Advanced Prediction Models

Deep Learning, Graphical Models and Reinforcement Learning

Recap: Why Graphical Models

- We have seen deep learning techniques for unstructured data
 - Predominantly vision and text/audio
 - We will see control in the last part of the course
 - (Reinforcement Learning)
- For structured data, graphical models are the most versatile framework
 - Successfully applications:
 - Kalman filtering in engineering
 - Decoding in cell phones (channel codes)
 - Hidden Markov models for time series
 - Clustering, regression, classification ...

Recap: Graphical Models Landscape

- Three key parts:
 - Representation
 - Capture uncertainty (joint distribution)
 - Capture conditional independences (metadata)
 - Visualization of metadata for a distribution
 - Inference
 - Efficient methods for computing marginal or conditional distributions quickly
 - Learning
 - Learning the parameters of the distribution can deal with prior knowledge and missing data

Today's Outline

- Inference
 - Factor Graph
 - Variable Elimination
- Inference using Belief Propagation
- Inference using Markov Chain Monte Carlo

Inference

Based on notes from Bjoern Andres and Bernt Schiele (2016)

Inference Objectives

- Let $\overline{X} = X_1, \dots, X_D$ be a random vector.
- Let $\bar{X} \in \mathfrak{X}$ and $X_i \in \mathfrak{X}_i$
- Given $P(\bar{X})$ compute functions of it

Inference Objectives

- Let $\bar{X} = X_1, \dots, X_D$ be a random vector.
- Let $\overline{X} \in \mathfrak{X}$ and $X_i \in \mathfrak{X}_i$
- Given $P(\bar{X})$ compute functions of it
 - Example, find
 - Mode $\bar{x}^* \in \operatorname{argmax}_{\bar{x} \in \mathfrak{X}} P(\bar{x})$
 - Mean $E[g(\bar{x})] = \sum_{\bar{x} \in \mathfrak{X}} g(\bar{x}) P(\bar{x})$
 - A marginal $\underset{x_i \in \mathfrak{X}_i}{\operatorname{argmax}} \sum_{x_1,\dots,x_{i-1},x_{i+1},\dots,x_D} P(\bar{x})$
 - A conditional $P(X_i|x_1,...,x_{i-1},x_{i+1},...,x_D)$

Algorithms for Inference

Variable Elimination

Belief Propagation

Sampling based methods (MCMC)

Factor Graphs

- For both DPGM and UPGMs, factorization is simply not specified by the graph!
- Consider the following example graph

- It could be $P(a,b,c) = \frac{1}{Z}\phi(a,b,c)$
- Or it could be $P(a,b,c) = \frac{1}{Z}\phi_1(a,b)\phi_2(b,c)\phi_3(c,a)$

Factor Graph for UPGM

Hence, we define new graphs called factor graphs

• Consider a square node for each factor

• Then, $P(a,b,c) = \frac{1}{z}\phi(a,b,c)$ can be represented by

10

Factor Graph

 factor graphs capture the factorization in the graph itself

• For a function $f(x_1,...,x_D)=\prod_i \phi_i(\mathcal{X}_i)$ the factor graph has a square node for each factor $\phi_i(\mathcal{X}_i)$ and a circular variable node for each variable x_i

- Factor graphs will allow us to define inference algorithms for both DPGMs and UPGMs
 - Just a more richer way of drawing graphs for P(X)

Factor Graphs for a UPGM

 The following example shows two factor graphs for the same UPGM

Factor Graph Example (I)

Which distribution does the following graph correspond to?

We will use lower case to minimize notation clutter

Factor Graph Example (I)

Which distribution does the following graph correspond to?

- It corresponds to
 - $P(x_1, x_2, x_3) = \frac{1}{Z} f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3)$

Factor Graph Example (II)

What is the factor graph for the distribution

•
$$P(x_1, x_2, x_3) = \frac{1}{z} f_c(x_3 | x_1, x_2) f_a(x_1) f_b(x_2)$$

Factor Graph Example (II)

What is the factor graph for the distribution

•
$$P(x_1, x_2, x_3) = \frac{1}{Z} f_c(x_3 | x_1, x_2) f_a(x_1) f_b(x_2)$$

The following is the desired factor graph

Factor Graph for DPGM

We can do this for DPGMs as well (although redundant)

Consider the graph on the right

Its factor graph representation is shown below

17

Inference using Variable Elimination

- It is a very simple idea, which is
 - Don't sum over all configurations simultaneously
 - Do it one variable at a time

Works for DPGMs and UPGMs

We will use lower case to minimize notation clutter

This can be for a DPGM or a UPGM

¹Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

This can be for a DPGM or a UPGM

$$p(a,b,c,d) = \frac{1}{Z} f_1(a,b) f_2(b,c) f_3(c,d) f_4(d)$$

Objective: Find p(a,b)

¹Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

$$p(a,b,c,d) = \frac{1}{Z} f_1(a,b) f_2(b,c) f_3(c,d) f_4(d)$$

$$p(a,b,c) = \sum_d p(a,b,c,d)$$

$$= \frac{1}{Z} f_1(a,b) f_2(b,c) \sum_d f_3(c,d) f_4(d)$$

$$p(a,b,c) = \sum_d p(a,b,c,d)$$

$$p(a,b$$

¹Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

$$p(a,b,c,d) = \frac{1}{Z} f_1(a,b) f_2(b,c) f_3(c,d) f_4(d)$$

$$p(a,b,c) = \sum_d p(a,b,c,d)$$

$$= \frac{1}{Z} f_1(a,b) f_2(b,c) \sum_d f_3(c,d) f_4(d)$$

$$\mu_{d \to c}(c) \text{ (compute this for all c)}$$

$$p(a,b) = \sum_c p(a,b,c) = \frac{1}{Z} f_1(a,b) \sum_c f_2(b,c) \mu_{d\to c}(c)$$

$$\mu_{c\to b}(b) \qquad \text{(compute this for all b)}$$

Questions?

Today's Outline

- Inference
 - Factor Graph
 - Variable Elimination
- Inference using Belief Propagation
- Inference using Markov Chain Monte Carlo

Inference using Belief Propagation

Belief Propagation (BP)

- Generalizes the idea of Variable Elimination
- Also called the Sum-Product Algorithm

 Will give exact answers (marginals, conditionals) on factor graphs that are trees

 Can also be used for general graphs but may give wrong answers

BP Example: Compute a Marginal

consider a branching graph:

with factors

$$f_1(a,b)f_2(b,c,d)f_3(c)f_4(d,e)f_5(d)$$

For example: find marginal p(a,b)

- We will introduce the notion of
 - messages, and
 - message passing

BP Example: Messages

• Messages are functions (vectors) that are passed from one node to another $u_{force}(c)$

¹Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

BP Example: Messages

$$p(a,b) = \frac{1}{Z} f_1(a,b) \sum_{\substack{c,d,e}} f_2(b,c,d) f_3(c) f_5(d) f_4(d,e)$$

$$\mu_{f_2 \to b}(b)$$

$$\mu_{f_2 \to b}(b) = \sum_{c,d} f_2(b,c,d) \underbrace{f_3(c)}_{\mu_{c \to f_2}(c)} \underbrace{f_5(d) \sum_{e} f_4(d,e)}_{\mu_{d \to f_2}(d)}$$

BP Example: Message from Factor to Variable

Here (repeated from last slide):

$$\mu_{f_{2}\to b}(b) = \sum_{c,d} f_{2}(b,c,d) \underbrace{f_{3}(c)}_{\mu_{c\to f_{2}}(c)} \underbrace{f_{5}(d) \sum_{e} f_{4}(d,e)}_{\mu_{d\to f_{2}}(d)}$$

$$\mu_{f_{2}\to b}(b) = \sum_{c,d} f_{2}(b,c,d) \mu_{c\to f_{2}}(c) \mu_{d\to f_{2}}(d)$$

BP Example: Message from Factor to Variable

Here (repeated from last slide):

$$\mu_{\mathbf{f_2} \to b}(b) = \sum_{c,d} \mathbf{f_2}(b, c, d) \mu_{c \to \mathbf{f_2}}(c) \mu_{d \to \mathbf{f_2}}(d)$$

more general:

$$\mu_{\boldsymbol{f} \to \boldsymbol{x}}(\boldsymbol{x}) = \sum_{\boldsymbol{y} \in \mathcal{X}_{\boldsymbol{f}} \backslash \boldsymbol{x}} \phi_{\boldsymbol{f}}(\mathcal{X}_{\boldsymbol{f}}) \prod_{\boldsymbol{y} \in \{\mathsf{ne}(\boldsymbol{f}) \backslash \boldsymbol{x}\}} \mu_{\boldsymbol{y} \to \boldsymbol{f}}(\boldsymbol{y})$$

BP Example: Message from Variable to Factor

BP Example: Message from Variable to Factor

Here (repeated from last slide):

$$\mu_{\mathbf{d}\to f_2}(\mathbf{d}) = \mu_{f_5\to\mathbf{d}}(\mathbf{d})\mu_{f_4\to\mathbf{d}}(\mathbf{d})$$

General:

$$\mu_{\mathbf{x}\to f}(\mathbf{x}) = \prod_{g\in\{\mathsf{ne}(\mathbf{x})\setminus f\}} \mu_{g\to\mathbf{x}}(\mathbf{x})$$

BP Example: Compute a Different Marginal

If we want to compute the marginal p(a)

(use factor-to-variable message):

$$p(a) = \frac{1}{Z} \mu_{f_1 \to a}(a) = \underbrace{\sum_{b} f_1(a, b) \mu_{b \to f_1}(b)}_{\mu_{f_1 \to a}(a)} \frac{1}{Z}$$

which we could also view as

$$p(a) = \frac{1}{Z} \sum_{b} f_1(a, b) \underbrace{\mu_{b \to f_1}(b)}_{\mu_{f_2 \to b}(b)}$$

Belief Propagation Algorithm

 We described the concept of 'messages' via an example (computing marginals for a given factor graph)

- Now we will summarize the algorithm in general
- It has three key ingredients
 - Initialization
 - Variable to factor message
 - Factor to variable message
- Don't forget the original objective: efficient inference

BP: Initialization

 Messages from extremal/leaf node factors are initialized to be the factor itself

 Messages from extremal/leaf node variables are initialized to value 1

BP: Variable to Factor Message

BP: Factor to Variable Message

 We sum over all values possible in the scope of the factor

$$\mu_{f \to x}(x) = \sum_{y \in \mathcal{X}_f \setminus x} \phi_f(\mathcal{X}_f) \prod_{y \in \{\mathsf{ne}(f) \setminus x\}} \mu_{y \to f}(y)$$

BP: Ordering of Messages

- Messages depend on all incoming messages
- To compute all messages
 - ullet Go from leaves to a designated root (say x_3)
 - Go from the designated root back to leaves

BP: Computing a Marginal

 Marginal is simply the product of messages the variable of interest receives

$$p(x) \propto \prod_{f \in \mathsf{ne}(x)} \mu_{f \to x}(x)$$

BP: General Factor Graphs

Is in-exact

 Since it is not clear whether BP is a clear winner for inference with general graphs (among competing algorithms), we will not explore this further.

See https://en.wikipedia.org/wiki/Belief_propagation for more details

Questions?

Today's Outline

- Inference
 - Factor Graphs
 - Variable Elimination
- Inference using Belief Propagation
- Inference using Markov Chain Monte Carlo

Inference using Markov Chain Monte Carlo

See https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo

Approximate Inference

- BP and Variable Elimination are exact algorithms
- They work for tree structured factor graphs

- We will resort to numerical sampling to perform approximate inference for general graphical models
 - Essentially, use random sampling to approximate

Sampling

Many methods in the literature

- Monte Carlo methods
 - MC Averaging and Importance sampling
 - Rejection sampling
- Markov Chain Monte Carlo methods
 - Gibbs sampling
 - Metropolis-Hastings sampling

•

Monte Carlo Averaging

We want to evaluate

$$\mathbb{E}[f] = \int f(x)p(x)dx$$
 or $\mathbb{E}[f] = \sum_{x \in \mathcal{X}} f(x)p(x)$

Sampling idea:

- draw L independent samples x^1, x^2, \dots, x^L from $p(\cdot)$: $x^l \sim p(\cdot)$
- replace the integral/sum with the finite set of samples

$$\hat{f} = \frac{1}{L} \sum_{l=1}^{L} f(x^l)$$

• as long as $x^l \sim p(\cdot)$ then

$$\mathbb{E}[\hat{f}] = \mathbb{E}[f]$$

¹Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

²Reference: https://en.wikipedia.org/wiki/Monte Carlo method

Importance Sampling

Is a variance reduction technique for MC averaging

use a proposal distribution q(z) from which it is easy to draw samples express expectation in the form of a finite sum over samples $\{z^l\}$ drawn from q(z):

$$\mathbb{E}[f] = \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz$$

$$\simeq \frac{1}{L}\sum_{l=1}^{L}\frac{p(z^l)}{q(z^l)}f(z^l)$$

with importance weights: $r^l = rac{p(z^l)}{q(z^l)}$

¹Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

²Reference: https://en.wikipedia.org/wiki/Importance_sampling

Importance Sampling

 If we can only evaluate up to a normalizing constant, then additional tricks needed.

p(z) can be only evaluated up to a normalization constant (unkown):

$$p(z) = \tilde{p}(z)/Z_p$$

q(z) can be also treated in a similar way:

$$q(z) = \tilde{q}(z)/Z_q$$

then:

$$\mathbb{E}[f] = \int f(z)p(z)dz = \frac{Z_q}{Z_p} \int f(z)\frac{\tilde{p}(z)}{\tilde{q}(z)}q(z)dz$$

$$\simeq \frac{Z_q}{Z_p} \frac{1}{L} \sum_{l=1}^L \tilde{r}^l f(z^l)$$

with:
$$ilde{r}^l = rac{ ilde{p}(z^l)}{ ilde{q}(z^l)}$$

For example, $\left| rac{Z_p}{Z_q}
ight| \simeq rac{1}{L} \sum_{l=1}^L ilde{r}^l$

¹Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

Rejection Sampling

Sample two random variables:

- 1. $z_0 \sim q(x)$
- 2. $u_0 \sim [0, kq(z_0)]$ uniform

reject sample z_0 if $u_0 > \tilde{p}(z_0)$

q(x) is a proposal distribution such that $kq(x) \ge p(x) \forall x$

¹Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

²Reference: https://en.wikipedia.org/wiki/Rejection sampling

Rejection Sampling

Sample z drawn from q and accepted with probability $\tilde{p}(z)/kq(z)$ So (overall) acceptance probability

$$p(accept) = \int \frac{\tilde{p}(z)}{kq(z)} q(z) dz = \frac{1}{k} \int \tilde{p}(z) dz$$

So the lower k the better (more acceptance)

• subject to constraint $kq(z) \geq \tilde{p}(z)$

 Impractical in high dimensions (lots of samples will get rejected)

Rejection Sampling

Example:

- ▶ assume p(x) is Gaussian with covariance matrix: $\sigma_n^2 I$
- ▶ assume q(x) is Gaussian with covariance matrix: $\sigma_a^2 I$
- clearly: $\sigma_q^2 \ge \sigma_p^2$
- ightharpoonup in D dimensions: $k = \left(\frac{\sigma_q}{\sigma_p}\right)^D$

assume:

- σ_q is 1% larger than σ_p , D=1000
- ▶ then $k = 1.01^{1000} \ge 20000$
- ▶ and $p(accept) \leq \frac{1}{20000}$

therefore: often impractical to find good proposal distribution q(x) for high dimensions

Gibbs Sampling: Markov Blanket

Sample from this distribution p(x)

Idea: Sample sequence x^0, x^1, x^2, \ldots by updating one variable at a time

Eg. update x_4 by conditioning on the set of shaded variables Markov blanket

$$p(x_4 \mid x_1, x_2, x_3, x_5, x_6) = p(x_4 \mid x_3, x_5, x_6)$$

¹Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

²Reference: https://en.wikipedia.org/wiki/Gibbs sampling

w	f	p(f w)
0	0	0.95
0	1	0.05
1	0	0.80
1	1	0.20

w	С	p(f w)
0	0	0.88
0	1	0.12
1	0	0.70
1	1	0.30

- = P(W=w|F=1, C=0)
- $\propto P(F=1|W=w)*P(C=0|W=w)*P(W=w)$

w	f	p(f w)
0	0	0.95
0	1	0.05
1	0	0.80
1	1	0.20

w	С	p(f w)
0	0	0.88
0	1	0.12
1	0	0.70
1	1	0.30

$$P(W=w|F=1, P=1, C=0, ..., I=0)$$

$$= P(W=w|F=1, C=0)$$

$$\propto P(F=1|W=w)*P(C=0|W=w)*P(W=w)$$

$$= \begin{cases} 0.05*0.88*0.40, & W = 0 \end{cases}$$

w	f	p(f w)
0	0	0.95
0	1	0.05
1	0	0.80
1	1	0.20

w	С	p(f w)
0	0	0.88
0	1	0.12
1	0	0.70
1	1	0.30

$$P(W=w|F=1, P=1, C=0, ..., I=0)$$

$$= P(W=w|F=1, C=0)$$

$$\propto P(F=1|W=w)*P(C=0|W=w)*P(W=w)$$

$$= \begin{cases} 0.05 * 0.88 * 0.40, & W = 0 \\ 0.20 * 0.70 * 0.60, & W = 1 \end{cases}$$

w	f	p(f w)
0	0	0.95
0	1	0.05
1	0	0.80
1	1	0.20

w	С	p(f w)
0	0	0.88
0	1	0.12
1	0	0.70
1	1	0.30

$$P(W=w|F=1, P=1, C=0, ..., I=0)$$
= $P(W=w|F=1, C=0)$
 $\propto P(F=1|W=w)*P(C=0|W=w)*P(W=w)$
=
$$\begin{cases} 0.05*0.88*0.40, & W=0\\ 0.20*0.70*0.60, & W=1 \end{cases}$$

$$P(W = w \mid F = 1, C = 0)$$

$$= \begin{cases} 0.0176/(0.0176+0.084), & w = 0\\ 0.084/(0.0176+0.084), & w = 1 \end{cases}$$

$$= \begin{cases} 0.173, & w = 0\\ 0.827, & w = 1 \end{cases}$$

Sample a new w!

Gibbs Sampling: Conditional Probability

Update x_i

$$p(x_i \mid x_{\setminus i}) = \frac{1}{Z} p(x_i \mid pa(x_i)) \prod_{j \in \mathsf{ch}(i)} p(x_j \mid \mathsf{pa}(x_j))$$

and the normalisation constant is

$$Z = \sum_{x_i} p(x_i \mid pa(x_i)) \prod_{j \in \mathsf{ch}(i)} p(x_j \mid \mathsf{pa}(x_j))$$

Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

²Reference: https://en.wikipedia.org/wiki/Gibbs sampling

Understanding MCMC via Markov Chain Terminology

Sample from a multi-variate distribution

$$p(x) = \frac{1}{Z}p^*(x)$$

with Z intractable to calculate

Idea: Sample from some $|q(\mathbf{x} \to \mathbf{x}')|$ with a stationary distribution

$$\pi(\mathbf{x}') = \sum_{\mathbf{x}} \pi(\mathbf{x}) q(\mathbf{x} \to \mathbf{x}')$$
 for all \mathbf{x}'

Given p(x) find $q(\mathbf{x} \to \mathbf{x}')$ such that $\pi(\mathbf{x}) = p(x)$ Gibbs sampling is one instance (that is why it is working)

¹Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

Understanding MCMC via Markov Chain Terminology

Transition probability $q(\mathbf{x} \to \mathbf{x}')$

Occupancy probability $\pi_t(\mathbf{x})$ at time t

Equilibrium condition on π_t defines stationary distribution $\pi(\mathbf{x})$ Note: stationary distribution depends on choice of $q(\mathbf{x} \to \mathbf{x}')$

Pairwise detailed balance on states guarantees equilibrium

Gibbs sampling transition probability:

sample each variable given current values of all others

⇒ detailed balance with the true posterior

For Bayesian networks, Gibbs sampling reduces to sampling conditioned on each variable's Markov blanket

Stationary Distribution of a MC

```
\pi_t(\mathbf{x}) = \text{probability in state } \mathbf{x} \text{ at time } t
\pi_{t+1}(\mathbf{x}') = \text{probability in state } \mathbf{x}' \text{ at time } t+1
\pi_{t+1} in terms of \pi_t and q(\mathbf{x} \to \mathbf{x}')
     \pi_{t+1}(\mathbf{x}') = \sum_{\mathbf{x}} \pi_t(\mathbf{x}) q(\mathbf{x} \to \mathbf{x}')
Stationary distribution: \pi_t = \pi_{t+1} = \pi
     \pi(\mathbf{x}') = \sum_{\mathbf{x}} \pi(\mathbf{x}) g(\mathbf{x} \to \mathbf{x}') for all \mathbf{x}'
If \pi exists, it is unique (specific to q(\mathbf{x} \to \mathbf{x}'))
In equilibrium, expected "outflow" = expected "inflow"
```

Detailed Balance Equation

"Outflow" = "inflow" for each pair of states:

$$\pi(\mathbf{x})q(\mathbf{x} \to \mathbf{x}') = \pi(\mathbf{x}')q(\mathbf{x}' \to \mathbf{x})$$
 for all \mathbf{x}, \mathbf{x}'

Detailed balance \Rightarrow stationarity:

$$\Sigma_{\mathbf{x}} \pi(\mathbf{x}) q(\mathbf{x} \to \mathbf{x}') = \Sigma_{\mathbf{x}} \pi(\mathbf{x}') q(\mathbf{x}' \to \mathbf{x})$$
$$= \pi(\mathbf{x}') \Sigma_{\mathbf{x}} q(\mathbf{x}' \to \mathbf{x})$$
$$= \pi(\mathbf{x}')$$

MCMC algorithms typically constructed by designing a transition probability q that is in detailed balance with desired π

Gibbs Satisfies Detailed Balance

Sample each variable in turn, given all other variables

Sampling X_i , let $\bar{\mathbf{X}}_i$ be all other nonevidence variables Current values are x_i and $\bar{\mathbf{x}}_i$; \mathbf{e} is fixed Transition probability is given by

$$q(\mathbf{x} \to \mathbf{x}') = q(x_i, \bar{\mathbf{x}}_i \to x'_i, \bar{\mathbf{x}}_i) = P(x'_i | \bar{\mathbf{x}}_i, \mathbf{e})$$

This gives detailed balance with true posterior $P(\mathbf{x}|\mathbf{e})$:

$$\pi(\mathbf{x})q(\mathbf{x} \to \mathbf{x}') = P(\mathbf{x}|\mathbf{e})P(x_i'|\bar{\mathbf{x}}_i,\mathbf{e}) = P(x_i,\bar{\mathbf{x}}_i|\mathbf{e})P(x_i'|\bar{\mathbf{x}}_i,\mathbf{e})$$

$$= P(x_i|\bar{\mathbf{x}}_i,\mathbf{e})P(\bar{\mathbf{x}}_i|\mathbf{e})P(x_i'|\bar{\mathbf{x}}_i,\mathbf{e}) \quad \text{(chain rule)}$$

$$= P(x_i|\bar{\mathbf{x}}_i,\mathbf{e})P(x_i',\bar{\mathbf{x}}_i|\mathbf{e}) \quad \text{(chain rule backwards)}$$

$$= q(\mathbf{x}' \to \mathbf{x})\pi(\mathbf{x}') = \pi(\mathbf{x}')q(\mathbf{x}' \to \mathbf{x})$$

Gibbs Sampling: Performance

Think of Gibbs sampling as

$$x^{l+1} \sim q(\cdot \mid x^l)$$

Problem: States are highly dependent $(x^1, x^2, ...)$

Need a long time to run Gibbs sampling to *forget* the initial state, this is called burn in phase

¹Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

²Reference: https://en.wikipedia.org/wiki/Gibbs sampling

Gibbs Sampling: Performance

In this example the samples stay in the lower left quadrant

Some technical requirements to Gibbs sampling

The Markov Chain $q(x^{l+1}\mid x^l)$ needs to be able to traverse the entire state-space (no matter where we start)

- This property is called irreducible
- ▶ Then p(x) is the stationary distribution of $q(x' \mid x)$

¹Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

²Reference: https://en.wikipedia.org/wiki/Gibbs sampling

Gibbs Sampling: Performance

Gibbs sampling is more efficient if states are not correlated

- ► Left: Almost isotropic Gaussian
- Right: correlated Gaussian

¹Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

²Reference: https://en.wikipedia.org/wiki/Gibbs sampling

Metropolis-Hasting MCMC

- We will now mention one other MCMC method in passing.
 - Metropolis-Hasting (MH)
 - A special case is called Metropolis sampling.

MH MCMC Algorithm

Slightly more general MCMC method when the proposal distribution is *not* symmetric

Sample x' and accept with probability

$$A(x', x) = \min\left(1, \frac{\tilde{q}(x \mid x')p^*(x')}{\tilde{q}(x' \mid x)p^*(x)}\right)$$

Note: when the proposal distribution is symmetric, Metropolis-Hastings reduces to standard Metropolis sampling

¹Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

MH MCMC Special Case: Metropolis Sampling

Special case of MCMC method (proposal distribution) with the following proposal distribution

• symmetric: $q(x' \mid x) = q(x \mid x')$

Sample x' and accept with probability

$$A(x', x) = \min\left(1, \frac{p^*(x')}{p^*(x)}\right) \in [0, 1]$$

- If new state x' is more probable always accept
- ▶ If new state is less probable accept with $\frac{p^*(x')}{p^*(x)}$

¹Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

Questions?

Summary

- Inference computations on joint distributions is a hard problem
- Graphical models help us do this in efficient ways
 - For tree models, this is linear time!
- We discussed two exact methods
 - Variable Elimination
 - Belief propagation
- We discussed one family of approximate methods
 - Based on sampling via Markov Chain Monte Carlo techniques

Appendix

Sample Exam Questions

- What is a factor graph? How is it related to DPGMs?
 How is it related to UPGMs?
- What are the key steps of Belief propagation?
- What is the use of BP? Can it be used for inference over general factor graphs?
- How would one use sampling for inference?
- Why is Gibbs sampling a MCMC technique?
- Why does BP do better than variable elimination?

DPGMs and UPGMs

- Inference algorithms can typically run on both graphs
- For convenience, we will construct a UPGM from a DPGM and discuss inference on UPGM

- The construction is straightforward
 - For each factor in DPGM, call it a potential now
 - Moralize the DPGM and remove directions
 - (We lose some information in the graph)

BP: Computing Maximal State

- BP variant can also solve for the maximal state $\bar{x}^* \in \operatorname{argmax}_{\bar{x} \in \mathfrak{X}} P(\bar{x})$
- This version is called Max-Product Belief Propagation

- Has three ingredients just as before
 - Initialization (same as before)
 - Variable to factor message (same as before)
 - Factor to variable message

BP: Computing Maximal State

Factor to variable message is different from Sum-Product

 Additionally, we need to track values achieving maximums as well

BP: Computing Maximal State

Maximal state of a variable is

