Advanced Prediction
Models

Deep Learning, Graphical Models and Reinforcement
Learning



Recap: Why Graphical Models

* We have seen deep learning techniques for
unstructured data

* Predominantly vision and text/audio
* We will see control in the last part of the course
* (Reinforcement Learning)

* For structured data, graphical models are the most
versatile framework

* Successfully applications:
* Kalman filtering in engineering
* Decoding in cell phones (channel codes)
* Hidden Markov models for time series
* Clustering, regression, classification ...



Recap: Graphical Models Landscape

* Three key parts:
* Representation
* Capture uncertainty (joint distribution)
* Capture conditional independences (metadata)
* Visualization of metadata for a distribution
* Inference

* Efficient methods for computing marginal or
conditional distributions quickly

* Learning

* Learning the parameters of the distribution can
deal with prior knowledge and missing data



Today’s Outline

* Inference
* Factor Graph

* Variable Elimination
* Inference using Belief Propagation

* Inference using Markov Chain Monte Carlo



Inference

Based on notes from Bjoern Andres and Bernt Schiele (201 6)

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)



Inference Obijectives

e Let X = X4, ....,Xp be a random vector.
* Let X € X and X; € X;
* Given P(X) compute functions of it



Inference Obijectives

e Let X = X4, ....,Xp be a random vector.
* LetX € X and X; € X;

* Given P(X) compute functions of it
* Example, find
* Mode X* € argmaxgc x P(X)

+ Mean E[g(®)] = Sre 9(®P(E)

° A mqrginql argmaxxle %l le,..,Xi_1Xi+1,..,xD P(x)

* A conditional P(X;|x1, ..., Xi_1,Xj+1, -»XD)



Algorithms for Inference

* Variable Elimination

* Belief Propagation

* Sampling based methods (MCMCQC)

"Note: There are others, but we will not discuss them here



Factor Graphs

* For both DPGM and UPGMs, factorization is simply not
specified by the graph!

* Consider the following example graph

* It could be P(a,b,c) = ~¢(a,b,c)
+ Or it could be P(a,b,c) = ~1(a,b)p, (b, )3 (c, a)

9
TReference: Daphne Koller (2011)



Factor Graph for UPGM

* Hence, we define new graphs called factor graphs

* Consider a square node for each factor

* Then, P(a,b,c) = %cp(a, b, c) can be represented by

10
"Reference: Daphne Koller (2011)



Factor Graph

* factor graphs capture the factorization in the graph
itself

* For a function f(xq,..,xp) = [l; $;(X;) the factor
graph has a square node for each factor ¢;(X;) and a
circular variable node for each variable X;

* Factor graphs will allow us to define inference
algorithms for both DPGMs and UPGMs

* Just a more richer way of drawing graphs for P(X)

11
TReference: Daphne Koller (2011)



Factor Graphs for a UPGM

* The following example shows two factor graphs for the

same UPGM

A Y

C | D

Factor graphs

¢ D \ A B

Markov network

12

TReference: David Sontag (201 3)



Factor Graph Example (l)

* Which distribution does the following graph correspond to?

We will use f or ¢ to denote factors

1 9 I3

fa fb fc fd

We will use lower case to minimize notation clutter

13
TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)



Factor Graph Example (l)

* Which distribution does the following graph correspond to?

fa fb fc fd

* |t corresponds to

o P(x1,Xp,X3) = — fa (X1, %2) fiy (1, %2) fo(X2, X3) fa(x3)

14
TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)



Factor Graph Example (ll)

* What is the factor graph for the distribution
1
° P(xlerIxB) — Efc(xiil lexZ)fa(xl)fb (xZ)

15



Factor Graph Example (ll)

* What is the factor graph for the distribution
1
° P(xl'xZIxB) — Efc(xfil lexZ)fa(xl)fb (xZ)

* The following is the desired factor graph

TReference: Bjoern Andres and Bernt Schiele, MPI (2016)
1 9

fe
fa fb

16




Factor Graph for DPGM

* We can do this for DPGMs as well (although redundant)

* Consider the graph on the right

* lIts factor graph representation is shown below

17

"Reference: Daphne Koller (2011)



Inference using Variable Elimination

* ltis a very simple idea, which is
* Don’t sum over all configurations simultaneously
* Do it one variable at a time

* Works for DPGMs and UPGMs

18



Variable Elimination Example

We will use lower case to minimize notation clutter

fi f2 f3 fa
a e ° 0 This can be for a DPGM or a UPGM

19



Variable Elimination Example

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)

S f2 f3 fa
a e ° a This can be for a DPGM or a UPGM

p(a,b,c.d) = 2 fi(a,0)f2(0,) (e d) fa(d)
Objective: Find p(a, b)

20



Variable Elimination Example

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)

h fa 3 4

O3 =0 F0% 0O
p(a,b,c.d) = 2 fi(a,0)f2(0,) (e d) fa(d)
Objective: Find p(a, b)

> pla,b,c,d)
d

_ % fi(a,b) fa(b,¢)|S fale, d) fald)

d

N =
N

Pd—c(C)

p(a,b,c)

(compute this for all c)

21



Variable Elimination Example

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)

h fo 3 4
0% 20% 305 208
p(a,b,c.d) = 2 fi(a,0)f2(0,) (e d) fa(d)
Objective: Find p(a, b)
> p(a,b,c,d)
d

_ % fi(a,b) fa(b,¢)|S fale, d) fald)

d

N =

p(a,b,c)

"

Pd—c(C)

p(a,8) = 3" p(a,b,c) = o f1(a, 6] 3 falbs ptase(c)

=y

(compute this for all c)

-~

pesp(b)  (compute this for all b) 22




Questions?



Today’s Outline

* Inference
* Factor Graph

* Variable Elimination
* Inference using Belief Propagation

* Inference using Markov Chain Monte Carlo

24



Inference using Belief
Propagation



Belief Propagation (BP)

e Generalizes the idea of Variable Elimination

* Also called the Sum-Product Algorithm

* Will give exact answers (marginals, conditionals) on
factor graphs that are trees

* Can also be used for general graphs but may give
wrong answers

26
1Reference: See https://en.wikipedia.org /wiki/Belief propagation




BP Example: Compute a Marginal

consider a branching graph:

with factors

fi1(a,b) f2(b, c,d) f3(c) fa(d, e) f5(d)

For example: find marginal p(a,b)

* We will introduce the notion of
°* messages, and
°* message passing

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)

27



BP Example: Messages

* Messages are functions (vectors) that are passed from
one node to another fhgeacle

28
TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)



BP Example: Messages

1
p(a,b) = — fi(a,b) Y fa(b,c,d)fs(c) f5(d) fa(d, e)
c,d,e
Mfgzb(b)
g b (b Zfzbcd f3(0) quze
H’c—)fQ(C)\
Md—>f2(d)

29

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)



BP Example: Message from Factor to
Variable

Here (repeated from last slide):

prop(b) = Zfz (b,c,d) fs(c) Zf4 (d, e)
He— fo (C)
.“d—)fg(d)
Uf2—>b(b) — Z f2(b, ¢, d)uc—nﬁ (C):U’d—>f2 (d)
c,d

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)
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BP Example: Message from Factor to
Variable

Here (repeated from last slide):
prab(®) = Y fa(b, ¢, d) s 1, (€) s £, (d)
c,d
more general:

proe(@) = D, 6r( &) ] mor®)

yeXs\z ye{ne(f)\z}

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)
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BP Example: Message from Variable to
Factor

ti—f,(d) = f5(d) Zf4(da€)

€
p’f4—>d(d)

Hd— fo (d) — :UJf5—>d(d):uf4—>d(d)

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)




BP Example: Message from Variable to
Factor

Here (repeated from last slide):

Hds fo(d) = pgs—d(d)pfy—a(d)

General:

,U:c—>f($) = H gz ()
ge{ne(z)\f}

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)
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BP Example: Compute a Different Marginal

If we want to compute the marginal p(a)
(use factor-to-variable message):

| 1
p(a) = Z/j’fl—m(a) = Zfl(av b)/ib%fl (0) 7
b
ﬂflja(a’)
which we could also view as
|
p(a) = 7 Z fi(a,b) Ho— fy (b)
b . <l
:u‘f2—->b(b)

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)



Belief Propagation Algorithm

* We described the concept of ‘messages’ via an
example (computing marginals for a given factor

graph)

* Now we will summarize the algorithm in general

* It has three key ingredients
* |nitialization
* Variable to factor message
* Factor to variable message

* Don’t forget the original objective: efficient inference

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)



BP: Initialization

* Messages from extremal /leaf node factors are
initialized to be the factor itself

pa(@) = f(2)

0

X

* Messages from extremal /leaf node variables are
initialized to value 1

peog(T) =1
O—n
: /

TReference: Bjoern Andres and Bernt Schiele, MPI (2016)
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BP: Variable to Factor Message

Ha—sf(T) = H pg—z(Z)

ge{ne(z)\f}
h 0 ()
f2 . :ufz—m? (CU

/3

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)



BP: Factor to Variable Message

* We sum over all values possible in the scope of the
factor

,LLf_m; Z be Xf H ,Uy—>f(y)

yeXs\x ye{ne(f)\z}

- ,Uf—m(i’?)@

@ fys—£(Y3)

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)
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BP: Ordering of Messages

* Messages depend on all incoming messages

* To compute all messages

* Go from leaves to a designated root (say x3)
* Go from the designated root back to leaves

O—a—(0O—8—0O O—=—C0—=—

1] 1
! 1
O O

T4 Ty

Designated root: x 39
TReference: Bjoern Andres and Bernt Schiele, MPI (201 6) 9 3




BP: Computing a Marginal

* Marginal is simply the product of messages the
variable of interest receives

p(z)oc || nyoal2)

40
TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)



BP: General Factor Graphs

* |s in-exact

* Since it is not clear whether BP is a clear winner for
inference with general graphs (among competing
algorithms), we will not explore this further.

* See https://en.wikipedia.org/wiki/Belief propagation for
more details

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)
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Questions?



Today’s Outline

* Inference
* Factor Graphs

* Variable Elimination
* Inference using Belief Propagation

* Inference using Markov Chain Monte Carlo



Inference using Markov
Chain Monte Carlo

See https://en.wikipedia.org /wiki/Markov chain Monte Carlo

44



Approximate Inference

* BP and Variable Elimination are exact algorithms

* They work for tree structured factor graphs

* We will resort to numerical sampling to perform
approximate inference for general graphical models

* Essentially, use random sampling to approximate

45



Sampling

* Many methods in the literature

* Monte Carlo methods
* MC Averaging and Importance sampling
* Rejection sampling

* Markov Chain Monte Carlo methods
* Gibbs sampling
* Metropolis-Hastings sampling

°
46
TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)



Monte Carlo Averaging

—

We want to evaluate

Blf) = [ f@p@ids orElf) = Y f@p

TEX
Sampling idea:
» draw L independent samples z!,z2,..., 2% from p(-): z! ~ p(-)
» replace the integral /sum with the finite set of samples

M
= ZZf(fUl
=1

E[(f] = E[f]

» as long as z! ~ p(-) then

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)
2Reference: https://en.wikipedia.org/wiki/Monte Carlo method




Importance Sampling

* Is a variance reduction technique for MC averaging

use a proposal distribution g(z) from which it is easy to draw samples

express expectation in the form of a finite sum over samples {z'}
drawn from ¢(z):

Bl = [f@mede= | f(z)%qu)dz
| = p(2) l
h le:;q(zl)f(z)
I _ p(z)

with importance weights: r (&)

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6) 18
2Reference: https://en.wikipedia.org/wiki/Importance sampling




Importance Sampling

* If we can only evaluate up to a normalizing constant,
then additional tricks needed.

p(z) can be only evaluated up to a normalization constant (unkown):
p(z) = p(2)/Zp

q(z) can be also treated in a similar way:
q(z) = 4(2)/Z,

then:

Elf]

|
-
.
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N
S
~
N
N
¥
N
|
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“
P
I\
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N
e
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S8
N
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1 E
T2 L
. 1
.y For example, Z—p = Z *
with: pEzlg 11
q(z

TReference: Bjoern Andres and Bernt Schiele, MPI (2016)

2Reference: https://en.wikipedia.org/wiki/Importance sampling
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Rejection Sampling

Sample two random variables:

1. 29 ~q(x)
2. ug ~ [0,kq(20)] uniform

reject sample zq if ug > p(20)

/‘7(1(2())

q(x) is a proposal distribution
such that kq(x) = p(x)Vx

kq(z)

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)
2Reference: https://en.wikipedia.org/wiki/Rejection _sampling
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Rejection Sampling

Sample z drawn from ¢ and accepted with probability p(z)/kq(z2)
So (overall) acceptance probability

p(accept) = / kﬁq((zz))q(z)dz = %/ﬁ(z)dz

So the lower k the better (more acceptance)
» subject to constraint kq(z) > p(2)

* Impractical in high dimensions (lots of samples will get
rejected)

51
TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)



Rejection Sampling

Example:
» assume p(x) is Gaussian with 0s
covariance matrix: o721 o
» assume ¢(z) is Gaussian with 028
covariance matrix: 021
> clearly: ag > ag 0, T

D
» in D dimensions: k = (%)

P
dassume:

» o, is 1% larger than o, D = 1000
» then k£ = 1.01'°%° > 20000

» and p(accept) < 20(1)00

therefore: often impractical to find good proposal distribution g(z) for
high dimensions

52
TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)



Gibbs Sampling: Markov Blanket

‘ b

Sample from this distribution p(x)

|dea: Sample sequence z°, 2!, 2%, ... by updating one variable at a
time

Eg. update x4 by conditioning on the set of shaded variables Markov
blanket

p(z4 | 1,2, Z3,T5,T6) = p(T4 | T3, T5,Z6)

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)

53
2Reference: https://en.wikipedia.org/wiki/Gibbs sampling




Gibbs Sampling Example |

How do we sample a new value for W?

P(W=wlF=1, P=1, C=0, ..., I=0)
= P(W=wlF=1, C=0)

TReference: Percy Liang, CS$221 (2015)

Markov Blanket!
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Gibbs Sampling Example |

w| p(w) w | f [ p(flw)

0|04 0 |0 |095

1|06 0 |1 |0.05

1|0 [0.80

p(f|w) 1|1 |0.20

P(W=wlIF=1, P=1, C=0, ..., I=0)
- P(W=wlIF=1, C=0)
« P(F=1IW=w)*P(C=0lW=w)*P(W=w)

TReference: Percy Liang, CS$221 (2015)

w [ c | p(flw)
0 |0 [088
0|1 |0.12
1|0 |0.70
1 (1 |030
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Gibbs Sampling Example |

w | p(w)

0]0.40

1| 0.60

P(W=wlIF=1, P=1, C=0, ..., I=0)
- P(W=wlF=1, C=0)
x P(F=1IW=w)*P(C=0IW=w)*P(W=w)

{ 0.05%0.88%040, W =0

TReference: Percy Liang, CS$221 (2015)

w | f | p(flw)
0 |0 |095
01 [0.05
1 (0 |0.80
1|1 |0.20

w | c | p(flw)
0 [0 [088
0 (1 (012
1 (0 |070
1 (1 |030
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Gibbs Sampling Example |

w | p(w) w [ f | p(flw) w [c | p(flw)

0| 0.40 0|0 [095 0 [0 |088

1|0.60 0|1 |005 0 [1 |012

1|0 [0.80 1|0 [o0.70

p(f|w) 1|1 |0.20 1|1 |0.30

P(W=wlF=1, P=1, C=0, ..., I=0)

- P(W=wlF=1, C=0)

x P(F=1IW=w)*P(C=0IW=w)*P(W=w)

| 005*%0.88%0.40, W =0
0.20*%0.70%0.60, W =1

TReference: Percy Liang, CS$221 (2015)



Gibbs Sampling Example

w| p(w) w [f [ p(flw) w [c | p(flw)

0 | 0.40 0 [0 |095 0 |0 [0.88

1|0.60 01 |005 0 [1 |012

1|0 |0.80 1|0 |070

p(f|w) 1|1 |0.20 1|1 |0.30

PW=wlF=1,C=0)

P(W=wlF=1, P=1, C=0, ..., 1=0)
- P(W=wlIF=1, C=0)
x P(F=1IW=w)*P(C=0lW=w)*P(W=w)

{ 0.05%0.88%040, W =0

o

ﬁ

| 0.0176/(0.0176+0.084), 1 —0

0.20*%0.70*0.60, W=1
TReference: Percy Liang, CS$221 (2015)

0.084/(0.0176+0.084), w=1
0173, w=0
0827, w=1l

Sample a new w!

58



Gibbs Sampling Example |l

How do we sample a new value for C?

59
TReference: Percy Liang, CS$221 (2015)



Gibbs Sampling Example |l

Sore
Throat

P(C=c | W=1,F=1, P=1, ..., I=0)
= P(C=c | W=1, F=1, S=0, H=1, A=1) Markov Blanket!

TReference: Percy Liang, CS$221 (2015)
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Gibbs Sampling Example |l

Sore
Throat

P(C=c | W=1,F=1,P=1, ..., I=0)
= P(C=c | W=1,F=1, S=0, H=1, A=1)

TReference: Percy Liang, CS$221 (2015)
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Gibbs Sampling Example |l

We only need look at the factors
connected to the children and the

parents.

Sore
Throat

P(C=eIW=1,F=1FP=l,..1)
= P(C=c | W=1, F=1, S=0, H=1, A=1)
=p(w)plw)p(clw)p(slf,c)pthlc,a)

TReference: Percy Liang, CS$221 (2015)
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Gibbs Sampling: Conditional Probability

Update z;

1
p(zi | o) = —p(zi | pa(@) ]| plz; ] pa(;)

jech()

and the normalisation constant is

Z = mezlpaxz HP$3|P3$J))

Li jECh(z)

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)
2Reference: https://en.wikipedia.org/wiki/Gibbs sampling
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Understanding MCMC via Markov Chain
_Terminology

Sample from a multi-variate distribution

with Z intractable to calculate

Idea: Sample from some ¢(x — x’) with a stationary distribution
m(x) = Lxm(x)g(x — x')  for all X’

Given p(z) find ¢(x — x/) such that 7(x)= p(x)

Gibbs sampling is one instance (that is why it is working)

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)
2Reference: https://en.wikipedia.org /wiki/Metropolis%E2%80%93Hastings algorithm
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Understanding MCMC via Markov Chain
_Terminology

Transition probability ¢(x — x)
Occupancy probability 7;(x) at time ¢

Equilibrium condition on 7; defines stationary distribution 7(x)
Note: stationary distribution depends on choice of ¢(x — x')

Pairwise detailed balance on states guarantees equilibrium

Gibbs sampling transition probability:
sample each variable given current values of all others
= detailed balance with the true posterior

For Bayesian networks, Gibbs sampling reduces to
sampling conditioned on each variable's Markov blanket

65
TReference: Pedro Domingos, CSE 515 (2017)



Stationary Distribution of a MC

m(x) = probability in state x at time ¢
m;.1(x") = probability in state x’ at time ¢ + 1

m11 in terms of m; and ¢(x — Xx')
T (X') = Sm(x)g(x — x)
Stationary distribution: 7; = m =7
m(x') = 2xm(x)g(x — X') for all x’
If 7 exists, it is unique (specific to g(x — x’))

In equilibrium, expected “outflow” = expected “inflow”

TReference: Pedro Domingos, CSE 515 (2017)
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Detailed Balance Equation

“Outflow” = “inflow” for each pair of states:
T(x)g(x — x') = 7(x")g(x’ — x) for all x, x’
Detailed balance = stationarity:

2ixm(X)q(x — x') = Lxm(x)g(x’ — x)
= W(X/>EXQ<XI — X)

= 7%

MCMC algorithms typically constructed by designing a transition
probability ¢ that is in detailed balance with desired 7

TReference: Pedro Domingos, CSE 515 (2017)
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Gibbs Satisfies Detailed Balance

Sample each variable in turn, given all other variables

Sampling X;, let X, be all other nonevidence variables
Current values are z; and x;; e is fixed
Transition probability is given by

g(x — x) = g(zi, % — i, X;) = P(zi|%, e)
This gives detailed balance with true posterior P(x|e):

r(x)g(x — x) = P(xle)P(z!|%i,e) = P(z; %ile) P(a|%, o
= P(z;|X;,e)P(X;|e)P(z;|X;,e) (chain rule)
= P(z4|x;,e)P(x;,X;|e) (chain rule backwards)
= g = %)r(x) = 1(x)g(x — %)

68
TReference: Pedro Domingos, CSE 515 (2017)



Gibbs Sampling: Performance

Think of Gibbs sampling as

[+1

g+~ g(- | 2)

Problem: States are highly dependent (z!,z2,...)

Need a long time to run Gibbs sampling to forget the initial state, this
is called burn in phase

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)

69
2Reference: https://en.wikipedia.org/wiki/Gibbs sampling




Gibbs Sampling: Performance

In this example the samples stay in the lower left quadrant

Some technical requirements to Gibbs sampling
The Markov Chain g(z!*! | z!) needs to be able to traverse the entire
state-space (no matter where we start)

» This property is called irreducible

» Then p(x) is the stationary distribution of g(z’ | x)
'Reference: Bjoern Andres and Bernt Schiele, MPI (2016) 70
2Reference: https://en.wikipedia.org/wiki/Gibbs sampling




Gibbs Sampling: Performance

3 ‘ / ' \ 5
.
1+ ]
ot [ ;F__ |
1 =3
LI
2 \ ul

Gibbs sampling is more efficient if states

» Left: Almost isotropic Gaussian
» Right: correlated Gaussian

'Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Gibbs sampling

are not correlated
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Metropolis-Hasting MCMC

* We will now mention one other MCMC method in
passing.
* Metropolis-Hasting (MH)
* A special case is called Metropolis sampling.

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)
2Reference: https://en.wikipedia.org /wiki/Metropolis%E2%80%93Hastings algorithm




MH MCMC Algorithm

Slightly more general MCMC method when the proposal distribution
IS not symmetric

Sample ' and accept with probability

A(z', ) = min (1, E{(x | wl)p*(-”f’))

q(z' | z)p*(z)

Note: when the proposal distribution is symmetric,
Metropolis-Hastings reduces to standard Metropolis sampling

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)
2Reference: https://en.wikipedia.org /wiki/Metropolis%E2%80%93Hastings algorithm
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MH MCMC Special Case:

Metropolis Sampling

Special case of MCMC method (proposal distribution) with the
following proposal distribution

» symmetric: q(z’ | z) = q(z | x’)

Sample 2’ and accept with probability

A(z', ) = min (1, Z;((i)) ) € [0, 1]

» If new state z’ is more probable always accept

» |f new state is less probable accept with ’;**((z))

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)
2Reference: https://en.wikipedia.org /wiki/Metropolis%E2%80%93Hastings algorithm
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Questions?



Summary

* Inference computations on joint distributions is a hard
problem

* Graphical models help us do this in efficient ways
* For tree models, this is linear time!

* We discussed two exact methods
* Variable Elimination
* Belief propagation

* We discussed one family of approximate methods

* Based on sampling via Markov Chain Monte Carlo
techniques



Appendix



Sample Exam Questions

* What is a factor graph? How is it related to DPGMs?
How is it related to UPGMs?

* What are the key steps of Belief propagation?

* What is the use of BP2 Can it be used for inference
over general factor graphs?

* How would one use sampling for inference?

* Why is Gibbs sampling a MCMC technique?
* Why does BP do better than variable elimination?



DPGMs and UPGMs

* Inference algorithms can typically run on both graphs

* For convenience, we will construct a UPGM from a
DPGM and discuss inference on UPGM

* The construction is straightforward
* For each factor in DPGM, call it a potential now
* Moralize the DPGM and remove directions

* (We lose some information in the graph)

e Moralization

—

: : 'Reference: David Sontag (2013)




BP: Computing Maximal State

* BP variant can also solve for the maximal state X™ €
argmax gcx P (X)

* This version is called Max-Product Belief Propagation

* Has three ingredients just as before
* Initialization (same as before)
* Variable to factor message (same as before)

* Factor to variable message
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BP: Computing Maximal State

* Factor to variable message is different from Sum-Product

Bioz(z) = max ¢r(Xy) || y— £ (1)
-
ye{ne(f)\z}

* Additionally, we need to track values achieving maximums
as well
TReference: Bjoern Andres and Bernt Schiele, MPI (2016)
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BP: Computing Maximal State

e Maximal state of a variable is

xr* = argmax H btz ()
Y fene(z)

h Ufrmsa ()

ey | e L

M f3—a (33)

TReference: Bjoern Andres and Bernt Schiele, MPI (201 6)
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