
Advanced Prediction 
Models

Deep Learning, Graphical Models and Reinforcement 
Learning



Recap: Why Graphical Models

• We have seen deep learning techniques for 
unstructured data
• Predominantly vision and text/audio
• We will see control in the last part of the course
• (Reinforcement Learning)

• For structured data, graphical models are the most 
versatile framework
• Successfully applications: 
• Kalman filtering in engineering
• Decoding in cell phones (channel codes)
• Hidden Markov models for time series
• Clustering, regression, classification …
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Recap: Graphical Models Landscape

• Three key parts:

• Representation

• Capture uncertainty (joint distribution)

• Capture conditional independences (metadata)

• Visualization of metadata for a distribution

• Inference

• Efficient methods for computing marginal or 
conditional distributions quickly

• Learning

• Learning the parameters of the distribution can 
deal with prior knowledge and missing data
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Today’s Outline

• Applications

• Learning

• DPGM/UPGM

• Parameter Estimation

• Structure Estimation

• Complete/Incomplete Data
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Applications
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Applications of Graphical Models

• Given all that we have learned up to now, we will 
sample the following applications
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Hidden Markov 

Models

time series, tracking

Gaussian 

Mixture Models

clustering

Latent Dirichlet

Allocation

topic modeling

Conditional 

Random Fields

structured 
classification/regression



Example Graphical Model I
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1Reference: Percy Liang, CS221 (2015)



Example Graphical Model II
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1Reference: Percy Liang, CS221 (2015)

• A generative process is nothing but a description of the joint 
distribution in terms of how the random variables realize



Example Graphical Model III
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1Reference: Percy Liang, CS221 (2015)



Example Graphical Model IV
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1Reference: Percy Liang, CS221 (2015)



Object Tracking via Hidden Markov Model
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1Reference: Percy Liang, CS221 (2015)



Generative Program for HMM
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1Reference: Percy Liang, CS221 (2015)



Object Tracking via HMM
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1Reference: Percy Liang, CS221 (2015)



HMM Parameter Sharing
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1Reference: Percy Liang, CS221 (2015)



Mixture Models
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1Reference: Pedro Domingos, CSE 515 (2017)



Gaussian Mixture Models
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1Reference: David Sontag (2013)



Gaussian Mixture Model in 1D and 2D

17

1Reference: David Sontag (2013)



Learning a GMM
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1Reference: Pedro Domingos, CSE 515 (2017)



Learning a 1D GMM
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1Reference: Pedro Domingos, CSE 515 (2017)



Latent Dirichlet Allocation
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1Reference: David Sontag (2013)



Latent Dirichlet Allocation
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1Reference: David Sontag (2013)



Latent Dirichlet Allocation
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1Reference: David Sontag (2013)



Latent Dirichlet Allocation
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1Reference: David Sontag (2013)



Latent Dirichlet Allocation
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1Reference: David Sontag (2013)



Latent Dirichlet Allocation
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1Reference: David Sontag (2013)



Conditional Random Field based Classifier
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1Reference: David Sontag (2013)



Conditional Random Field based Classifier
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1Reference: David Sontag (2013)



CRF for Natural Language Processing: Log-
linear Terms
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1Reference: David Sontag (2013)



CRF for Natural Language Processing: The 
Task
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1Reference: David Sontag (2013)

and !"



CRF for Natural Language Processing: The 
Task
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1Reference: David Sontag (2013)



Questions?
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Today’s Outline

• Applications

• Learning

• Parameter Estimation in DPGMs with 
Complete/Incomplete Data

• Structure Estimation in DPGMs

• Parameter Estimation in UPGMs with 
Complete/Incomplete Data
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Estimation/Learning
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Different Estimation/Learning 
Problems

• There are many variants
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1Reference: Pedro Domingos, CSE 515 (2017)

Model DPGM UPGM

Data Complete Incomplete

Structure Known Unknown

Objective Generative Discriminative



Different Estimation/Learning Problems

• We will look at the following problems

• Learning DPGMs with complete data and known 
structure

• MLE via counting and normalizing

• Learning DPGMs with incomplete data and known 
structure

• EM

• Learning DPGM structure

• Learning UPGMs in a generative setting

• Learning UPGM in a discriminative setting
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Different Estimation/Learning 
Problems

• There are many variants
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1Reference: Pedro Domingos, CSE 515 (2017)

Model DPGM UPGM

Data Complete Incomplete

Structure Known Unknown

Objective Generative Discriminative



Learning in DPGM: Parameters
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1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Parameter Estimation
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1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: One Variable Example
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1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: One Variable Example
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1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Two Variables Example
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1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Two Variables Example
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1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Three Variables Example I
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1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Three Variables Example II
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1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Parameter Sharing
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1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Maximum Likelihood via 
Counting and Normalizing
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1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Maximum Likelihood via 
Counting and Normalizing
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1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Maximum Likelihood via 
Counting and Normalizing
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1Reference: Percy Liang, CS221 (2015)



Different Estimation/Learning 
Problems

• What if we have missing data?
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1Reference: Pedro Domingos, CSE 515 (2017)

Model DPGM UPGM

Data Complete Incomplete

Structure Known Unknown

Objective Generative Discriminative



Learning in DPGM: Latent Variables
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1Reference: Percy Liang, CS221 (2015)



DPGM: Maximizing Marginal 
Likelihood
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1Reference: Percy Liang, CS221 (2015)



Expectation Maximization
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1Reference: Percy Liang, CS221 (2015) 2Note: EM was first proposed in 1977



EM: Revisiting K-Means
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1Reference: Percy Liang, CS221 (2015)

• EM tries to maximize marginal likelihood

• K-means 

• Is a special case of EM (for GMMs with variance 
tending to 0)

• Objective: Estimate cluster centers

• But don’t know which points belong to which 
clusters

• Take an alternating optimization approach

• Find the best cluster assignment given current 
cluster centers

• Find the best cluster centers given assignments



EM: Revisiting K-Means
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1Reference: Percy Liang, CS221 (2015)

• EM tries to maximize marginal likelihood

• K-means 

• Is a special case of EM (for GMMs with variance 
tending to 0)

• Objective: Estimate cluster centers

• But don’t know which points belong to which 
clusters

• Take an alternating optimization approach

• Find the best cluster assignment given current 
cluster centers

• Find the best cluster centers given assignments



The Two Steps of EM
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1Reference: Percy Liang, CS221 (2015)

• E-step

• Here, we don’t know what the hidden variables are, 
so compute their distribution given the current 
parameters (!(#|% = '; )))

• Need inference! (BP/Gibbs MCMC)

• This distribution provides a weight +(ℎ) (temp 
variable in the EM algo) to every value # can take

• Conceptually, the E-step generates a set of weighted 
full realizations/configurations (ℎ, ') with weights +(ℎ)



The Two Steps of EM
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1Reference: Percy Liang, CS221 (2015)

• M-step

• Just do MLE (i.e., counting and normalizing) to re-
estimate parameters

• If we repeat E-step and M-step again and again, 
eventually we will converge to a local optima of 
parameters



EM: Example
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1Reference: Percy Liang, CS221 (2015)



Different Estimation/Learning 
Problems

• What if the structure is unknown?
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1Reference: Pedro Domingos, CSE 515 (2017)

Model DPGM UPGM

Data Complete Incomplete

Structure Known Unknown

Objective Generative Discriminative



• Given data, which model is correct?
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1Reference: Pedro Domingos, CSE 515 (2017)

X Ymodel 1:

X Ymodel 2:

Learning Structure: Bayesian 
Approach



Learning Structure: Bayesian 
Approach
• Given data, which model is correct? more likely?

• Can do model averaging

• Can do model selection to pick a model that is

• tractable, understandable, explainable
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1Reference: Pedro Domingos, CSE 515 (2017)

X Ymodel 1:

X Ymodel 2:
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Learning Structure: Model Scoring

• Use Baye’s theorem to score a model
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1Reference: Pedro Domingos, CSE 515 (2017)

Given data d:
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Combined Learning

• Although structure learning is hard in general, still 
useful to do it by using prior knowledge and data
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1Reference: Pedro Domingos, CSE 515 (2017)
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Different Estimation/Learning 
Problems

• There are many variants
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1Reference: Pedro Domingos, CSE 515 (2017)

Model DPGM UPGM

Data Complete Incomplete

Structure Known Unknown

Objective Generative Discriminative



Learning in UPGM
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Cancer

CoughAsthma

Smoking

Potential functions defined over cliques

Smoking Cancer Ф(S,C)

False False 4.5

False True 4.5

True False 2.7

True True 4.5
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Learning in UPGM
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Cancer

CoughAsthma

Smoking

Can be thought in terms of a log-linear representation

1Reference: Pedro Domingos, CSE 515 (2017)
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Learning in UPGM: Generative
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1Reference: Pedro Domingos, CSE 515 (2017)

• Maximize likelihood or posterior probability

• Numerical optimization (gradient or 2nd order) 

• No local maxima

• Requires inference at each step (slow!)

No. of times feature i is true in data

Expected no. times feature i is true according to model
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Learning in UPGM: Pseudo-likelihood
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1Reference: Pedro Domingos, CSE 515 (2017)

• Likelihood of each variable given its neighbors in the 
data

• Does not require inference at each step

• Consistent estimator

• Widely used in vision, spatial statistics, etc.

• But PL parameters may not work well for
long inference chains
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Different Estimation/Learning 
Problems

• There are many variants
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1Reference: Pedro Domingos, CSE 515 (2017)

Model DPGM UPGM

Data Complete Incomplete

Structure Known Unknown

Objective Generative Discriminative



Learning in UPGM: Discriminative

• This is related to Conditional Random Fields (CRFs)
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1Reference: Pedro Domingos, CSE 515 (2017)

• Maximize conditional likelihood of query (y) given 

evidence (x)

• Inference is easier, but still hard

No. of true values of feature i in data

Expected no. of true values according to model
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Different Estimation/Learning 
Problems

• There are many variants
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1Reference: Pedro Domingos, CSE 515 (2017)

Model DPGM UPGM

Data Complete Incomplete

Structure Known Unknown

Objective Generative Discriminative



Learning in UPGM: Missing Data
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1Reference: Pedro Domingos, CSE 515 (2017)

• Gradient of likelihood is now difference
of expectations

• Can use gradient descent or EM
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Exp. no. true values given observed data

Expected no. true values given no datax: Observed

y: Missing



Learning Summary

• We looked at the following problems

• Learning DPGMs with complete data and known 
structure

• MLE via counting and normalizing

• Learning DPGMs with incomplete data and known 
structure

• EM

• Learning DPGM structure

• Learning UPGMs in a generative setting

• Learning UPGM in a discriminative setting
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Learning Summary

• There are many other variants

• Some of these tasks necessarily rely on heuristics

• Many ways have been proposed in research, and as 
practitioners, we have to pick and choose.
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1Reference: Pedro Domingos, CSE 515 (2017)



Questions?
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Summary

• We discussed some of the applications where they 
have been successfully applied

• We looked at parameter and structure estimation of 
these graphical models

• Bottom line: When there is structure in the inputs and 
outputs of a ML pipeline, consider DPGMs/UPGMs

• An unified way of thinking about supervised and 
unsupervised learning
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Appendix
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Sample Exam Questions
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1Reference: Percy Liang, CS221 (2015)

• In which settings would one use MLE and EM for 
learning in graphical models? Give examples.

• How is the graph structure learned? Can it be 
specified as prior information?

• Mention 3 applications of graphical models and 
specify their descriptions. Explain how learning 
happens in one of these models.



Gibbs Sampling when 
Observations/Evidence are Given
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1Reference: Pedro Domingos, CSE 515 (2017)



Additional Applications: Naïve Bayes Spam 
Filter
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1Reference: Alex Smola (2011)



Additional Applications: Naïve Bayes Spam 
Filter
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1Reference: Alex Smola (2011)



Additional Applications: Naïve Bayes Spam 
Filter
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1Reference: Alex Smola (2011)



Additional Applications: MAP Problem in 
Low Density Parity Check Codes
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1Reference: David Sontag (2013)



Additional Applications: MAP Problem in 
Low Density Parity Check Codes
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1Reference: David Sontag (2013)


