
Advanced Prediction 
Models

Deep Learning, Graphical Models and Reinforcement 
Learning



Recap: Why Graphical Models

• We have seen deep learning techniques for 
unstructured data
• Predominantly vision and text/audio
• We will see control in the last part of the course
• (Reinforcement Learning)

• For structured data, graphical models are the most 
versatile framework
• Successfully applications: 
• Kalman filtering in engineering
• Decoding in cell phones (channel codes)
• Hidden Markov models for time series
• Clustering, regression, classification …
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Recap: Graphical Models Landscape

• Three key parts:

• Representation

• Capture uncertainty (joint distribution)

• Capture conditional independences (metadata)

• Visualization of metadata for a distribution

• Inference

• Efficient methods for computing marginal or 
conditional distributions quickly

• Learning

• Learning the parameters of the distribution can 
deal with prior knowledge and missing data

3



Today’s Outline

• Inference

• Factor Graph

• Variable Elimination

• Inference using Belief Propagation

• Inference using Markov Chain Monte Carlo
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Inference
Based on notes from Bjoern Andres and Bernt Schiele (2016) 

5
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Inference Objectives

• Let !" = "$, … . , "( be a random vector.

• Let !" ∈ * and X, ∈ *-

• Given .( !") compute functions of it

• Example, find

• Mode 2̅∗ ∈ argmax9̅∈ * .(2̅)

• Mean E ;(2̅) = ∑9̅∈ *;(2̅).(2̅)

• A marginal argmax9=∈ *= ∑9>,..,9=?>9=@>,..,9A .(2̅)

• A conditional .("-|2$, … , 2-C$, 2-D$, … , 2()
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Algorithms for Inference

• Variable Elimination

• Belief Propagation

• Sampling based methods (MCMC)
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1Note: There are others, but we will not discuss them here



• For both DPGM and UPGMs, factorization is simply not 
specified by the graph!

• Consider the following example graph

• It could be !(#, %, &) =
)

*
+(#, %, &)

• Or it could be !(#, %, &) =
)

*
+) #, % +, %, & +-(&, #)

Factor Graphs
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1Reference: Daphne Koller (2011)
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• Hence, we define new graphs called factor graphs

• Consider a square node for each factor

• Then, !(#, %, &) =
)

*
+(#, %, &) can be represented by

Factor Graph for UPGM
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1Reference: Daphne Koller (2011)
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• factor graphs capture the factorization in the graph 
itself

• For a function !(#$, . . , #') = ∏+,+(-+) the factor 
graph has a square node for each factor ,+(-+) and a 
circular variable node for each variable #.

• Factor graphs will allow us to define inference 
algorithms for both DPGMs and UPGMs

• Just a more richer way of drawing graphs for /(0)

Factor Graph
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1Reference: Daphne Koller (2011)



• The following example shows two factor graphs for the 
same UPGM

Factor Graphs for a UPGM
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1Reference: David Sontag (2013)



Factor Graph Example (I)

• Which distribution does the following graph correspond to?

• It corresponds to 

• ! "#, "%, "& =
#

(
)*("#, "%))-("#, "%) ).("%, "&) )/("&)
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

We will use ) or 0 to denote factors

We will use lower case to minimize notation clutter



Factor Graph Example (I)

• Which distribution does the following graph correspond to?

• It corresponds to 

• ! "#, "%, "& =
#

(
)*("#, "%))-("#, "%) ).("%, "&) )/("&)
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Factor Graph Example (II)

• What is the factor graph for the distribution

• ! "#, "%, "& =
#

(
)* "&| "#, "% ), "# )-("%)

• The following is the desired factor graph

15



Factor Graph Example (II)
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



• We can do this for DPGMs as well (although redundant)

• Consider the graph on the right

• Its factor graph representation is shown below

Factor Graph for DPGM
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1Reference: Daphne Koller (2011)
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Inference using Variable Elimination

• It is a very simple idea, which is

• Don’t sum over all configurations simultaneously

• Do it one variable at a time

• Works for DPGMs and UPGMs
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Variable Elimination Example

19

We will use lower case to minimize notation clutter

(compute this for all c)

(compute this for all b)

This can be for a DPGM or a UPGM

Objective: Find !(#, %)



Variable Elimination Example
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

(compute this for all c)

(compute this for all b)

This can be for a DPGM or a UPGM

Objective: Find !(#, %)



Variable Elimination Example
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

(compute this for all c)

(compute this for all b)

Objective: Find !(#, %)



Variable Elimination Example

22

1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

(compute this for all c)

(compute this for all b)

Objective: Find !(#, %)



Questions?
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Today’s Outline

• Inference

• Factor Graph

• Variable Elimination

• Inference using Belief Propagation

• Inference using Markov Chain Monte Carlo
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Inference using Belief 
Propagation
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Belief Propagation (BP)
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1Reference: See https://en.wikipedia.org/wiki/Belief_propagation

• Generalizes the idea of Variable Elimination

• Also called the Sum-Product Algorithm

• Will give exact answers (marginals, conditionals) on 
factor graphs that are trees

• Can also be used for general graphs but may give 
wrong answers



BP Example: Compute a Marginal
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

• We will introduce the notion of 
• messages, and 
• message passing



BP Example: Messages
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

• Messages are functions (vectors) that are passed from 
one node to another



BP Example: Messages
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

BP Example: Message from Factor to 
Variable
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

BP Example: Message from Factor to 
Variable
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

BP Example: Message from Variable to 
Factor
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

BP Example: Message from Variable to 
Factor



BP Example: Compute a Different Marginal
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Belief Propagation Algorithm
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

• We described the concept of ‘messages’ via  an 
example (computing marginals for a given factor 
graph)

• Now we will summarize the algorithm in general

• It has three key ingredients

• Initialization

• Variable to factor message

• Factor to variable message

• Don’t forget the original objective: efficient inference



BP: Initialization
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

• Messages from extremal/leaf node factors are 
initialized to be the factor itself

• Messages from extremal/leaf node variables are 
initialized to value 1



BP: Variable to Factor Message
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



BP: Factor to Variable Message

• We sum over all values possible in the scope of the 
factor
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



BP: Ordering of Messages

• Messages depend on all incoming messages

• To compute all messages

• Go from leaves to a designated root (say !")

• Go from the designated root back to leaves
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

Designated root: !"



BP: Computing a Marginal

• Marginal is simply the product of messages the 
variable of interest receives
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



BP: General Factor Graphs

• Is in-exact

• Since it is not clear whether BP is a clear winner for 
inference with general graphs (among competing 
algorithms), we will not explore this further.

• See https://en.wikipedia.org/wiki/Belief_propagation for 
more details
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Questions?
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Today’s Outline

• Inference

• Factor Graphs

• Variable Elimination

• Inference using Belief Propagation

• Inference using Markov Chain Monte Carlo
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Inference using Markov 
Chain Monte Carlo
See https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
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Approximate Inference

• BP and Variable Elimination are exact algorithms

• They work for tree structured factor graphs

• We will resort to numerical sampling to perform 
approximate inference for general graphical models

• Essentially, use random sampling to approximate
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Sampling
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

• Many methods in the literature

• Monte Carlo methods

• MC Averaging and Importance sampling

• Rejection sampling

• Markov Chain Monte Carlo methods

• Gibbs sampling

• Metropolis-Hastings sampling

• …



Monte Carlo Averaging
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Monte_Carlo_method



Importance Sampling
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Importance_sampling

• Is a variance reduction technique for MC averaging



Importance Sampling

• If we can only evaluate up to a normalizing constant, 
then additional tricks needed.
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Importance_sampling

For example,



Rejection Sampling
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

!(#) is a proposal distribution
such that %! # ≥ ' # ∀#

2Reference: https://en.wikipedia.org/wiki/Rejection_sampling



Rejection Sampling

51
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

• Impractical in high dimensions (lots of samples will get 
rejected)



Rejection Sampling
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Gibbs Sampling: Markov Blanket
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Gibbs_sampling



Gibbs Sampling Example I
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1Reference: Percy Liang, CS221 (2015)



Gibbs Sampling Example I
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1Reference: Percy Liang, CS221 (2015)



Gibbs Sampling Example I
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1Reference: Percy Liang, CS221 (2015)



Gibbs Sampling Example I
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1Reference: Percy Liang, CS221 (2015)



Gibbs Sampling Example I
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1Reference: Percy Liang, CS221 (2015)



Gibbs Sampling Example II
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1Reference: Percy Liang, CS221 (2015)



Gibbs Sampling Example II
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1Reference: Percy Liang, CS221 (2015)



Gibbs Sampling Example II
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1Reference: Percy Liang, CS221 (2015)

)



Gibbs Sampling Example II
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1Reference: Percy Liang, CS221 (2015)



Gibbs Sampling: Conditional Probability
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Gibbs_sampling



Understanding MCMC via Markov Chain 
Terminology
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm



65
1Reference: Pedro Domingos, CSE 515 (2017)

Understanding MCMC via Markov Chain 
Terminology



Stationary Distribution of a MC
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1Reference: Pedro Domingos, CSE 515 (2017)



Detailed Balance Equation
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1Reference: Pedro Domingos, CSE 515 (2017)



Gibbs Satisfies Detailed Balance
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1Reference: Pedro Domingos, CSE 515 (2017)



Gibbs Sampling: Performance
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Gibbs_sampling



Gibbs Sampling: Performance
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Gibbs_sampling



Gibbs Sampling: Performance
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Gibbs_sampling



Metropolis-Hasting MCMC
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm

• We will now mention one other MCMC method in 
passing.

• Metropolis-Hasting (MH)

• A special case is called  Metropolis sampling.



MH MCMC Algorithm
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm



MH MCMC Special Case: 
Metropolis Sampling

74

1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm



Questions?
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Summary

• Inference computations on joint distributions is a hard 
problem

• Graphical models help us do this in efficient ways
• For tree models, this is linear time!

• We discussed two exact methods
• Variable Elimination
• Belief propagation

• We discussed one family of approximate methods
• Based on sampling via Markov Chain Monte Carlo 
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Appendix
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Sample Exam Questions

• What is a factor graph? How is it related to DPGMs? 
How is it related to UPGMs?

• What are the key steps of Belief propagation?

• What is the use of BP? Can it be used for inference 
over general factor graphs?

• How would one use sampling for inference?

• Why is Gibbs sampling a MCMC technique?

• Why does BP do better than variable elimination?
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DPGMs and UPGMs

• Inference algorithms can typically run on both graphs

• For convenience, we will construct a UPGM from a 
DPGM and discuss inference on UPGM

• The construction is straightforward

• For each factor in DPGM, call it a potential now

• Moralize the DPGM and remove directions

• (We lose some information in the graph)
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1Reference: David Sontag (2013)



BP: Computing Maximal State

• BP variant can also solve for the maximal state "̅∗ ∈
argmax*̅∈+,("̅)

• This version is called Max-Product Belief Propagation

• Has three ingredients just as before

• Initialization (same as before)

• Variable to factor message (same as before)

• Factor to variable message
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



BP: Computing Maximal State

• Factor to variable message is different from Sum-Product

• Additionally, we need to track values achieving maximums 
as well

81

1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



BP: Computing Maximal State

• Maximal state of a variable is
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)


