Advanced Prediction

Models

Deep Learning, Graphical Models and Reinforcement
Learning



Recap: Why Graphical Models

* We have seen deep learning techniques for
unstructured data

* Predominantly vision and text/audio
* We will see control in the last part of the course
* (Reinforcement Learning)

* For structured data, graphical models are the most
versatile framework

* Successfully applications:
* Kalman filtering in engineering
* Decoding in cell phones (channel codes)
* Hidden Markov models for time series
* Clustering, regression, classification ...



Recap: Graphical Models Landscape

* Three key parts:
* Representation
* Capture uncertainty (joint distribution)
* Capture conditional independences (metadata)
* Visualization of metadata for a distribution
* Inference

* Efficient methods for computing marginal or
conditional distributions quickly

* Learning

* Learning the parameters of the distribution can
deal with prior knowledge and missing data



Today’s Outline

* Applications

* Learning
* DPGM/UPGM
* Parameter Estimation
* Structure Estimation

* Complete/Incomplete Data



Applications



Applications of Graphical Models

* Given all that we have learned up to now, we will
sample the following applications

Hidden Markov
Models

time series, tracking

Gaussian
Mixture Models

clustering

Latent Dirichlet
Allocation

topic modeling

Conditional
Random Fields

structured
classification /regression




Example Graphical Model |
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Sensors reports positions: 0,2,2. Objects don’'t move very fast and
sensors are a bit noisy. What path did the person take?
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e Variables X;: location of object at position ¢
e Transition factors ¢;(x;,x;+1): incorporate physics

e Observation factors o;(x;): incorporate sensors

TReference: Percy Liang, CS221 (2015)



Example Graphical Model |l

* A generative process is nothing but a description of the joint
distribution in terms of how the random variables realize

Probabilistic program:

—y@ Probabilistic program: object tracking-

Xo = (0,0)
For each time step 7 =1,...,n:
With probability a:
Xi=X;_1+ (1,0) [go right]
With probability 1 — a:
X; = Xi—1+(0,1) [go down]

Bayesian network:
(X1 (X2 F—( X3 —( X4 | X;
Mathematical definition:

p(z;|zi) =a-[z;=z2;_1+(1,0)]+(1 — @) - [z; = z;_1 + (0,1)]

N > N > 8

~

"Reference: Percy Liang, CS221 (2015) right dou



Example Graphical Model
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You are coughing and have itchy eyes. What do you have?

Variables: Cold, Allergy, Cough, ltchy eyes

Bayesian network: Factor graph:
o 1 L
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TReference: Percy Liang, CS221 (2015)



Example Graphical Model IV

Question: If patient has has a cough and fever, what disease(s) does
he/she have?

I \Pneumonia’

Probabilistic program: diseases and symptomsn

For each disease 1 = 1,...,m:
Generate activity of disease D; ~ p(D;)
For each symptom 5 =1,...,n:
Generate activity of symptom S; ~ p(S; | D1.m)

TReference: Percy Liang, CS221 (2015)



Obiject Tracking via Hidden Markov Model

H; € {1,...,K}: location of object at time step i
E; € {1,...,K}: sensor reading at time step %
Start: p(h1): uniform over all locations

Transition p(h; | h;—1): uniform over adjacent loc.
Emission p(e; | h;): uniform over adjacent loc.

TReference: Percy Liang, CS221 (2015)



Generative Program for HMM

Probabilistic program: hidden Markov model (HMM)-

For each timestept=1,...,T"
Generate object location H; ~ p(H; | Hy_1)
Generate sensor reading E; ~ p(E; | Hy)

(3.1) (3.2)

(Hy j—( Hy | Hy |+ Hy |~ H; )

TReference: Percy Liang, CS221 (2015)



Obiject Tracking via HMM
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P(H = h, E =¢) th|hz-1ngz|hJ
start z=2 tran‘s?tion =1 eml‘srswn

Query (filtering):
P(H3 | E1 = e1, E2 = e, E3 = e3)
Query (smoothing):
P(H3 | By = e1,FEp = eg, E3 = e3, B4y = e4, F5 = e5)

TReference: Percy Liang, CS221 (2015)



HMM Parameter Sharing

Variables:
e Hi,...,H, (e.g., actual positions)
e Fi,...,E, (e.g., sensor readings)

\ Hq —’Hz —{ Hs —\ Hy — Hjs

L L 1]

(E,) (Ep) B (E, ) Es

IP’(H = h, B = 6) — Hptrans(hz' | hi—l)pemit(ei | h'z)

1=1

Parameters: 6 = (Ptrans, Pemit)
D rain is a set of full assignments to (H, F)

TReference: Percy Liang, CS221 (2015)



Mixture Models

e “Standard” distributions (e.g., multivariate Gaussian)
are too limited

e How do we represent and learn more complex ones?
e One answer: Mixtures of “standard” distributions
e In the limit, can approximate any distribution this way

e Also good (and widely used) as a clustering method

'Reference: Pedro Domingos, CSE 515 (2017)



Gaussian Mixture Models

@ The N-dim. multivariate normal distribution, N'(u, X), has density:

1 1 _
P() = Gz & (— 30— mE k- )

@ Suppose we have k Gaussians given by ux and X, and a distribution
0 over the numbers 1,... .,k

@ Mixture of Gaussians distribution p(y, x) given by

© Sampley ~ 0 (specifies which Gaussian to use)
@ Sample x ~ N(uy,X,)

16
"Reference: David Sontag (201 3)



Gaussian Mixture Model in 1D and 2D

@ The marginal distribution over x looks like:

"Reference: David Sontag (201 3)
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Learning a GMM

Initialize parameters ignoring missing information

Repeat until convergence:

E step: Compute expected values of unobserved variables,
assuming current parameter values

M step: Compute new parameter values to maximize

probability of data (observed & estimated)

(Also: Initialize expected values ignoring missing info)

'Reference: Pedro Domingos, CSE 515 (2017)



Learning a 1D GMM

Initialization: Choose means at random, etc.

E step: For all examples x:

P(ui|zi) = P () P(zk|ps) - P (i) P(zr|pi)
P(zx) >y Ppir) P(zr|pir)

M step: For all components c;:
1«

P(CZ) . n_ P(,uz|a:k)
® k=1

by = wet Tk Ppi|zn)
D1 Plusley)

2
O; —

'Reference: Pedro Domingos, CSE 515 (2017)



Latent Dirichlet Allocation

@ Topic models are powerful tools for exploring large data sets and for

making inferences about the content of documents

Documents Topics
politics religion sports
—lp president hindu baseball
obama judiasm soccer
washington ethics basketball
religion buddhism football

@ Many applications in information retrieval, document summarization,
and classification

New document What is this document about?

weather .50

PO finance .49
sports .01

Words w;, ..., Wy Distribution of topics §

@ LDA is one of the simplest and most widely used topic models

"Reference: David Sontag (201 3)
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Latent Dirichlet Allocation

© Sample the document’s topic distribution 6 (aka topic vector)
0 ~ DiI‘iChlet(Ozl;T)

where the {at};rzl are fixed hyperparameters. Thus @ is a distribution
over T topics with mean 0 = a;/ > . ay

Q@ For i =1 to N, sample the topic z of the /'th word

zil0 ~ 6

© ... and then sample the actual word w; from the z;'th topic
w;i|zi ~ B

where {;:}]_; are the topics (a fixed collection of distributions on
words)

21
"Reference: David Sontag (201 3)



Latent Dirichlet Allocation

. and then sample the actual word w; from the z;'th topic

w;|zj ~ B

where {B:}]_; are the topics (a fixed collection of distributions on

words)

Documents

\ g

"Reference: David Sontag (201 3)

Topics
politics .0100 religion .0500 sports .0105
president .0095 hindu .0092 baseball .0100
obama .0090 judiasm .0080 soccer .0055
washington .0085 ethics .0075 basketball .0050

religion .0060

buddhism .0016

football .0045

ﬁtz{p(w|z:t)}




Latent Dirichlet Allocation

Topic proportions and

Topics Documents 5
assignments
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(Blei, Introduction to Probabilistic Topic Models, 2011)

23
"Reference: David Sontag (201 3)



Latent Dirichlet Allocation

Dirichlet
(87
l hyperparameters
0 Topic distribution
d for document
Topic-word B l
distributions \ Zid Topic of word i of doc d
Wid Word
1=1to N
d=1to D

Variables within a plate are replicated in a conditionally independent manner

24
"Reference: David Sontag (201 3)



Latent Dirichlet Allocation

Dirichlet
«
l hyperparameters
0 Prior distribution 0 Topic distribution
over topics d for document
Topic-word | l Topic-word l
distributions \ Zd Topic of doc d distributions B \ Zid Topic of word i of doc d
Wid Word Wid Word
i=1to N i=1to N
d=1to D d=1toD

@ Model on left is a mixture model

o Called multinomial naive Bayes (a word can appear multiple times)
e Document is generated from a single topic

@ Model on right (LDA) is an admixture model
e Document is generated from a distribution over topics

25
"Reference: David Sontag (201 3)



Conditional Random Field based Classifier

@ Conditional random fields are undirected graphical models of conditional
distributions p(Y | X)

e Y is a set of target variables
e X is a set of observed variables

@ We typically show the graphical model using just the Y variables

@ Potentials are a function of X and Y

26
"Reference: David Sontag (201 3)



Conditional Random Field based Classifier

@ A CRF is a Markov network on variables X U'Y, which specifies the
conditional distribution

P(y | x) H Pe(Xc, Ye)

with partition function

— Z H ¢C(XC7 9c)

~

y ceC

@ As before, two variables in the graph are connected with an undirected edge
if they appear together in the scope of some factor

@ The only difference with a standard Markov network is the normalization
term — before marginalized over X and Y, now only over Y

27
"Reference: David Sontag (201 3)



CRF for Natural Language Processing: Log-
linear Terms

@ Factors may depend on a large number of variables

@ We typically parameterize each factor as a log-linear function,

ch(xc, YC) = exp{w ' fc(xc’ YC)}

o f.(xc,Yyc) is a feature vector

@ w is a weight vector which is typically learned — we will discuss this
extensively in later lectures

28
"Reference: David Sontag (201 3)



CRF for Natural Language Processing: The
Task

@ Given a sentence, determine the people and organizations involved and the

relevant locations:
“Mrs. Green spoke today in New York. Green chairs the finance committee.”

@ Entities sometimes span multiple words. Entity of a word not obvious
without considering its context

@ CRF has one variable X; for each word, and Y; encodes the possible labels of
that word

@ The labels are, for example, “B-person, |-person, B-location, I-location,
B-organization, |-organization”

e Having beginning (B) and within (I) allows the model to segment
adjacent entities

29
"Reference: David Sontag (201 3)



CRF for Natural Language Processing: The
Task

The graphical model looks like (called a skip-chain CRF):

KEY
B-PER Begin person name
I-PER Within person name
B-LOC Begin location name
I-LOC Within location name
OTH Not an entitiy

There are three types of potentials:

@ ¢'(Y;, Yii1) represents dependencies between neighboring target variables
[analogous to transition distribution in a HMM]

@ ¢?(Y:, Yy ) for all pairs t,t’ such that x; = x,/, because if a word appears
twice, it is likely to be the same entity

@ ¢3(Y:, Xq,---, X7) for dependencies between an entity and the word
sequence [e.g., may have features taking into consideration capitalization]

Notice that the graph structure changes depending on the sentence!

30
"Reference: David Sontag (201 3)



Questions?



Today’s Outline

* Applications

* Learning

Parameter Estimation in DPGMs with
Complete /Incomplete Data

Structure Estimation in DPGMs

Parameter Estimation in UPGMs with
Complete /Incomplete Data



Estimation/Learning



Different Estimation/Learning

Problems

* There dare many variants

Model DPGM UPGM

Data Complete Incomplete
Structure Known Unknown
Obijective Generative Discriminative

'Reference: Pedro Domingos, CSE 515 (2017)




Different Estimation/Learning Problems

* We will look at the following problems

* Learning DPGMs with complete data and known
structure

* MLE via counting and normalizing

* Learning DPGMs with incomplete data and known
structure

* EM
* Learning DPGM structure
* Learning UPGMs in a generative setting

* Learning UPGM in a discriminative setting



Different Estimation/Learning
Problems

* There dare many variants

Model UPGM

Data Incomplete
Structure Unknown
Obijective Generative Discriminative

36
"Reference: Pedro Domingos, CSE 515 (2017)



Learning in DPGM: Parameters

(| B, E
Ca)
b p(b) e ple) b e a
1 ¢ 1 ¢ 000
07 07 001
| - 010
011
100
101
110
31 1 i

TReference: Percy Liang, CS221 (2015)
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Learning in DPGM: Parameter Estimation

-Training data

Dirain (an example is an assignment to X))

-Parameters

6 (local conditional probabilities)

TReference: Percy Liang, CS221 (2015)
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Learning in DPGM: One Variable Example

Setup:

e One variable R representing the rating of a movie {1,2,3,4,5}

(R) B(R=r)=3()

0 = (p(1),p(2),p(3),p(4),p(5))

Parameters:

Training data:

Dtrain — {]-7 37 47 47 47 47 47 57 57 5}

39
TReference: Percy Liang, CS221 (2015)



Learning in DPGM: One Variable Example

Learning:

Dtrain =4 0
Intuition: p(r) o< number of occurrences of 7 in Dyyain

Example:

Dtrain — {17 37 47 4’ 47 47 47 57 57 5}

l

r p(r)
1 01
2 0.0
3 0.1
4 05
5 0.3

TReference: Percy Liang, CS221 (2015)
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Learning in DPGM: Two Variables Example

Variables:
e Genre G € {drama, comedy}
e Rating R €{1,2,3,4,5}

@@ P(G = g,R=7) = pc(g)pr(r | 9)

Drrain = {(d7 4)7 (d7 4)7 (da 5)7 (Cv 1)) (Ca 5)}

Parameters: 0 = (pg, pr)

41]
TReference: Percy Liang, CS221 (2015)



Learning in DPGM: Two Variables Example

Dtrain = {(d,4), (d,4), (d,5), (¢, 1), (c,5)}

Intuitive strategy:

e Estimate each local conditional distribution (pg and pr) separately

e For each value of conditioned variable (e.g., g), estimate distribu-
tion over values of unconditioned variable (e.g., )

g r pr(r|g)
9 pc(g) d 4 2/3
9: |d 3/5 d 5 1/3
e 2/5 c 1 1/2
c 5 1/2

42
TReference: Percy Liang, CS221 (2015)



Learning in DPGM: Three Variables Example |

Variables:
e Genre GG € {drama, comedy}
e Won award A € {0, 1}
e Rating R € {1,2,3,4,5}

P(G =g, A=a,R= T) — pG(g)pA(a)pR(T | 9, a’)
Dirain = {(da 0, 3)) (da /8 5)3 (C7 0, 1)7 (C7 07 5)7 (C7 174)}

43
TReference: Percy Liang, CS221 (2015)



Learning in DPGM: Three Variables Example I

Variables:
e Genre G € {drama, comedy}
e Jim's rating R, € {1,2,3,4,5}
e Martha's rating Ry € {1,2,3,4,5}

IP’(G =g, R =71, Ry = 7‘2) ZPG(Q)PRl (7'1 | Q)PRz (7“2 | g)

Dirain = {(da 4, 5)7 (dv 4, 4)7 (da 9, 3)7 (Ca 1, 2)7 (Cv 3 4)}

44
TReference: Percy Liang, CS221 (2015)



Learning in DPGM: Parameter Sharing

_3@‘ Key idea: parameter sharing

The local conditional donstributions of different variables use the
same parameters.

pr(r | 9)
1/4
1/4
0/4
1/4
1/4
0/6
0/6
1/6
3/6
2/6

9 pc(9) TN
c 2/5 - G )
d 3/5 C

TN SN
(\ R, /} . Ro )
S < \'\ /

\_,_/

(
o QA A o o 0O (@] 0 0 0
[ ¥ S e L~ U8 B 0 R

TReference: Percy Liang, CS221 (2015)



Learning in DPGM: Maximum Likelihood via
Counting and Normalizing

Input: training examples Dyain of full assignments

Output: parameters § = {pg : d € D}

oy Algorithm: maximum likelihood for Bayesian networks

[E——

Count:
For each x € D;ain:
For each variable z;:
Increment countg, (Zparents(s)> Ti)
Normalize:
For each d and local assignment Zparents(i):

Set pd(-’ri I xParents(i)) X Countd(xParents(i)axi)

TReference: Percy Liang, CS221 (2015)
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Learning in DPGM: Maximum Likelihood via
Counting and Normalizing

Maximum likelihood objective:

max H PLX =2:0)

wEDtrain

Algorithm on previous slide exactly computes maximum likelihood pa-
rameters (closed form solution).

47
TReference: Percy Liang, CS221 (2015)



Learning in DPGM: Maximum Likelihood via
Counting and Normalizing

Dhrrain = {(d74)7 (da 5)7 (Ca 5)}

max(pg(d)pe(d)pc(c)) max pr(5 | c) max (pr(4 | d)pr(5 | d))
ra(+) pr(:|c) pr(-|d)

e Key: decomposes into subproblems, one for each distribution d
and assignment ZTparents

e For each subproblem, solve in closed form (Lagrange multipliers
for sum-to-1 constraint)

48
TReference: Percy Liang, CS221 (2015)



Different Estimation/Learning
Problems

* What if we have missing data?

Model

Data Complete

Structure Unknown
Obijective Generative Discriminative

49
"Reference: Pedro Domingos, CSE 515 (2017)



Learning in DPGM: Latent Variables

P

@)

,

What if we don’t observe some of the variables?

Dtrain = {(7,4,5),(7,4,4),(7,5,3),(7,1,2),(7,5,4)}

TReference: Percy Liang, CS221 (2015)
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DPGM: Maximizing Marginal
Likelihood

Variables: H is hidden, X = e is observed

Example:
| H = G E (Rl,Rz)
Maximum marginal likelihood objective:
max P(E =e;0)
€€ Dtrain

TReference: Percy Liang, CS221 (2015)

e = (4,5)
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Expectation Maximization

Inspiration: K-means

Variables: H is hidden, E is observed (to be e)

- 8 Algorithm: Expectation Maximization (EM)

E-step:
e Compute q(h) =P(H = h | E = e;0) for each h (use any
probabilistic inference algorithm)
e Create weighted points: (h,e) with weight q(h)
M-step:
e Compute maximum likelihood (just count and normalize) to
get 0
Repeat until convergence.

52
TReference: Percy Liang, CS221 (2015) °Note: EM was first proposed in 1977



EM: Revisiting K-Means

* EM tries to maximize marginal likelihood

 K-means

* Is a special case of EM (for GMMs with variance
tending to O)

* Obijective: Estimate cluster centers

"Reference: Percy Liang, CS221 (2015)
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EM: Revisiting K-Means

* EM tries to maximize marginal likelihood

 K-means

* Is a special case of EM (for GMMs with variance
tending to O)

* Obijective: Estimate cluster centers

* But don’t know which points belong to which
clusters

* Take an alternating optimization approach

* Find the best cluster assignment given current
cluster centers

* Find the best cluster centers given assignments

"Reference: Percy Liang, CS221 (2015)



The Two Steps of EM

* E-step
* Here, we don’t know what the hidden variables are,
so compute their distribution given the current

parameters (P(H|E = ¢e; 0))
* Need inference! (BP/Gibbs MCMC)

* This distribution provides a weight g(h) (temp
variable in the EM algo) to every value H can take

* Conceptually, the E-step generates a set of weighted
full realizations/configurations (h, ) with weights q(h)

"Reference: Percy Liang, CS221 (2015)



The Two Steps of EM

* M-step

* Just do MLE (i.e., counting and normalizing) to re-
estimate parameters

* If we repeat E-step and M-step again and again,
eventually we will converge to a local optima of
parameters

56
"Reference: Percy Liang, CS221 (2015)



EM: Example

N\
(G )
s
r/ \ Dirain = {(?a2a2)7(??1’2)}
") £
(R1) (R
g v pr(r|9) (r1,72) 9 P(G =g,R1 =71,R2 =12) q(g)
9 pc(g) |c 104 E-step | (2.2) ¢ 0.5-0.6-0.6 sisioos = 0-69
0:|c 0.5 c 206 > (2,2) d 0.5-0.4-04 sivrons = 0-31
d05 |/d106 (1,2) ¢ 0.5-0.4-0.6 0.5
d 2 0.4 (1,2) d 0.5-0.6-04 0.5
g r count pr(T | 9)
M-step | g count pc(g) | c 105 0.21
mmpp 0: | c 0.69 + 0.5 0.59 | c 2 0.5+ 0.69 + 0.69 0.79
d 031+05041 ||d 105 0.31

'Reference: Percy Liang, CS221 (2015)

d 2 05+ 0.31 +0.31 0.69
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Different Estimation/Learning

Problems

* What if the structure is unknown?

UPGM

Model

Data Complete
Structure Known
Obijective Generative

Incomplete

Discriminative

"Reference: Pedro Domingos, CSE 515 (2017)
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Learning Structure: Bayesian

A

roach

* Given data, which model is correct?

model 1: @ @
model 2: ®—>®

'Reference: Pedro Domingos, CSE 515 (2017)
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Learning Structure: Bayesian
Approach

* Given data, which model iszore likely?
model 1: @ @ p(m )=0.7 p(m, |d)=0.1

Datad
E>

model 2: @—»@ p(m,)=0.3 p(m, |d)=0.9

* Can do model averaging

* Can do model selection to pick a model that is

* tractable, understandable, explainable
'Reference: Pedro Domingos, CSE 515 (2017)
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Learning Structure: Model Scoring

* Use Baye’s theorem to score a model

Given data d:

model

score ~ ~ P(m|d)oc p(m)p(d|m)

‘marginal likelihood
likelihood"

= p(d|m) = | p(d|6.m)p(6 mae

'Reference: Pedro Domingos, CSE 515 (2017)



Combined Learning

* Although structure learning is hard in general, still
useful to do it by using prior knowledge and data

JORNO
@ \/\'

/ l
Prior knowledge @

/
()

\ |

/ =

X X, X3

true | false | true

false | false | true

data | false | false | false
true | true | false

Learned network(s)

62
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Different Estimation/Learning
Problems

* There dare many variants

Model DPGM
Data Complete Incomplete
Structure Known Unknown

Obijective Discriminative

63
"Reference: Pedro Domingos, CSE 515 (2017)



Learning in UPGM

P<x>=%H<Dc<xc>

Z=>1]P.(x)

"Reference: Pedro Domingos, CSE 515 (2017)

N\

CAsthma ) Covgh

Potential functions defined over cliques

Smoking Cancer P(S,C)
False False 4.5
False True 4.5
True False 2.7
True True 4.5

64



Learning in UPGM

- -

CAsthma ) Covgh

Can be thought in terms of a log-linear representation

P(x)= ;exp(Z? ]i\(x)j

Weight of Feature i Feature |

f,(Smoking, Cancer) =

{1 if — Smoking v Cancer
w, = 0.51

0 otherwise

65
'Reference: Pedro Domingos, CSE 515 (2017)



Learning in UPGM: Generative

* Maximize likelihood or posterior probability

* Numerical optimization (gradient or 2" order)

% log P, (x) =, o)~ [E [, ()]
ow, /

No. of times feature i/ is true in data

Expected no. times feature i/ is true according to model

* Requires inference at each step (slowl)

66
'Reference: Pedro Domingos, CSE 515 (2017)



Learning in UPGM: Pseudo-likelihood

PL(x)= HP(xl. | neighbors(x;))

* Likelihood of each variable given its neighbors in the
data

* Does not require inference at each step
* Consistent estimator
* Widely used in vision, spatial statistics, etc.

* But PL parameters may not work well for
long inference chains

'Reference: Pedro Domingos, CSE 515 (2017)



Different Estimation/Learning
Problems

* There dare many variants

Model DPGM

Data Complete Incomplete
Structure Known Unknown
Obijective Generative

"Reference: Pedro Domingos, CSE 515 (2017)



Learning in UPGM: Discriminative

* This is related to Conditional Random Fields (CRFs)

* Maximize conditional likelihood of query (V) given

evidence (X)

O
——log £, (¥ |x)=
ow,

n,(x,y)

E, |n,(x,)]

/

No. of true values of feature j in data

\

Expected no. of true values according to model

* |nference is easier, but still hard

'Reference: Pedro Domingos, CSE 515 (2017)




Different Estimation/Learning
Problems

* There dare many variants

Unknown

Model DPGM
Data Complete
Structure Known
Obijective Generative

"Reference: Pedro Domingos, CSE 515 (2017)



Learning in UPGM: Missing Data

* Gradient of likelihood is now difference
of expectations

9 log P, (x) =
ow,

E, |n(|0)]HE,[n G, )]

Exp. no. true values given observed data \

x: Observed
y: Missing

Expected no. true values given no data

* Can use gradient descent or EM

'Reference: Pedro Domingos, CSE 515 (2017)
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Learning Summary

* We looked at

the following problems

* Learning DPGMs with complete data and known

structure

e MLE via

counting and normalizing

* Learning DPGMs with incomplete data and known

structure

* EM
* Learning D
* Learning U

* Learning U

PGM structure
PGMs in a generative setting

PGM in a discriminative setting



Learning Summary

* There are many other variants

* Some of these tasks necessarily rely on heuristics

* Many ways have been proposed in research, and as
practitioners, we have to pick and choose.

'Reference: Pedro Domingos, CSE 515 (2017)
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Questions?



Summary

* We discussed some of the applications where they
have been successfully applied

* We looked at parameter and structure estimation of
these graphical models

* Bottom line: When there is structure in the inputs and
outputs of a ML pipeline, consider DPGMs/UPGMs

* An unified way of thinking about supervised and
unsupervised learning



Appendix



Sample Exam Questions

* In which settings would one use MLE and EM for
earning in graphical models? Give examples.

* How is the graph structure learned? Can it be
specified as prior information?

* Mention 3 applications of graphical models and
specify their descriptions. Explain how learning
happens in one of these models.

Which is computationally more expensive for Bayesian networks?

probabilistic inference given the parameters

learning the parameters given fully labeled data
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Gibbs Sampling when

Observations/Evidence are Given

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function GIBBS-SAMPLING(X, e, bn, N) returns an estimate of P(X|e)
local variables: IN[X], a vector of counts over X, initially zero
Z, the nonevidence variables in bn
X, the current state of the network, initially copied from e

initialize x with random values for the variables in Y
for j=1to Ndo
for each Z; in Z do
sample the value of Z; in x from P(Z;|mb(Z;))
given the values of M B(Z;) in x
N[z] <+~ N|z] + 1 where z is the value of X in x
return NORMALIZE(N|[X])

Can also choose a variable to sample at random each time
'Reference: Pedro Domingos, CSE 515 (2017)
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Additional Applications: Naive Bayes Spam
Filter

* Key assumption
Words occur independently of each other
given the label of the document
p(wy, ..., wy,|spam) = Hp(wz-|spam)
e Spam classification via Bayes Rule

p(spam|wy, . .., wy) o p(spam) | | p(w;|spam)
1 . g=1
e Parameter estimation

Compute spam probability and word
distributions for spam and ham
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Additional Applications: Naive Bayes Spam
Filter

how to estimate
p(w|spam)

n
p(wi,. .., wn|spam) = | [ p(w;|spam)
1=1

1Reference: Alex Smola (2011)
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Additional Applications: Naive Bayes Spam
Filter

* Two classes (spam/ham)
* Binary features (e.g. presence of $$9, viagra)
 Simplistic Algorithm
e Count occurrences of feature for spam/ham
* Count number of spam/ham mails

p(z; = TRUE[y) = n&y‘%) and p(y) = %y)
n(y) n(i, y) sallly — vl )
(y|z) oc —=
- " i:wizl’_I‘[RUE n(y) i:wi:gLSE n(y)
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Additional Applications: MAP Problem in
Low Density Parity Check Codes

@ Error correcting codes for transmitting a message over a noisy channel
(invented by Galleger in the 1960's, then re-discovered in 1996)

N fg fc

@ Each of the top row factors enforce that its variables have even parity:

fa(Y,Y2,Y3,Y)=1if Vi Yo ® Y3 ® Yy, =0, and 0 otherwise

@ Thus, the only assignments Y with non-zero probability are the following
(called codewords): 3 bits encoded using 6 bits

000000, 011001, 110010, 101011, 111100, 100101, 001110, 010111
@ fi(Y;,X;) = p(X; | Y:), the likelihood of a bit flip according to noise model
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Additional Applications: MAP Problem in
Low Density Parity Check Codes

@ The decoding problem for LDPCs is to find

argmaxyp(y | x)

This is called the maximum a posteriori (MAP) assignment

@ Since Z and p(x) are constants with respect to the choice of y, can
equivalently solve (taking the log of p(y,x)):

argmax, Z G4 %.);

where 0.(x.) = log ¢c(xc) cec

"Reference: David Sontag (201 3)
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