create data structures for computing marginal
or conditional distributions quickly

* Learning

* Learning the parameters of the distribution can
be aided by graph techniques



Graphical Models Landscape

Directed
Factor

Graph

Graphical

Models ’

Chain Graphs

Directed

Undirected
Graphs

Factor
Graphs

Clique
Graphs

'Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
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Application 1: Hidden Markov Model

Y1 Y2 Y3 Y4 Y5 Ye
X1 X2 X3 X4 X5 X6
@ Frequently used for speech recognition and part-of-speech tagging

@ Joint distribution factors as:

T

p(y,x) = p(y1)p(xa | y1) [ [ P(ye | ye-1)p(xe | y2)
t=2

e p(y1) is the distribution for the starting state
o p(y: | ye—1) is the transition probability between any two states
o p(x; | y¢) is the emission probability

@ What are the conditional independencies here? For example,
Yl L{)/37"'7\/6} ‘ Y2

11
TReference: David Sontag (201 3)



Application 1: Hidden Markov Model

Y, Y, Ys Y, 0 Ye
X4 X2 X3 X4 Xg Xg
@ Joint distribution factors as:

T

p(y,x) = p(y1)p(xa | y1) [ | (vt | ye-1)p(xe | y2)
=2

e A homogeneous HMM uses the same parameters (3 and « below)
for each transition and emission distribution (parameter sharing):

T

p(y7 x) = p(yl)axly.yl H /Bytayt—laxt,yt
=2

How many parameters need to be learned?

TReference: David Sontag (201 3)



Application 2: Naive Bayes Spam Filter

how to estimate
p(w|spam)

n
p(wy, ..., wn|spam) = | | p(w;|spam)
1=1

13
"Reference: Alex Smola (2011)




Application 3: Latent Dirichlet Allocation

Prior distribution
over topics

Topic-word B | l
distributions \ Zd
Wid
i=1to N
d=1to D

Topic of doc d

Word

Topic-word
distributions

@ Model on left is a mixture model
o Called multinomial naive Bayes (a word can appear multiple times)

e Document is generated from a single topic

04

|

6\22'(1
Wid
i=1to N

d=1to D

@ Model on right (LDA) is an admixture model
e Document is generated from a distribution over topics

TReference: David Sontag (201 3)

Dirichlet
hyperparameters

Topic distribution
for document

Topic of word i of doc d

Word

14



Application 4: Conditional Random Field

@ Conditional random fields are undirected graphical models of conditional
distributions p(Y | X)

e Y is a set of target variables
e X is a set of observed variables

@ A CRF is a Markov network on variables X U'Y, which specifies the
conditional distribution

with partition function

15
TReference: David Sontag (201 3)
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Primer on Graphs



Graph

* A network with
* Edges (links)

* Vertices (hodes)

* Heavily used in Computer Science for algorithms and
data structures

* Here, we will only need the terminology of graphs.

* As we will see, their primary purpose will be
visualization and encoding domain knowledge



Undirected Graph

* An undirected graph
* Edges have no direction information

O—0G
G
ORoHd

20



Notation for Undirected Graphs

* Set of vertices denoted 1, ..., N
* Size of graphis N
* Edge is an (unordered) pair (i, ))
* (i,j) is the same as (J, 1)
* indicates that i and j are directly connected

* Maximum number of edges: N(N — 1)/2 (order N?)

* [ and J connected if there is a path of edges between
them

* Subgraph of G:

* restrict attention to certain vertices and edges
between them



Path

* A sequence of vertices where each successive pair are
connected by an edge

=0
G
OROH

* For example, (3,4,5) is not a path. (3,1,4,5) is a path




Neighbor

* All vertices that share an edge with the node are its
neighbors. Denote as nbhd (X)

(0
G
OROH

* For example, (3,4,2) are neighbors of 1.
* nbhd(1) = (3,4,2)




Cligues and Independent Sets

. A clique in a graph G is a set of vertices:

* informal: that are all directly connected to each other
* formal: whose induced subgraph is complete

* an edge is a clique of just 2 vertices

24



Cliques and Independent Sets

A clique in a graph G is a set of vertices:
* informal: that are all directly connected to each other
* formal: whose induced subgraph is complete
* an edge is a clique of just 2 vertices

Independent set:

* set of vertices whose induced subgraph is empty (no
edges)

Maximum clique or independent set: largest in the graph

Maximal clique or independ et: can’t grow any larger




Directed Acyclic Graph

* A directed graph
* Edges have directions or orientations
* Edge (u,v) means v -v
* May also have edge (v,u)
* Common for capturing asymmetric relations

* A directed acyclic graph (DAG)
* No directed cycles

* No way to follow the oriented edges and come
back to the starting node



DAG

* A directed acyclic graph (DAG)




DAG Paths vs Directed Paths

* Path:
* Same as undirected graph. Ignore directions
* Example: (3,1,2) is a path

* Directed path
* Take direction into account. E.g., (5,4,1,3) is a

irected pat @_} @\
NG
ORe




Parents of a Node

* Notation:
* pa(J) = Parents of node |

* In this graph, parents of C are (4, B)

* Neighbors of that vertex that point to that
vertex

29



Parents of a Node

* In the below graph, parents of A is the empty set ¢

* In the graph on the right, pa(X,) = (X3)

30



Descendants of a Node

* All nodes that can be reached by following the arrow
directions

* In the below graph, descendants of A are {C,D}

* In the graph on the right, Desc(X3) = (X4)

31



Connected Graphs

* G (directed or undirected) is connected if there is a
path between any two vertices.

* Otherwise, we have connected components.
* subgraphs determined by mutual connectivity

* Complete graph: edge between all pairs of vertices

[T ]

connected graph graph with
two connected components”




Tree Graph (Singly-Connected)

* If for any vertex pair, there is no more than one path
between them. This is also called a tree.

singly-connected multiply-connected

* Otherwise, it is multiply-connected. Also called loopy.

* Similar definition for undirected graphs as well.



Questions?
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Directed (Probabilistic)
Graphical Models

Based on notes by MathematicalMonk!’

TReference: https://www.youtube.com /playlist2list=PLDOFO6AAOD2E8FFBA



DPGM

* DPGM: Directed Probabilistic Graphical Model

* Also called a Bayesian Network or Belief Net
* Nothing Bayesian here

* Directed graphs tell us about conditional
independence properties of a probability distribution

37



Why Conditional Independence?

* Why do we care about conditional independence?

* Because we can perform tractable or efficient
inference (we will address this next lecturel)



Joint Distribution

e Let A4, B, C be RVs

* Joint distribution
e« PA=a,B=bC=rc)
« = P(cla,b)P(a,b)
* = P(c|la,b)P(bla)P(a)

 This is a factorization
* We can always do this



Factorizations are not Unique

P(cla,b)P(bla)P(a)
* Create a node for each factor
* Graph has directed edges <

* No cycles e
e Can’t return to a node

* Nothing special about this factorization

* We could have factored in a completely different
way



Conditional Independence Changes the Graph

* If C is conditionally independent of B given A
* Use notationC L B | A

* Then P(c|a,b) = P(c|a)

* So we got a different graph C\

* Not every distribution could have lead to this graph.

41



Non-unique Graphs

* GivenX = (X{,..,X,,)) ~P,and a DAG G

* We say X respects G (or P respects G) if
 P(xq,....,x,) = [I1P(x;|lpa (x;)) Vi=1,..,n



Non-unique Graphs

* GivenX = (X{,..,X,,)) ~P,and a DAG G
* We say X respects G (or P respects G) if
 P(xq,....,x,) = [I1P(x;|lpa (x;)) Vi=1,..,n

* The graph G does not imply that any RVs are
conditionally dependent.

* At most, it will imply is conditional independence

* The graph G does not uniquely determine the
probability distribution P



Non-unique Graphs: Example

* Say A,B,C are independent

* P(a,b,c) = P(a)P(b)P(c)

* Let X = (A,B,C)
* Then X respects the graph G

* X also respects G’

44



Non-unique Graphs: Example

* Graph G’ is not saying C depends on A and B

* It only says that the distribution of X = (A,B,C) factors
in a way that can be represented by G’

* X also respects G”

45




Example: Linear Regression

* Graphical model for (Bayesian) linear regression
e Data: {x;,V;}i, where x; is d dimensional
* Model: fi, (x) = WT¢(x)
* Linear in W (not a matrix, a random vector)
e Let W ~ N(0, 6é1)
* LetV; ~ N(W"¢(x;),0?%)
* Let Y; be conditionally independent of ¥; given W

09, 0 and x; are not random

@ G"'@ 46



Example: Linear Regression

* PW,y1, ..., yn) = PW)IIP(yilw)

* Can also use a plate notation
* Stack the plates on top of each other

o0 0 o
N
Plate

* Variable W is called a latent or hidden variable

* Variables Y; are called observed variables

47



Example: Student Network

@ Consider the following Bayesian network:

d | 4 i i
06| 04

gl
i%d° | 03
i%d" | 0.05 |
i%d° [ 09 008 002 Tetior s | sl
%' o5 03 02 i [ 0.95 | 0.05
i' 02 |08
P9
gtlo1 |09
g’lo4 |06
g% ]099 001

@ What is its joint distribution?

p(x1,...xp) = HP(Xilea(i))
iev
p(d,i,g,s,1) = p(d)p(i)p(g | i,d)p(s|i)p(l]|g)

TReference: David Sontag (201 3)
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Example: Car Network

p(x1,...Xn) = H p(xi | XPa(i ))

1%
Will my car start this morning?
Starter . :
. " Alternator
adio .
@
FuelPump
Distributor () Leal
. EngineCfanks .
' BatteryPgwer Charg
Stgts Le3k2 . .
. . L:gn
@
BatteyyState
SparkPlugs GasGa . . :
BaNeryAge anpelt
. GasinTank . . (5
O
Heckerman et al., Decision-Theoretic Troubleshooting, 1995
49

TReference: David Sontag (201 3)



Conditional Independence (l)

Given a graphical model, we can determine if two sets
of RVs are conditionally independent or not

Q Tail-to-tail

P(a,b,c) = P(al|c)P(b|c)P(c)is a joint distribution
that respects this graph

What happens when we condition on C?
 P(a,blc) = P(;(’IZ;C) = P(al|c)P(b|c)
* Thus, A and B are conditionally independent given C

* Use notation A L B |C 50




Conditional Independence (ll)

Given a graphical model, we can determine if two sets of RVs
are conditionally independent or not

Head-to-tail

P(a,b,c) = P(a)P(cla)P(b|c) = [P(alc)P(c)]|P(b]|c)is
the joint distribution that respects this graph

What happens when we condition on C?

+ P(a,blc) = P(;l("c’;") — P(alc)P(b|c)

* Thus, A and B are conditionally independent given C
* Use notation A L B | C

51



Conditional Independence (lll)

Given a graphical model, we can determine if two sets of
RVs are conditionally independent or not

Q Head-to-head

P(a,b,c) = P(a)P(b)P(cla, b) is the joint distribution that
respects this graph

What happens when we condition on C?

 P(a,blc) = P(;(’IZ;C) + P(al|c)P(b|c)

* Cannot say A & B are conditionally independent giveri C




Head-to-Head Example

* Say A ~ Bern G) ,B ~ Bern(%) Q
e Say C = 1if A =B and 0 otherwise

e Conditioned on C
* |f we know A, we know B. Q Q

* They are dependent!
* Similarly, if we know B, we know A.

* Hence, A X B | C (i.e., not true for every distribution
that respects the graph)

* But unconditionally, A L B
 P(a,b) = ). P(a,b,c) =).P(a)P(b)P(cla,b)
* =P(a)P(b) XcP(cla,b) = P(a)P(b)



Conditional Independence: Summary for 3

Node Graphical models

* Given a graphical model, we can determine if two sets
of RVs are conditionally independent or not

Tail-to-tail: A L B | C

Head-to-tail: AL B | C

Head-to-head: A X' B | C

54




D-Separation Criterion: N Node Setting

* We saw how conditional independence properties
unfold due to graph structure

* This was only for three node graphs

* We will now move to larger DAGs

* We will look at the general idea of d-separation

55



D-Separation (l)

* Helps you read off the conditional independence
properties

* Notation
 Sets of RVs A,B and C
* Disjoint

* Not necessarily covering all

56




D-Separation (ll)

* A path between two vertices is
blocked with respect to C if it passes
through a node v such that

e v € (C, arrows are head-to-tail or
tail-to-tail

e OR, v & C, arrows are head-to-
head, and Descendants(v) & C

* Example
* X4,X3 and X, are in head-tail
* So path is blocked

57




D-Separation (lll)

* Definition of D-Separation

* A and B are d-separated by C if all paths from
vertices in A to vertices in B are blocked with
respect to C

* Key result
* If A and B are d-separated by C,then A L B | C

* Note: the above result is only ‘necessary’ not
‘sufficient’

58



D-Separation Example |

Le’rC:{X3}
sALB|C?

We can check that by checking d-
separation for all pairs of vertices

X; LX;|C?
« i = {5)
* j = {24}

Easy to see that
* X,,X: are blocked by C
* X4, Xc are not blocked by C

Hence, not d-separated

Hence cannotsay A L B | C

59




D-Separation Example I

¢ Le’rC:{X3}
* IsALB|C?

* We can check that by checking d- A
separation for all pairs of vertices

X; LX;|C?
c = 1)
* J = {24}

* We can see that
* X1,X, are not blocked by C
* X1,X4 are blocked by C

* Hence, not d-separated

* Hence cannotsayA L B |C

60



DAG and Probability (I)

* We have showed that the structure of the DAG
corresponds to a set of conditional independence
assumptions

* We can read conditional independence easily!
* We just need to specify P(X;|pa(X;))

* This does not mean that non-parent variables have no
influence

* Thus, the DAG does not imply

* P(cla,b) = P(cla) Q Q



DAG and Probability (Il)

* DPGMs are good for representing independence, not
for representing dependence

* We have seen this
* Multiple graphs for the same distribution

* D-separation only says conditional independence
if true. If not true, then no conclusion is drawn.



Filter view of DPGM

* Only distributions that satisfy conditional
independences are allowed to pass

* One graph can describe many probability
distributions
* Edge cases:
* When DAG is fully connected, all distributions pass
* When DAG is fully disconnected, only the product
distribution ([ [; P(X;)) passes

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)



Continuous Distributions

* We never had to state whether P(X|Y) was
continuous or discrete

* The graph is agonistic to the support of the random
variables!
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Undirected (Probabilistic)
Graphical Models

Based on notes from Bjoern Andres and Bernt Schiele (201 6)

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)



UPGM

* Also called Markov Networks or Markov Random
Fields

* No edge directions

* Again, diagrams of probability distributions that
capture conditional independences

P
N

TReference: Daphne Koller (2011)
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UPGM vs DPGM

* DPGMs have been used in data analytics, ML, statistics

* UPGMs have been used in computer vision and physics, and
have applications in data analytics as well

* DPGM

* Factor of the distribution was a (cond.) distribution

* UPGM

* Factor (also called potential) need not be a distribution

1
+ Let P(a,b,c) = ~¢1(a,b)p,(b,c)
* Here Z is the normalization constant or partition function.

Z =XapcP1(a,b)p,(b,c)

TReference: Daphne Koller (2011)
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Notion of a Potential

* Potential ¢(x) is a non-negative function of variable
X. Joint potential ¢(x4, ..., Xp) is a non-negative
function of a set of variables.

+ Let P(a,b,c) = ~¢1(a,b),(b,c)

70



Potentials Over Cliques

* For RVs X4, ...,Xp , an UPGM is defined as a product
of potentials over the cliques of graph G

¢ P(Xy, o, Xp) = ~TlePe(Xc)

* Here Z = le,...,xD [lc (i X; € Xc})

* Special cases:
* When cliques are of size 2: the UPGM is called o
pairwise UPGM

* When all potentials are strictly positive: the
distribution is called a Gibbs distribution



Example Potentials

p(aa b7 C) — %QSA,B(aa b) ’ ¢B,C(b7 C) ) ¢A,C(aa C)7

where

Z= )  ¢as(3b) ¢5c(be) ¢ac(s e)=2-1000+6-10 = 2060
a,b,ee{0,1}3

72
TReference: David Sontag (201 3)



Marginalization

* Marginalizing over B makes A and C graphically
dependent

* P(a,0) = %, P(a,b,0) = ;¢3(a,0)

»> 06—©O
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Conditional Independence (l)

* Conditioning on B makes A and C independent
* P(a,c|b) = P(a|b)P(c|b)

> @ O

* Key: This is different from the head-to-head directed
graph example, where conditioning introduced
dependency!
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Conditional Independence (ll)

* Global Markov property

* Two sets of nodes (say A and B) are conditionally
independent given a third set C if

* All nodes in A and B are connected through
nodes in C

* Local Markov property

* Conditioning on the neighbors of X makes X
independent of the rest of the graph.

* P(X;|X1, ... X;_1, X141, Xp) = P(X;|nbhd (X;))



Global Markov Property

* In the following graph G, as a consequence of global
Markov property:

* (X1, X2, X3} L (X5, X6, X7}| X4

([

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)
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Local Markov Property

* In the following graph G, as a consequence of local
Markov property:

* X, L {X1, X7}H{X2, X3, X5, Xe }
* Xy L {X4, X5, Xg, X7}

([

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)
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Graph to Distribution

* So, the undirected graph specifies a set of conditional
independence statements

* We can write down a joint distribution using the graph

* For example, we may consider a factorization
involving maximal cliques.
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Graph to Distribution

¢ Ii(xl, ...,x7) —
E¢1(x1,x2,x3)qb2(x2,x3,x4)¢3(x4, X5, Xg)Pa(Xs, Xg, X7)

c‘:.a : @

* But, we could have also considered some other factorization

79
TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)



Filter view of UPGM

0000

* Only distributions that satisfy conditional
independences are allowed to pass

80
TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)



Limitations of DPGM and UPGM

* Cannot always represent all conditional independences
of a given joint distribution

* Example: we cannot draw a DPGM for the following
distribution

* P(A,B,C,D) withA L C|{B,D}and B L D|{A, C}

* Another example: we cannot represent the following
using a UPGM

 P(A,B,C) withAXC|{B}and A L C

* Homework: verify the above two statements!

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)



DPGM vs UPGM

Form Prod. potentials Prod. potentials
Potentials Arbitrary Cond. probabilities
Cycles Allowed Forbidden

Partition func. |Z =72¢ L=1

Indep. check Graph separation | D-separation
Indep. props. |Some Some
Inference MCMC, BP, etc. Convert to UPGM

TReference: Pedro Domingos, CSE 515 (2017)
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Questions?



Summary

* What are graphical models good at?
* Capture complexity and uncertainty
* Capture conditional independences
* We can visualize what’s happening with a
distribution

* They unify many probabilistic techniques: mixture
models, factor analysis, hidden Markov models,
Kalman filters etc.

* Today we saw: visualization, conditional
independence properties

* Next: computations (inference and learning)



Sample Exam Questions

* What is the need for graphical models?

* What is the significance of 'hidden' and 'Markov' in a

HMM?
* What is the use of a Latent Dirichlet Allocation model?
* What is a clique?
* Which distributions respect a graph?

* What is the difference between a head-to-head and a
tail-to-tail configuration in DPGMs?

* How is the factorization in a UPGM different from the
factorization in a DPGM?

* How would you find conditional independence
relationships in a UPGM?



Appendix



Additional Resources

* Book 1: Graphical models, exponential families, and
variational inference by Martin J. Wainwright and
Michael I. Jordan

* See
https: //people.eecs.berkeley.edu/~wainwrig/Pap
ers/Wailor08 FTML.pdf

* Book 2: Bayesian Reasoning and Machine Learning by
David Barber

* See
http://web4.cs.ucl.ac.uk /staff /D.Barber /pmwiki/p
mwiki.php2n=Brml.Online
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Review: Probability

Based on Sam Roweis’s slides (2002)
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Probability

e We use probabilities p(z) to represent our beliefs B(x) about the
states x of the world.

e There is a formal calculus for manipulating uncertainties
represented by probabilities.

89
"Reference: Sam Roweis (2002); Also see https://en.wikipedia.org/wiki/Cox%27s theorem




Probability

e We use probabilities p(z) to represent our beliefs B(x) about the
states x of the world.

e There is a formal calculus for manipulating uncertainties
represented by probabilities.

e Any consistent set of beliefs obeying the Cox Axioms can be
mapped into probabilities.

1. Rationally ordered degrees of belief:

if B(z) > B(y) and B(y) > B(z) then B(z) > B(z)
2. Belief in x and its negation ¥ are related: B(z) = f[B(Z)]
3. Belief in conjunction depends only on conditionals:

B(x and y) = g[B(x), B(y|x)] = g[B(y), B(z|y)]

90
"Reference: Sam Roweis (2002); Also see https://en.wikipedia.org/wiki/Cox%27s theorem




Probability

@ An outcome space specifies the possible outcomes that we would
like to reason about, e.g.

) = { g “"“"_' Y Coin toss

e We specify a probability p(w) for each outcome w such that

91
TReference: David Sontag (2013)



Probability

@ An event is a subset of the outcome space, e.g.

E =4 @, @, @} Even die tosses
O={ 0, @, @ }  0dd die tosses

@ The probability of an event is given by the sum of the probabilities of
the outcomes it contains,

p(E) =) p(w)

w€eE

E.g., p(E)= |ﬁ>(@)+ p(@)+ p(@)

=1/2, if fair die
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Random Variables

e Random variables X represents outcomes or states of world.
Instantiations of variables usually in lower case: x
We will write p(z) to mean probability(X = z).

e Sample Space: the space of all possible outcomes/states.
(May be discrete or continuous or mixed.)
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Random Variables

e Random variables X represents outcomes or states of world.
Instantiations of variables usually in lower case: x
We will write p(z) to mean probability(X = z).

e Sample Space: the space of all possible outcomes/states.
(May be discrete or continuous or mixed.)

e Probability mass (density) function p(x) > 0
Assigns a non-negative number to each point in sample space.
Sums (integrates) to unity: >, p(z) =1or [ p(z)dr = 1.
Intuitively: how often does x occur, how much do we believe in .

e Ensemble: random variable 4+ sample space+ probability function
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Expectation

e Expectation of a function a(x) is written E|a] or {(a)

Ela] = (a) = ) _p(z)a(z)

e.g. mean = ) . xp(x), variance = ) (z — E[z])*p(x)

TReference: Sam Roweis (2002)
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Expectation

e Expectation of a function a(x) is written E|a] or {(a)

Ela] = (a) = ) _p(z)a(z)

e.g. mean = > xp(x), variance = > (z — E[z])’p(z)
e Moments are expectations of higher order powers.
(Mean is first moment. Autocorrelation is second moment.)

e Centralized moments have lower moments subtracted away
(e.g. variance, skew, curtosis).

e Deep fact: Knowledge of all orders of moments
completely defines the entire distribution.
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Joint Probability

e Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

e We call this a joint ensemble and write
p(z,y) = prob(X =z and Y = y)

¥ | (l Z

p(x,y,z)
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Conditional Probability

e If we know that some event has occurred, it changes our belief
about the probability of other events.

e This is like taking a "slice” through the joint table.
p(zly) = p(z,y)/p(y)

Z

N

p(x,ylz)
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Marginal Probability

e We can "sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(z) =) p(z,y)
Yy
e This is like adding slices of the table together.

y ] p(x.y) |

X

e Another equivalent definition: p(z) =}, p(z|y)p(y).
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Bayes Rule

e Manipulating the basic definition of conditional probability gives

one of the most important formulas in probability theory:

p(zly)

_plyle)p(z) _ pylz)p(z)

p(y) S plylz)p()

e This gives us a way of "reversing” conditional probabilities.

e Thus, all joint probabilities can be factored by selecting an ordering
for the random variables and using the " chain rule”:

p(z,y,z2,..

)

p(x)pylz)p(z|z,y)p(. .. |z,y, 2)

TReference: Sam Roweis (2002)
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Conditional Independence

e Two variables are independent iff their joint factors:

p(z,y) = p(x)p(y)

p(x.y)

T

- p(y)

e Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(x,ylz) = p(z|2)p(y|z) V=
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Independent Event Examples

* Independent event example
* Hardware failures events in different data centers

* Dependent event examples
* Queries to a search engine and news
* Tweets and news
* |IM and email communications
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Independent Event Examples

@ Two events A and B are independent if
p(AN B) = p(A)p(B)

@ Are these two events independent?

No!  p(ANB)=0, p(A)p(B)= (_)2

@ Now suppose our outcome space had two different die:

= {Q@,QQ,OW, ,@iﬁ} 2 die tosses

62 = 36 outcomes

and the probability distribution is such that each die is independent,

QD -2 @r® @D - @D

TReference: David Sontag(2013)
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Independent Event Examples

@ Two events A and B are independent if
p(AN B) = p(A)p(B)

@ Are these two events independent?

Yes!
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Relation to Statistics

e Probability: inferring probabilistic quantities for data given fixed
models (e.g. prob. of events, marginals, conditionals, etc).

105
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Relation to Statistics

e Probability: inferring probabilistic quantities for data given fixed
models (e.g. prob. of events, marginals, conditionals, etc).

e Statistics: inferring a model given fixed data observations
(e.g. clustering, classification, regression).

e Many approaches to statistics:
frequentist, Bayesian, decision theory, ...
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Conditional Probability Table

e For discrete (categorical) quantities, the most basic parametrization
is the probability table which lists p(z; = th value).

e Since PTs must be nonnegative and sum to 1, for k-ary variables
there are k — 1 free parameters.
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Conditional Probability Table

e For discrete (categorical) quantities, the most basic parametrization
is the probability table which lists p(z; = th value).

e Since PTs must be nonnegative and sum to 1, for k-ary variables
there are k — 1 free parameters.

e If a discrete variable is conditioned on the values of some other
discrete variables we make one table for each possible setting of the
parents: these are called conditional probability tables or CPTs.

Z

p(x.y,z) LA | p(x.ylz)

X X
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Likelihood Function

e So far we have focused on the (log) probability function p(x|6)
which assigns a probability (density) to any joint configuration of
variables x given fixed parameters 6.

e But in learning we turn this on its head: we have some fixed data
and we want to find parameters.

e Think of p(x|@) as a function of 6 for fixed x:
L(0;x) = p(x|0)
£(0;x) = log p(x|0)
This function is called the (log) “likelihood”.
e Chose 6 to maximize some cost function ¢(#) which includes ¢(0):
c(0) =£(6;D) maximum likelihood (ML)
c(@) =4(0;D)+r(0) maximum a posteriori (MAP)/penalizedML
(also cross-validation, Bayesian estimators, BIC, AIC, ...)
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Complete Data, IID Sampling

e A single observation of the data X is rarely useful on its own.

e Generally we have data including many observations, which creates
a set of random variables: D = {x!,x?,...,xM}

’ouo

e Two very common assumptions:
1. Observations are independently and identically distributed
according to joint distribution of graphical model: [ID samples.

2. We observe all random variables in the domain on each
observation: complete data.
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Maximum Likelihood

e For |ID data:
p(D|6) = Hp (x™(6)

= Zlogp (x"™6)
m

e Idea of maximum likelihod estimation (MLE): pick the setting of
parameters most likely to have generated the data we saw:

Oxp, = argmaxy £(6; D)

e \VVery commonly used in statistics.
Often leads to “intuitive”, “appealing”, or “natural” estimators.
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What to do with a Distribution

e Generate data: draw samples from the distribution. This often
involves generating a uniformly distributed variable in the range
[0,1] and transforming it. For more complex distributions it may
involve an iterative procedure that takes a long time to produce a
single sample (e.g. Gibbs sampling, MCMC).

e Compute log probabilities.
When all variables are either observed or marginalized the result is a
single number which is the log prob of the configuration.
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What to do with a Distribution

e Generate data: draw samples from the distribution. This often
involves generating a uniformly distributed variable in the range
[0,1] and transforming it. For more complex distributions it may
involve an iterative procedure that takes a long time to produce a
single sample (e.g. Gibbs sampling, MCMC).

e Compute log probabilities.
When all variables are either observed or marginalized the result is a
single number which is the log prob of the configuration.

e Inference: Compute expectations of some variables given others
which are observed or marginalized.

e Learning.
Set the parameters of the density functions given some (partially)
observed data to maximize likelihood or penalized likelihood.

113
TReference: Sam Roweis (2002)



Aside: Observed vs Hidden Variables

* Observed variables:
* For example, inputs in regression or classification

* Unobserved variables:
* Also called hidden or latent
* Can be marginalized out

* Can make the modeling of observed variables
easier (e.g., Gaussian mixture models)
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