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Today’s Outline

• Course Logistics

• Introduction to the Course

• Getting Started with Neural Nets

• Classification

• Backpropagation

• Feedforward Neural Nets
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Course Topics

• We will cover several tools under the umbrella of

• Deep Learning

• Probabilistic Graphical Models

• Online and Reinforcement Learning
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Introduction to the Course
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20000 Ft View

Business Goal: 
Value creation

Solution: 
Product/Service

Delivery Stack

Data I/O

Techniques (e.g., 
Deep Learning)
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• You need a critical understanding of the domain to be 
successful in shipping solutions

• Before venturing into a complex technique, try a 
shallow/easy technique



A Business Analyst’s Toolkit

• Techniques
• Prediction
• Decision Trees
• Linear classifiers and logistic regression
• Naïve Bayes classifier 
• SVMs
• Neural networks (and deep learning)
• Graphical models
• Online/reinforcement learning

• Exploration
• Clustering
• Market basket analysis
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Example I

• You are an online fashion retailer

• Want to adaptively recommend products

• Cannot measure certain quantities directly

• Substitution behavior

• Stock-level sensitivities

7



Example I

• You are an online fashion retailer

• Want to adaptively recommend products

• Cannot measure certain quantities directly

• Substitution behavior

• Stock-level sensitivities

• Build a personalization system that infers the most 
likely product that would be bought given 
censored/partial information

• Recommend products

• Tweak prices
8



Example II

• You are a home insurance provider

• Want to check houses for risks and opportunities

• Manually checking houses and neighborhood does not 
scale

• Fly a helicopter/drone and capture video

• Tag objects in the video

• Classify if a outdoor pool is present or not

• Classify greenery

• Including the types of trees!

• Segment the house from the background

9



Example II

• You are a home insurance provider

• Want to check houses for risks and opportunities

• Manually checking houses and neighborhood does not 
scale

• Fly a helicopter/drone and capture video

• Tag objects in the video

• Classify if a outdoor pool is present or not

• Classify greenery

• Segment the house from the background

• Figure out insurance premiums across neighborhoods

10



Example III

• Fashion retailing

• The customer dislikes our recommendation

• The customer finds the price too high

• How to update our recommendations and prices?

• Home insurance

• Prices the premium too low for this year

• Had to payout a lot

• How to update the premium for next year?
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Example III

• Fashion retailing

• The customer dislikes our recommendation

• The customer finds the price too high

• How to update our recommendations and prices?

12



Data Variety

• Structured data
• Examples:
• Medical/healthcare data
• Advertising data

• Have ordinal, integer, binary or categorical fields
• Among other tools, one can use graphical models

13



Data Variety

• Structured data

• Examples:

• Medical/healthcare data, advertising data

• Have ordinal, integer, binary or categorical fields

• If there is missing/noisy data, one can use graphical 
models

• Unstructured data

• Examples:

• Images (tensor, i.e., typically a 3 dimensional 
array) and videos (a sequence of images), text 
strings/documents

• Deep learning reduces feature engineering effort
14



Complex Decisions

• Decisions 

• Examples: 

• which articles to show, how to price products

• May use many predictions, may need to be taken 
repeatedly for different contexts

• Online and reinforcement learning methods 
address this ‘learning on the go’ problem
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Two Themes of the Course

• Data Variety

• Images and Videos

• Speech

• Text and Language

• Complex Decisions

• Sequential Decision Making
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Three Techniques covered in the Course

• To address data variety and complex decision 
problems, we will look at:

• Deep Learning

• Probabilistic Graphical Models

• Online and Reinforcement Learning
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Deep Learning

• One example (in vision) of its success is at the ILSVRC1

• ImageNet dataset has 22000 categories across 14 
million images

• ILSVRC Task 1 was a classification challenge

• Given 1000 categories and1.5 million images, 
predict 5 categories for a test image

18
1ImageNet Large Scale Visual Recognition Challenge
2Figure: Russakovsky et al. arxiv:1409.0575



Deep Learning

• Neural nets are not new (1960s). Applied to 
handwritten digit recognition back in 1998

• Were not mainstream till around 2010/2012*

• What changed? Access to GPUs and Data

• Caveat: 

• Deep learning achieves good performance on 
some tasks 

• Typically has not worked well beyond 
classification…

• There is a lot of scope for improvement, 
engineering, system building, model building

19
*Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition, Dahl et al. 2010
Imagenet classification with deep convolutional neural networks, Krizhevsky et al. 2012



Graphical Models

• Probability 
distribution and 
graphs!

• Method of choice for 
complex machine 
learning models

20
1Figure: https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/

teaching/courses/probabilistic-graphical-models-and-their-applications/
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1Reference: Percy Liang, CS221 (2015)

Graphical Models
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1Reference: Percy Liang, CS221 (2015)

Graphical Models



Graphical Models vs Deep Learning

23
1Reference: Andreas Geiger, Autonomous Vision Group, MPI (2017)

to encode



Online/Reinforcement Learning

24
1Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966
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User demographics feature vector

User history feature vector

50 editorially chosen articles with 

feature vectors

User Clicks Story

…

ɛ-greedy 

exploratio

n

Ranked List

Front End Server Client Brower

Clicks logged as feedback

1Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966

Online/Reinforcement Learning



1Reference:  DeepMind, March 2016

Online/Reinforcement Learning



1Figure: Defazio Graepel, Atari Learning Environment

Online/Reinforcement Learning



Caveat

• Measurable metrics of business success take priority 
over technical success metrics

• Need to ask: 

• Does a Y% increase in classification accuracy help 
in X% increase in sales?

• Does a Z% increase in classification accuracy due 
to using a deep learning solution help the bottom-
line?

• What is the technical debt incurred? Who will 
maintain?
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Questions?
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Today’s Outline

• Course Logistics

• Introduction to the Course

• Getting Started with Neural Nets

• Classification

• Backpropagation
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Classification

• Classification

• Data

• Model

• Loss

• Optimization
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Classification

• To design the classifier, we need

• Training data

• Model specification for the classifier

• Loss function to define the best model

• Optimization to get to the best model

32

Test 
example

Classifier Label



Data (I)

• Lets pick a domain: vision

• What is an image?

• A bunch of numbers between 0 to 255

• A 3 dimensional array

• The same object can look different based on

• Location of the camera

• Location of the light source

• Rigidity of the object

• Occluding objects

• Background

• Variation across objects of the same category
33



Data (II)

• Say we have � training examples ݔ , ݕ , ݅ = ͳ, … , �
• ݔ is the feature vector for the ݅th example
• ݕ is the label for the ݅th example

• Before deep learning
• Carefully designed features
• Histogram of colors
• Histogram of Oriented Gradients (HOG)
• Scale Invariant Feature Transform (SIFT)
• Various types of filters

• With deep learning
• Almost no feature engineering
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Model (I)

• Parametric vs non-parametric

• Example: 

• Logistic classifier is parametric 

• K-Nearest Neighbor is a non-parametric classifier

• We will focus on parametric models

• A fixed set of parameters and hyper-parameters
determine a model completely

35



Model (II)

• Pick a concrete parametric model ݂ሺݔ,ܹ, ܾሻ
• ݔ is the input (݀ × ͳ dimensional)

• Vectorize the image or get features

• ܹ is a parameter ( × ݀ dimensional)

• ܾ is also a parameter ( × ͳ dimensional)

• Let ݂ ,ܹ,ݔ ܾ = ݔܹ + ܾ
• This is a linear model

• We will change this later

• The output of the linear model is a vector of scores

36



Model (III)

• Given a model (i.e., a fixed ܹ, ܾ pair) our classifier 
can be 

• Pick the index with the highest ‘score’
• መ� = argmax =ଵ,…,� ݂ሺݔ,ܹ, ܾሻ

• Pick the index with the highest ‘probability’
• Need a map/function from scores to 

probabilities

• We want to use the best model. How?

• Define best: Loss function

• Find the best: Optimization

37



Loss functions (I)

• Let the ݆th coordinate of ݂ሺݔ,ܹ, ܾሻ be ݏ
• Loss �ௗ� is defined over the training data

• Is chosen to be decomposable over � terms, one per 
example

• �ௗ� = σ=ଵ� �

38



Loss functions (I)

• Let the ݆th coordinate of ݂ሺݔ,ܹ, ܾሻ be ݏ
• Loss �ௗ� is defined over the training data

• Is chosen to be decomposable over � terms, one per 
example

• �ௗ� = σ=ଵ� �
• Logistic loss (Cross-entropy or softmax) for example ݅
• � = −log �ሺܻ = ܺ|ݕ = ሻݔ where

• �ሺܻ = ݆|ܺ = ሻݔ = �ೕσೖ �ೖ
• SVM loss (2 class, ܹ is a row vector) for example ݅
• � = maxሺͲ,ͳ − ௬ሻݏݕ

39



Loss functions (II)

• Need for regularization

• Unique model

• Desired model

• Control overfitting

• Final loss � = �ௗ� + �� ܹ, ܾ
• �ሺܹ, ܾሻ can be just a function of ܹ or ܾ or both

40



Loss functions (III)

• L2 regularization: ||ܹ||ଶଶ = σσ ܹଶ
• L1: |ܹ |ଵ = σσ | ܹ|
• Elastic net: ߙ ܹ ଵ + ͳ − ߙ ܹ ଶଶ
• Regularization may not always be and explicit 

function of the parameters

• We will see dropout later

41



Optimization (I)

42

Parameterܹ,ܾ
Example 1

Example 2
Example ݅

݂ሺݔ ,ܹ, ܾሻ

Example �

�
Rሺܹ, ܾሻ

ݔ ݕ

ߛ

Need to find parameters ܹ, ܾ and hyper-parameter ߛ
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Parameter�
Example 1

Example 2
Example ݅

݂ሺݔ , �ሻ

Example �

�
Rሺ�ሻ

ݔ ݕ

ߛ

Need to find parameters � and hyper-parameter ߛ

Optimization (I)



Optimization (II)

• Many ways to optimize

• We will focus on first order methods

• Key ingredient: Gradient

• Gradient is the vector of partial derivatives of a 
function

• Can be computed 

• Numerically: limℎ→  ௭+ℎ −ሺ௭ሻℎ
• Analytically: Calculus and chain rules 

44



Optimization (III)

• Build on the intuition
• Start with a model (i.e., ܹ, ܾ)
• Evaluate � for this model on the training data
• Change ܹ, ܾ to ଵܹ, ܾଵ such that the new � is 

smaller
• Repeat

• This intuition is the essence of Gradient Descent 
methods
• Gradient of � with respect to the parameters is 

used to change ܹ, ܾ to ଵܹ, ܾଵ
45



Optimization (IV)

• Example method: Batched Gradient Descent

• Get a sample of training data

• Example: AlexNet1 used 256 examples as one 
batch

• Get gradient of � with respect to parameters ܹ, ܾ
• Update

• ܹ+ଵ ← ܹ − ��ߘߙ
• ܾ+ଵ ← ܾ − �ߘߚ

• Step sizes (learning rates) ߙ, ߚ need careful choice

46
1Krizhevsky et al. NIPS Deep Learning Workshop 2012



Optimization (V)

• Tuning the hyper-parameter(s)

• Break dataset into two parts: test and train

• Remove test data access while you are tuning the 
parameters of your model

• Do cross validation to tune hyper-parameters

47

Fold 1

Fold 2

Fold 3

Fold 4

Essentially cycle through the choice of validation fold
Optimize parameters over the remaining folds



Questions?
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Today’s Outline

• Course Logistics

• Introduction to the Course

• Getting Started with Neural Nets

• Classification

• Backpropagation
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Backpropagation

• An efficient way to get the gradient needed for 
optimization

50

ℎሺܽ, ܾሻ
ܽ

ܾ
ℎ�ℎ�ܾ

�ℎ�ܽ
�݃�ℎ

�ℎ�ܽ �݃�ℎ
�ℎ�ܾ �݃�ℎ



Backpropagation
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ℎሺܽ, ܾሻ
ܽ

ܾ
ℎ�ℎ�ܾ

�ℎ�ܽ
�݃�ℎ

�݃�ܽ
�݃�ܾ



Notion of a Computational Graph

• Consider a function ݃ሺܽ, ܾ, ܿሻ = ܽ ∗ ܾ + ܿ
• Draw a graph

52

+

×ܽ
ܾ
ܿ



Backprop Example 1

• The circles represent compute nodes

• Let ℎ = ܽ ∗ ܾ. Then ݃ = ℎ + ܿ

53

+

×ܽ
ܾ
ܿ �݃�݃ = ͳ�݃�ܿ = ͳ

�݃�ℎ = ͳ



Backprop Example 1

• The circles represent compute nodes

• Let ℎ = ܽ ∗ ܾ. Then ݃ = ℎ + ܿ

54

+

×ܽ
ܾ
ܿ �݃�݃ = ͳ�݃�ܿ = ͳ

�݃�ℎ = ͳ
�ℎ�ܽ = ܾ
�ℎ�ܾ = ܽ



Backprop Example 1

• We can find 
�� , �� and 

�� by chain rule!

55

+

×ܽ
ܾ
ܿ �݃�݃ = ͳ�݃�ܿ = ͳ

�݃�ℎ = ͳ
�ℎ�ܽ = ܾ
�ℎ�ܾ = ܽ



Backprop Example 2

• Consider a function ݃ ܽ, ܾ, ,ݔ ݕ = ଵଵ+−ሺೌೣ+್ሻ
• Let ܽ = ʹ, ܾ = ͳ, ݔ = −͵ and ݕ = Ͷ

56

+
×ܽ

ݔܾ
ݕ×

݃ͳͳ + ݁−௭ݖ
݀
ܿ

(Ͷ)

(−6)

(−ʹ) (
ଵଵ+మ)

ݖ�݃� = ݁ଶͳ + ݁ଶ ଶ



Backprop Example 2

• Consider a function ݃ ܽ, ܾ, ,ݔ ݕ = ଵଵ+−ሺೌೣ+್ሻ
• Let ܽ = ʹ, ܾ = ͳ, ݔ = −͵ and ݕ = Ͷ
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+
×ܽ

ݔܾ
ݕ×

݃ͳͳ + ݁−௭ݖ
݀
ܿ

(Ͷ)

(−6)

(−ʹ) (
ଵଵ+మ)

ݖ�݃� = ݁ଶͳ + ݁ଶ ଶ

ܿ�ݖ� = ͳ�݃�ܿ = ͳ ∗ ݁ଶͳ + ݁ଶ ଶ



Backprop Example 2

• Consider a function ݃ ܽ, ܾ, ,ݔ ݕ = ଵଵ+−ሺೌೣ+್ሻ
• Let ܽ = ʹ, ܾ = ͳ, ݔ = −͵ and ݕ = Ͷ
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+
×ܽ

ݔܾ
ݕ×

݃ͳͳ + ݁−௭ݖ
݀
ܿ

(Ͷ)

(−6)

(−ʹ) (
ଵଵ+మ)

ݖ�݃� = ݁ଶͳ + ݁ଶ ଶ

ܿ�ݖ� = ͳ�݃�ܿ = ͳ ∗ ݁ଶͳ + ݁ଶ ଶ

݀�ݖ� = ͳ�݃�݀ = ͳ ∗ ݁ଶͳ + ݁ଶ ଶ



Backprop Example 2

• Consider a function ݃ ܽ, ܾ, ,ݔ ݕ = ଵଵ+−ሺೌೣ+್ሻ
• Let ܽ = ʹ, ܾ = ͳ, ݔ = −͵ and ݕ = Ͷ
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+
×ܽ

ݔܾ
ݕ×

݃ͳͳ + ݁−௭ݖ
݀
ܿ �݃�ܿ = ͳ ∗ ݁ଶͳ + ݁ଶ ଶ

�݃�݀ = ͳ ∗ ݁ଶͳ + ݁ଶ ଶ�ௗ�௬ = ܾ . Hence,  
��௬ = ��ௗ �ௗ�௬ = ͳ ∗ మଵ+మ మ



Backprop for multiple outputs
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ℎሺܽ, ܾሻ
ܽ

ܾ

ℎ
�ℎ�ܾ

�ℎ�ܽ
�݃ଵ�ℎ�݃�ܽ

�݃�ܾ ℎ�݃ଶ�ℎ



Backprop for vectors

• Say, a is  × ͳ dimensional, b is ݍ × ͳ dimensional 
and h is ݎ × ͳ dimensional and ݃ is scalar

61

ℎሺܽ, ܾሻ
ܽ

ܾ
ℎ

�ℎ� is ݍ × ݎ
�ℎ� is  × ݎ

��ℎ is ݎ × ͳ
�� is  × ͳ
�� is ݍ × ͳ

Node tracks matrices (cleverly)



Backprop API for a node

• Implement two functions
• Forward
• Backward

• Forward
• Get input from preceding node(s)
• Track inputs and local gradients
• Return computation

• Backward
• Get gradient from succeeding node(s)
• Compute gradients (simple multiplication)
• Return gradients to preceding node(s)

62



Computational Graph API

• Data structure a graph (nodes and directed edges)

• Implement two functions for it

• Forward

• Backward

• Forward

• Recursively pass the inputs to the next nodes

• Return �
• Backward

• Recursively traverse the graph backwards

• Return gradients

63



Backprop and batched Gradient Descent

• Choose a mini-batch (sample) of size B

• Forward propagate through the computation graph

• Compute losses �భ , �మ , … �� and �ሺܹ, ܾሻ
• Get loss � for the batch

• Backprop to compute gradients with respect to ܹ,ܾ
• Update parameters ܹ, ܾ
• In the direction of the negative gradient
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Linear Classifier in Python
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Linear Classifier in Python
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Linear Classifier in Python
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Linear Classifier in Python

68



Linear Classifier in Python
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Linear Classifier in Python
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Linear Classifier in Python
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Linear Classifier in Python

72



Questions?
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Summary

• Data variety poses challenges

• Missing

• Noisy

• Complex decisions poses challenges

• Learning on the go

• We reviewed classification

• Regression would have similar considerations

• Discussed backpropagation

• A useful method for optimizing for the best model 
parameters
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Appendix
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Gradient Descent

76
1By I, KSmrq, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2276449

Gradient descent can only reach local optima



Reverse mode AutoDiff

• Backpropagation is a case of reverse accumulation 
automatic differentiation1

77
1See https://en.wikipedia.org/wiki/Automatic_differentiation

An example from wikipedia

https://en.wikipedia.org/wiki/Automatic_differentiation
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Today’s Outline

• Python Walkthrough

• Feedforward Neural Nets

• Convolutional Neural Nets

• Convolution

• Pooling
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Python Walkthrough
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Python Setup (I)

• Necessary for the programming portions of the 
assignments

• More precisely, use Ipython (ipython.org)

4



Python Setup (II)

• Install Python

• Use Anaconda 
(https://www.continuum.io/downloads)

• Python 2 vs Python 3 (your choice)

5

https://www.continuum.io/downloads)


Python Setup (III)

• Install Ipython/Jupyter

• If you installed the Anaconda distribution, you are 
all set

• Else use the command on the command-line

6

or



Python Setup (IV)

• Run Jupyter (or ipython)

• Your browser with open a page like this

• Start a new notebook (see button on the right)

7



Python Setup (V)

8

Press 
shift+enter, or
ctrl+enter

cells
(code)



Python Setup (VI)

• Global variables are shared between cells

• Cells are typically run from top to bottom

• Save changes using the save button

9



Python Review

• General purpose programming language

• 2 vs 3 (3 is backward incompatible)

• Very similar to Matlab (and better) for scientific 
computing

• It is dynamically typed

10



Python Review: Data Types
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Python Review: Data Types
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Python Review: List and Tuple

13



Python Review: Dictionary & Set

14



Python Review: Naïve for-loop

15



Python Review: Function
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Python Review: Numpy

17



Python Review: Numpy

18



Python Review: Scipy Images

19Additional resources:  1. http://cs231n.github.io/python-numpy-tutorial/ 
2. http://docs.scipy.org/doc/scipy/reference/index.html



Some Relevant Packages in Python

• Keras

• An open-source neural network library running on 
top of various deep learning frameworks.

• Tensorflow

• A programming system to represent computations 
as graphs

• Two steps:

• Construct the graph

• Execute (via session)

20



Questions?
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Today’s Outline

• Python Walkthrough

• Feedforward Neural Nets

• Convolutional Neural Nets

• Convolution

• Pooling
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Feedforward Neural Network

• Linear model ݂ሺݔ,�, �ሻ = ݔ� + �
• A feedforward neural network model will include 

nonlinearities

• Two layer model
• ݂ ,ଵ�,ݔ �ଵ,�ଶ, �ଶ = �ଶmax Ͳ,�ଵݔ + �ଵ + �ଶ
• Say ݔ is ݀ dimensional

• �ଵ is ݀ × q dimensional

• �ଶ is ݍ × p dimensional

• Then the number of hidden nodes is ݍ
• The number of labels is 
• The notion of layer is for vectorizing/is conceptual

23



Nonlinearities (I)

24
1Systematic evaluation of CNN advances on the ImageNet, arxiv:1606.02228

• How to pick the nonlinearity/activation function?



Nonlinearities (II)

• Sigmoid

• Is a map whose range is [0,1]

25
1Figure: Qef, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4310325



Nonlinearities (III)

• Saturated node/neuron makes gradients vanish

• Not zero-centered

• Empirically may lead to slower convergence

26
1Figure: Qef, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4310325

݃ͳͳ + ݖ�−݁ ℎ�ℎ�݃�݃�ݖ �ℎ�݃



Nonlinearities (IV)

• tanhሺሻ addresses the zero-centering problem. So will 
typically give better results

• Still gradients vanish

27
1Figure: Fylwind, Public Domain, https://commons.wikimedia.org/w/index.php?curid=1642946



Nonlinearities (V)

• ReLU (2012 Krizhevsky et al.)

• No vanishing gradient on the positive side

• Empirically observed to be very good

• Initialization/high learning rate may lead to 
permanently dead ReLUs (diagnosable)

28
1Figure: CC0, https://en.wikipedia.org/w/index.php?curid=48817276

݃maxሺͲ, ݖሻݖ ℎ�ℎ�݃�݃�ݖ �ℎ�
I݃s a gradient gate!



Feedforward Neural Net

• Lets focus on a 2-layer net

• Layers

• Input

• Hidden

• Output

• Node

• Nonlinearity

• Activation

29

݂ ,ଵ�,ݔ �ଵ,�ଶ, �ଶ = �ଶmax Ͳ,�ଵݔ + �ଵ + �ଶ
1Figure: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version



Feedforward Net: Two Layer Model

• Number of layers is the 
number of �, � pairs

• Some questions to think 
about:

• How to pick the number 
of layers?

• How to pick the number 
of hidden units in each 
layer?

30
1CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=8201514



Feedforward Net and Backprop

• Choose a mini-batch (sample) of size B

• Forward propagate through the computation graph

• Compute losses ܮ�భ , మ�ܮ , … ��ܮ and �ሺ�ଵ, �ଵ,�ଶ, �ଶሻ
• Get loss ܮ for the batch

• Backprop to compute gradients with respect to �ଵ, �ଵ,�ଶ and �ଶ
• Update parameters �ଵ, �ଵ,�ଶ and �ଶ
• In the direction of the negative gradient

31



Feedforward Net in Python
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Feedforward Net in Python
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Feedforward Net in Python
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Feedforward Net in Python
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Feedforward Net in Python

36



FNN in the Browser

• See playground.tensorflow.org

37



Questions?
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Today’s Outline

• Python Walkthrough

• Feedforward Neural Nets

• Convolutional Neural Nets

• Convolution

• Pooling

39



Convolutional Neural 
Network

40



Similar to Feedforward NN

• Similar to feedforward neural networks

• Each neuron/node is associated with weights and a 
bias

• Node receives input

• Performs dot product of vectors

• Applies non-linearity

• The difference: 

• Number of parameters is reduced!

41
1Reference: http://cs231n.github.io/convolutional-networks/

How? That is the content of this lecture!



• Recall a Feedforward net:

• Get a vector ݔ� and transform it to a score vector 
by passing through a sequence of hidden layers

• Each hidden layer has neurons

• Each neuron is fully connected to previous layer

42
1Figure: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

Similar to Feedforward NN



Towards CNNs (I)

• Feedforward net:

• Can you visualize the connections for an arbitrary 
neuron here?

43
1Figure: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version



Towards CNNs (II)

• Consider the CIFAR-10 Dataset.  Images are 32*32*3 in size 

44
1Figure: http://cs231n.github.io/classification/



Towards CNNs (III)

• First fully connected feedforward neuron would have 
32*32*3 weights associated with it (+1 bias 
parameter)

• What if the images were 1280*800*3?

• Clearly, we also need many neurons in each hidden 
layer. This leads to explosion in the total number of 
parameters (or the dimension of �s and �s)
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CNN Architecture

• We will look at it from layers point of view

• The new idea is that layers have width and depth!

• (In contrast, Feedforward NN layers only had 
height)

• (depth here does NOT correspond to number of 
layers of a network)

46



CNN Architecture

• View FFN layers as having width and height

47

Input Image

Hidden layer

Score vector

1Left figure: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version



CNN Architecture

• The new idea is that CNN layers have depth!

• (depth here does NOT correspond to number of 
layers of a network)

48

Depth

Width

Height



3D Volumes of Neurons

• Input has dimension 32*32*3 (for CIFAR-10 dataset)

• Final output has dimension 1*1*10 (10 classes)

• Previously,
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3D Volumes of Neurons

• Input has dimension 32*32*3 (for CIFAR-10 dataset)

• Final output has dimension 1*1*10 (10 classes)

• So assuming 2 hidden layers, previously we had,

50

Input Image

Hidden layer

Score vector

Hidden layer

1Left figure: https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version



3D Volumes of Neurons

• Now,

• Each layer simply does this: transforms an input tensor 
(3D volume) to an output tensor using some function

51
1Figure: http://cs231n.github.io/convolutional-networks/



3D Volumes of Neurons

• Now,

• Each layer simply does this: transforms an input tensor 
(3D volume) to an output tensor using some function

52



CNN Layers

• Three types

• Convolutional Layer (CONV)

• Pooling Layer (POOL)

• Fully Connected Layer (same as Feedforward 
neural network, i.e., 1*1*#Neurons is the layer’s 
output tensor)

• Stack these in various ways

53



CNN Example Architecture

• Say our classification dataset is CIFAR-10

• Let the architecture be as follows:
• INPUT -> CONV -> POOL -> FC

• INPUT: 
• This layer is nothing but 32*32*3 in dimension 

(width*height*3 color channels)

• CONV: 
• Neurons compute like regular feedforward neurons 

(sum the product of inputs with weights and add 
bias).

• May output a different shaped tensor, say, 
32*32*12
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CNN Example Architecture

• Say our classification dataset is CIFAR-10

• Let the architecture be as follows:
• INPUT -> CONV -> POOL -> FC

• INPUT: 
• This layer is nothing but 32*32*3 in dimension 

(width*height*3 color channels)

• CONV: 
• Neurons compute like regular feedforward neurons 

(sum the product of inputs with weights and add 
bias).

• May output a different shaped tensor, say with 
dimension 32*32*12
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CNN Example Architecture

• POOL:

• Performs a down-sampling in the spatial dimension

• Outputs a tensor with the depth dimension the 
same as input

• If input is 32*32*12, then output could be 
16*16*12

• FC:

• This is the fully connected layer. Input can be any 
tensor (say 16*16*12) but the output will have 
only one effective dimension (1*1*10 since this is 
the last layer and CIFAR-10 has 10 classes)
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CNN Example Architecture

• POOL:

• Performs a down-sampling in the spatial dimension

• Outputs a tensor with the depth dimension the 
same as input

• If input is 32*32*12, then output could be 
16*16*12

• FC:

• This is the fully connected layer. Input can be any 
tensor (say 16*16*12) but the output will have 
only one effective dimension (1*1*10 since this is 
the last layer and CIFAR-10 has 10 classes)
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CNN Example Architecture

• So we went from pixels (32*32 RGB images) to scores 
(10 in number)

• Some layers have parameters (CONV and FC), other 
layers do not (POOL)

• Optimization of these parameters still for achieving 
scores consistent with image labels

58

Input CONV POOL FC



The Convolution Layer (CONV)

• Layer’s parameters correspond to a set of filters 

• What is a filter? 
• A linear function parameterized by a tensor
• Outputs a scalar
• The parameter tensor is learned during training

• Example
• First layer filter may be of dimension 3*3*3
• 3 pixels wide
• 3 pixels high
• 3 unit filter-depth for three color channels

• We slide (convolve) the filter across the width and height 
of the input volume and compute the scalar output to be 
passed into the nonlinearity

59



CONV: Sliding/Convolving

60

Also see http://setosa.io/ev/image-kernels/

• We slide (convolve) the filter across the width and height of 
the input volume and compute the scalar output to be passed 
into the nonlinearity

1Figure: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution



The Convolution Layer (CONV)

• Three things to notice

• Filters are small along width and height

• Same filter-depth as the input tensor (3D volume)

• If the input is ݔ ∗ ݕ ∗ then filter could be 3 ,ݖ ∗3 ∗ ݖ
• As we slide, we produce a 2D activation map
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The Convolution Layer (CONV)

• Three things to notice

• Filters are small along width and height

• Same filter-depth as the input tensor (3D volume)

• If the input is ݔ ∗ ݕ ∗ then filter could be 3 ,ݖ ∗3 ∗ ݖ
• As we slide, we produce a 2D activation map

• Filters (i.e., filter parameters) will be learned during 
training that ‘detect’ certain visual features
• Example: 

• Oriented edges, colors, etc. at the first layer

• Specific patterns in higher layers 62



CONV: Filters

• Before we look at the patterns …

• Lets now look at the neurons themselves

• How are they connected?

• How are they arranged?

• How can we get reduced parameters?
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CONV: Local Connectivity

• Connect each neuron to a local (spatial) region of the 
input tensor

• Spatial extent of this connectivity is called receptive 
field

• Depth connectivity is the same as input depth
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CONV: Local Connectivity

• Connect each neuron to a local (spatial) region of the 
input tensor

• Spatial extent of this connectivity is called receptive 
field

• Depth connectivity is the same as input depth

• Example: If input tensor is 32*32*3 and filter is 
3*3*3 then 

• the number of weight parameters is 27, and 

• there is 1 bias parameter
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One neuron

1Figure: http://cs231n.github.io/convolutional-networks/



CONV: Local Connectivity

• All 5 neurons are looking at the same spatial region

• Each neuron belongs to a different filter

66

One neuron

1Figure: http://cs231n.github.io/convolutional-networks/



CONV: Spatial Arrangement

• Back to layer point of view

• Size of output tensor depends on three numbers:

• Layer Depth

• Corresponds to the number of filters

• Stride (how much the filter is moved spatial)

• Example: If stride is 1, then filter is moved 1 
pixel at a time

• Zero-padding

• Deals with boundaries (is usually 1 or 2)
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CONV: Stride/Zero-pad

68

Stride = ͳ, Zero-padding = Ͳ

1Figure: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution



CONV: Parameter Sharing

• Key assumption: If a filter is useful for one region, it 
should also be useful for another region

• Denote a single 2D slice of depth of a layer as depth 
slice
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Depth Slice

1Figure: http://cs231n.github.io/convolutional-networks/



CONV: Parameter Sharing

• Then, all neurons in each depth slide use the same 
weight and bias parameters!
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Depth Slice

1Figure: http://cs231n.github.io/convolutional-networks/



CONV: Parameter Sharing

• Number of parameters is reduced!

• Example: 

• Say the number of filters is ܯ (= Layer Depth)

• Then, this layer will have ܯ ∗ ሺ3 ∗ 3 ∗ 3 + ͳሻ
parameters

• Gradients will get added up across neurons of a 
depth slice
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CONV: Parameter Sharing

• AlexNet’s first layer has 11*11*3 sized filters 96 in 
number. The filter weights are plotted below:

• Intuition: If capturing an edge is important, then important 
everywhere

72
1Figure: http://cs231n.github.io/convolutional-networks/



Example: CONV Layer Computation

73Figure: http://cs231n.github.io/convolutional-networks/



The Pooling Layer: POOL

• Vastly more simpler than CONV

• Reduce the spatial size by using a MAX or similar 
operation

• Operate independently for each depth slice
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POOL: Example

• Input depth is retained

75
1Figure: http://cs231n.github.io/convolutional-networks/



POOL: Example

• Recent research is showing that you may not need a 
pooling layer

76
1Figure: http://cs231n.github.io/convolutional-networks/



POOL: Example

• Recent research is showing that you may not need a 
pooling layer
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Fully Connected Layer: FC

• Essentially a fully connected layer

• Already seen while discussing feedforward neural 
networks
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CNN in the Browser

• Dataset: CIFAR-10

• http://cs.stanford.edu/people/karpathy/convnetjs/d
emo/cifar10.html
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Summary

• Feedforward neural nets can do better than linear 
classifiers (saw this for a low-dimensional small 
synthetic example)

• CNN have been very effective in image related 
applications.

• Exploit specific properties of images
• Hierarchy of features
• Locality
• Spatial invariance

• Lots of design choices that have been empirically 
validated and are intuitive. Still, there is room for 
improvement.
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Appendix
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Naming: Why ‘Neural’

• Historical

• Let ݂ ݔ = ݓ ⋅ ݔ + �
• Perceptron from 1957: ℎሺݔሻ = ቊ Ͳ, ݂ሺݔሻ < Ͳͳ, otherwise
• Update rule was ݓ�+ଵ = �ݓ + �ሺݕ − ℎሺݔሻሻݔ similar 

to gradient update rules we see today

• Passing the score through a sigmoid was likened to 
how a neuron fires

• Firing rate = ଵଵ+�−�ሺೣሻ
82



Naming: Why ‘Convolution’

831Figure: http://cs231n.github.io/convolutional-networks/

The name 

͚convolution͛ 
comes from the 

convolution 

operation in 

signal processing 

that is essentially 

a matrix matrix 

product.



Naming: Why ‘Convolution’

84Figure:https://en.wikipedia.org/wiki/Convolution#/media/File:Comparison_convolution_correlation.svg
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Today’s Outline

• Visualizing CNNs

• Transfer Learning

• Neural Net Training Tricks

• Data Augmentation

• Weight Initialization/Batch Normalization/Dropout
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Quick Review: 
Convolutional Neural 
Networks

3



Recap of CNN Architecture

• Typically a CONV is followed by a POOL

• Closer to the output, use FC layers

• In CONV, smaller filters are preferred (say ͵ ∗ ͵ ∗ (ݖ
• Input image should ideally be divisible by 2 many 

times

4

Input CONV POOL CONV POOL CONV POOL FC FC



Example: A CNN Architecture

5

CONV CONV CONV CONV CONV CONV

• A different sequence of layers

• Number of filters (layer depth) is 10

• Activation tensors (flattened along depth) are shown 

1Figure: http://cs231n.github.io/convolutional-networks/



Example: CONV Layer Parameter Count

• Input tensor of size ͻͲ ∗ ͻͲ ∗ ͳͲ
• Say we have 5 filters, each is ͵ ∗ ͵ ∗ ͳͲ
• Stride is ͳ and zero padding is ͳ
• Then output tensor will be ͻͲ ∗ ͻͲ ∗ ͷ
• We can calculate manually for other strides and padding 

values

• Number of parameters is ͷ ∗ ͵ ∗ ͵ ∗ ͳͲ + ͳ = Ͷͷͷ
• Contrast with Fully connected net:
• Number of inputs is ͺͳͲͲͲ
• Number of hidden layer neurons is ͶͲͷͲͲ
• Hence, the number of parameters is > ͵,ʹͺͲ,ͷͲͲ,ͲͲͲ

6



CNN and Backpropagation

• Backpropagation through a CONV layer

• Constitutes a set of matrix-matrix products and 
whatever is the behavior for the nonlinearity

• Backpropagation through a POOL layer 

• Essentially like ReLU where one can keep track of 
the index of the maximum

• (You will not have to do this by hand in real-life)

7



Questions?

8



Visualizing CNNs

9



Combating Non-Interpretability

• Common criticism: learned features are not 
interpretable

• We will look at 4 attempts

• Look at activations

• Look at weights

• Look at images in an embedded space

• Look at impact of occlusion 

• Look at images that activate neurons highly

10



An Example CNN Visualization Tool

• Online tool by Adam Harley

• http://scs.ryerson.ca/~aharley/vis/conv/flat.html

11

http://scs.ryerson.ca/~aharley/vis/conv/flat.html


Another Example Tool

12
1Figure: http://yosinski.com/deepvis



Visualize: Activations

• Useful to debug ‘dead’ filters (e.g., when using ReLU)

• Input is a cat image

13

1st CONV 5th CONV

1Figure: http://cs231n.github.io/understanding-cnn/



Visualize: Weights

• Useful to debug if training needs to be run more (if 
patterns are noisy)

14

1st CONV 2nd CONV

1Figure: http://cs231n.github.io/understanding-cnn/



Visualize: Low-Dimensional 
Embeddings

• CNN

• Input: Image

• Output: Scores

• The input to the layer that computes scores:

• ݏ = ܹmax Ͳ, ℎ + ܾ = ܹܽ + ܾ
• Activation ܽ can be considered as a representation of 

the input image

• Embed ܽ’s into a 2D space
• Such that distance properties are preserved

15



Visualize: Low-Dimensional 
Embeddings

• In Alexnet, the output of layer before FC layer is 4096 dim

• The t-SNE embedding is shown below:

• Similarities are class-based and semantic rather than color and 
pixel based

• Implies: images close to each other are similar for the CNN
16

1Figure: http://cs231n.github.io/understanding-cnn/



Visualize: By Occlusion

• To figure out which part of the image is leading to a 
certain classification

• Plot the probability of class of interest as a function 
of occlusion

17



Visualize: By Occlusion

• Occlusion in grey is slid over the images and plot 
probability of correct class

18
1Figure: http://cs231n.github.io/understanding-cnn/



Visualize: Synthesize Images

• Find images that activate a neuron the most

• Seed with ‘natural’ image priors

19
1Figure: http://yosinski.com/deepvis



Visualize: Synthesize Images

• Find images that activate a neuron the most

• Seed with ‘natural’ image priors

20
1Figure: http://yosinski.com/deepvis



Visualize: 
Synthesize images

21
1Figure: http://yosinski.com/deepvis



Visualize:  Images that Activate a 
Neuron

• Track which images maximally activate a neuron

• Understand what the neuron is tracking

22
1Figure: http://cs231n.github.io/understanding-cnn/

5th POOL Activation values and receptive fields of some neurons in Alexnet
(May not be a good idea…)



Questions?
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Today’s Outline

• Visualizing CNNs

• Transfer Learning

• Neural Net Training Tricks

• Data Augmentation

• Weight Initialization/Batch Normalization/Dropout
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Transfer Learning

25



Transfer Learning

• Very few people train a deep feedforward net or a 
CNN from scratch

• Myth: “We need a lot of data to use Deep Neural 
Networks”

• We will see two approaches if we have small data

• Feature extraction

• Fine-tuning

• Both these are loosely termed as Transfer learning

26



Transfer by Feature Extraction (I)

• Get a pretrained CNN 

• Example: VGG or AlexNet that was trained on 
Imagenet

• Remove the last FC (that outputs 1000 dim score)

• Pass new training data to get embeddings

27

Input CONV POOL CONV POOL CONV POOL FC FC

Input CONV POOL CONV POOL CONV POOL FC FC



Image Embeddings

• We can think of the penultimate hidden layer 
activations (a 4096 dim vector) as an embedding of 
the image

• This is the activation vector or the representation or 
the CNN code of the image

28
1Figure: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf



Transfer by Feature Extraction (II)

• Input these to a linear or non-linear classifier!

• For example, for imagenet output 1000 dim scores

• For our data, output say 2 scores (cat vs dog)
29

Input CONV POOL CONV POOL CONV POOL FC FC

Input CONV POOL CONV POOL CONV POOL FC FCFC

More generic features More specific features



Transfer by Fine-tuning

• Retrain or finetune additional layers of the pre-
trained if we have more data

• We can even go all the way back to the first layer if 
there is a lot of training data available 

30

Input CONV POOL CONV POOL CONV POOL FC FC

Input CONV POOL CONV POOL CONV POOL FC FC

Backpropagate



Benefits of Transfer

• We can get a significant boost in performance 
compared to hand engineered classification/machine-
learning pipelines

31
1Figure: https:// arxiv.org/abs/1403.6382



Aside: Other Vision Tasks

• Some example vision tasks are given below

32
1Figure: http://cs231n.stanford.edu/



Transfer Learning Choices

Similar dataset Different dataset

Small data Feature extract NA

Large data Fine-tune a bit Fine-tune a lot

33

• When to transfer

• How to transfer

• Get pre-trained models for popular software 
systems

• Tensorflow Models

• Keras Model Zoo

• Caffe Model Zoo

This is key for projects!



VGG Net in Keras

• 2nd in the 2014 ILSVRC classification task

• 3x3 conv filters with stride 1

• ReLU non-linearity

• 5 POOL layers

• 3 FC layers

34
1Figure: http://www.robots.ox.ac.uk/%7Evgg/research/very_deep/

https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3



Questions?
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Today’s Outline

• Visualizing CNNs

• Transfer Learning

• Neural Net Training Tricks

• Data Augmentation

• Weight Initialization/Batch Normalization/Dropout

36



Neural Net Training 
Tricks

37



Neural Nets in Practice

• There are a few empirically validated techniques that 
improve the performance (classification accuracy) of 
feedforward nets and CNNs

• We will look at some of these

• Data: data augmentation

• Model: initalization, batch normalization, dropout

• For our discussion, we will fix the optimization 
technique to be a gradient based method. We will 
revisit related algorithmic enhancements later.

38



Data

• Data:

• How is it handled?

• What is it quality?

• Handling:

• Deep nets may need to read lots of data (images), 
so keep them in contiguous spaces of hard-disk

• Quality:

• Collect as much clean data as possible. At the 
same time, unclean may also be good enough

39Next: Extract the most out of existing data for CNNs



Augmenting Data (I)

40

Input CONV POOL CONV POOL FC

Get ሺݔ� , ሻ�ݕ Loss



Augmenting Data (I)

41

Input CONV POOL CONV POOL FC

Get ሺݔ� , ሻ�ݕ Loss

Input CONV POOL CONV POOL FC

Get ሺ ݔ� , ሻ�ݕ Loss

And

Where ݔ� = ݃ሺݔሻ is a transformation



Augmenting Data (II)

• We are changing the input without changing the label

• We then add this new example to our training set

• Widely used technique!

42

Flip Random crop

Random scale



Augmenting Data (III)

• At test time, average the predictions of a fixed set of 
transformations

• Example (for Resnet, the ILSVRC 2015 winner):

• Image at 5 scales: 224,256,384,460 and 640

• At each scale, get 10 224*224 crops

43



Augmenting Data (IV)

• Other ways to augment data include

• Changing contrast and color

• Mix translations, rotations, stretching, shearing, 
distortions

• This is very useful for small datasets

• From one point of view, this is essentially

• Adding some noise during training

• Marginalizing noise out at test

44



Model

• We have already seen few choices

• Activation function or nonlinearities

• Number of layers and number of neurons per layer

• CNN filter choices …

• There are other choices while training deep neural nets 
(including CNNs) that also make a difference

• Weight initialization

• Batch normalization

• Dropout

45



Model: Weight Initialization

• Weight initialization plays a key role in training deep 
networks

• Example: ܹ = Ͳ may be bad

• Not just the issue of local optima

• But also the magnitudes of gradients in backprop

• Activation statistics (mean and variance) influence 
gradients

• Heuristics available in the literature to initialize W
46



Model: Batch Normalization

• Activations magnitudes and their statistics depend on 
the dataset, the network and the nonlinearity used

• Their statistics influence gradient propagation, hence 
also learning

• Is there a way to control them?

• Yes, through batch normalization!

47



Model: Batch Normalization

• Idea: Make each activation unit-Gaussian by subtracting the 
mean and then dividing by standard deviation

• Is a differentiable function: hence no issue with 
backpropagation

• At test time, there is no batch. Use the training data means 
and variances 48

Batch-size = �
Number of output neurons = ܦ

� × ܦ
ݔ ොݔ = ݔሺߛ − ܧ ݔ ሻܸܽ[ݔ]ݎ + ߚ

� × ܦ
ොݔ



Model: Batch Normalization

• Previously,

• Now

• Insert a Batch Normalization layer between CONV 
and nonlinearity (ReLU) 

• Empirically observed: improved gradient flows, less 
sensitive to initialization.

49

Input CONV POOL CONV POOL FC

Input CONV BN+ReLU POOL CONV BN+ReLU POOL FC



Model: Dropout (Regularization)

• Idea: During training, every time we forward pass, we 
set the output of a few neurons to zero with some 
probability

50
1Figure: http://cs231n.stanford.edu/

Without dropout One pass with dropout



Model: Dropout (Regularization)

• Intuitively, it is

• Making us use smaller capacity of the network. 
Hence, can think of it as a regularization

• Forcing all the neurons to be useful. Hence there is 
over-representation or redundency

• Also think of it as 

• Subsampling a part of the network for each 
example

• Thus, we get an ensemble of neural networks that 
share parameters

51



Model: Dropout (Regularization)

• Higher probability means stronger regularization

• At test time,

• Instead of doing many forward passes

• Perform no dropout

• Scale all activations by the probability of dropout

• Example: 

• Say dropout with probability �
• Originally: ݂ ,ݔ ଵܹ, ܾଵ, ଶܹ, ܾଶ = ଶܹmax Ͳ, ଵܹݔ + ܾଵ + ܾଶ
• With dropout: ଶܹ ∗ � ∗ max Ͳ, ଵܹݔ + ܾଵ + ܾଶ

52



Summary (I)

• CNN are very effective in image related applications.

• State of the art!

• Exploit specific properties of images

• Hierarchy of features

• Locality

• Spatial invariance

• Lots of design choices that have been empirically 
validated and are intuitive. Still, there is room for 
improvement.

53



Summary (II)

• We saw

• Visualizations to understand how CNNs work

• Transfer learning applied to CNNs (important for 
applications)

• An excellent way to get a deep learning solution 
working

• There is no need for large datasets to get started

54



Summary (III)

• Neural Nets Training Tricks

• Revisited data: data augmentation

• Revisited models: initialization, batch norm, dropout

• To train state of the art deep learning systems, you 
have to rethink: 

• (a) data, (b) models, and (c) optimization1

• What is the most bang per buck for your business?

• If the deep learning system is core to the business, look at 
engineering best practices (we saw some today)

551We did not cover this in this lecture



Appendix
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Sample Questions

• How does a 2 layer feedforward net differ from a 
linear classifier?

• Describe why nonlinearities are introduced in a neural
network? Why is the ReLU non-linearity called a
gradient gate?

• Describe the parameter sharing property of a
convolutional layer

• How is backpropagation used while optimizing the
parameters of a neural network?
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Advice

• In spite of all these design choices, for 90% of the 
applications, pick an architecture that works well on 
an established dataset (e.g., Imagenet)

• Focus on the application and business considerations, 
not architectural decisions!

58Ref: http://cs231n.github.io/convolutional-networks/



Practical Considerations

• Model choice: nonlinearity, number of layers, number 
of neurons

• Data preprocessing: batch normalization, subtracting 
mean of inputs

• Parameter initialization: random or zeroes?

• Learning rate: How to change?

• Batch normalization: re-normalizing activations

• Monitoring learning: plot graphs of training and 
validation

• Cross validation: hyper-parameter tuning is non-trivial
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Partial Robustness to Input Size

• The input image size determines the tensors in 
intermediate stages

• Example

• Alexnet requires 224*224*3 sized images

• What if we have a larger sized image?

• We can ‘convert’ FC layers to equivalent CONV 
layers for efficiency

• Then slide the original CNN over the larger image!

• This leads to a ‘single’ forward pass

60



Partial Robustness to Input Size

• Instead of a single vector of scores, now we get a 
bunch of scores

61

Input Image
CNN

Score vector

CNN

Score vector
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CVPR 2017 Best Paper
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Today’s Outline

• Introduction to Natural Language Processing

• Models with Simple Representations

• Word Embeddings and Word2Vec

3



Introduction to Natural 
Language Processing

4



Natural Language Processing (NLP)

• Concerns will all aspects of natural languages

• We will only sample a very narrow set of topics in this 
area

• We will sample a few ways to deal with text

• Text is a sequence of symbols

• Naïve way: represent them as one-hot encoded 
vectors

• We will see some better methods today

5
1Figure: https://github.com/oxford-cs-deepnlp-2017/lectures



Motivation: Machine Translation

6
1Figure: https://github.com/oxford-cs-deepnlp-2017/lectures



Motivation: Query Answering

7
1Figure: https://github.com/oxford-cs-deepnlp-2017/lectures



Motivation: Speech to Speech

8
1Figure: https://github.com/oxford-cs-deepnlp-2017/lectures



Motivation: Visual Query Answering

9
1Figure: https://github.com/oxford-cs-deepnlp-2017/lectures



Motivation: Harder Text Problems

10
1Figure: https://github.com/oxford-cs-deepnlp-2017/lectures



Models with Simple 
Representations

11



Side-stepping Word-word Relationships

• We will look at a few models that 

• Don’t explicitly account for word-word relationships

• These are:

• Naïve Bayes Spam Filter

• Markov Language Model

• Latent Dirichlet Allocation

• Conditional Random Field based Classifier

• CNN based Sentence Classifier

12



Naïve Bayes Spam Filter

13
1Reference: Alex Smola (2011)



Naïve Bayes Spam Filter

14
1Reference: Alex Smola (2011)



Naïve Bayes Spam Filter

15
1Reference: Alex Smola (2011)



A Character-level Language Markov Model

• Character-level language model allows you to 
generate new text

• It can be modeled using a maximum likelihood based 
method

• Pick a fixed order = 2

• For a training sequence, e.g.,  {h,e,l,l,o}

• Compute �ሺ{�{|{ℎ, �}ሻ = #{�,ℎ,�}#{ℎ,�}
• Do this for every three characters in the 

vocabulary

• Generate new text by sampling!

16



Aside: Dirichlet Distribution
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Latent Dirichlet Allocation

18
1Reference: David Sontag (2013)



Latent Dirichlet Allocation

19
1Reference: David Sontag (2013)



Latent Dirichlet Allocation

20
1Reference: David Sontag (2013)



Latent Dirichlet Allocation

21
1Reference: David Sontag (2013)



Latent Dirichlet Allocation

22
1Reference: David Sontag (2013)



Latent Dirichlet Allocation

23
1Reference: David Sontag (2013)



Conditional Random Field based Classifier

24
1Reference: David Sontag (2013)



Conditional Random Field based Classifier

25
1Reference: David Sontag (2013)



CRF for NLP: Log-linear Terms

26
1Reference: David Sontag (2013)



CRF for NLP: The Task

27
1Reference: David Sontag (2013)

and �



CRF for NLP: The Task

28
1Reference: David Sontag (2013)



CNN based Sentence Classification

• Input is a sequence of words (variable)

• Output is a class label (fixed)

• Baseline 1:

• Ignore sequence

• Ignore semantic information

• Treat input as a fixed length bag of words

• This is a fixed size input and output classifier

29



CNN based Sentence Classification

• Baseline 2:

• Weighted average of the word vectors as a vector 
for the sentence

• Still loses word order

• Retains some semantic information

• Again, a fixed size input and output classifier

30



CNN based Sentence Classification

• Can also use Convolutional Neural Network!

• For NLP, they became popular 2014 

• Less prominent currently due to other techniques 

• Recall

31
1Figure: http://deeplearning.stanford.edu/



Example I: Sentence Classification

• As you already know, CNNs capture

• Location invariance

• Example: In images, don’t care where the ‘cat’ 
is in the input

• Compositionality

• Example: In images, lower level features to 
higher level patterns

• We will represent the sentence as a matrix

• Each row for one word

32
1Reference: https://arxiv.org/pdf/1408.5882.pdf



Example I: Sentence Classification

• Example CNN

33
1Reference: https://arxiv.org/pdf/1510.03820v4.pdf



Embeddings

34



A Different Way of Dealing with Words

• Want semantically similar words to be represented 
similarly

• This is the idea behind Vector Space Models in NLP

• Distributional Hypothesis (Firth 1957)

• Words that appear in the same contexts share 
semantic meaning 

• Two types of approaches:

• Count based (PCA based)

• Prediction based (creating auxiliary task etc)

35
1Reference: https://www.tensorflow.org/tutorials/word2vec/



Dealing with Words

• A word embedding �: words → ℝ� is a function

• Parametric

• Dimension � can be high: e.g., ͵ͲͲ
• Example:

• �(‘university’) = Ͳ.͵, −Ͳ.ͳ,ʹ.Ͳ,ͳ.ͳ, −ͳ.ͷ, …
• �(‘class’) = ሺͲ.ͷ,ͳ.ͳ, −Ͳ.,ʹ.ͷ,Ͳ.ʹ, … ሻ

36



Learning an Embedding

• How do we learn a good �?

• Start with the same intuitive idea as before

• Initialize such that � outputs random vectors for 
each word

• Change the parameters such that the embedding 
vectors are meaningful for a task

37



Which Task? (I)

• Train a network to classify whether an input sequence 
of 5 words is valid or not

• The input sequence is called an N-gram (5-gram)

• We get data, say from Wikipedia

• Example: “operates the largest medical school”
• Break ‘half’ of them by replacing a word in each 

sequence with a random word

• Example: “operates the consistently medical 
school”

38



Which Task? (II)

• Pass each word through W to get the vectors

• Pass the vectors through C (a classifier)

39
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Which Task? (III)

• In order to do the classification correctly, parameters 
for � and � should be good

• The task itself is uninteresting and inconsequential

• We could have defined a different task

• Our objective is to learn a good �
40



Quality of Embedding (I)

• Say, we learned a good �
• See Word2Vec or GloVe (for pretrained

embeddings)

• How to visualize? Use t-SNE

41
1Reference for t-SNE: http://lvdmaaten.github.io/tsne/



42
1Figure: http://metaoptimize.s3.amazonaws.com/cw-embeddings-ACL2010/embeddings-mostcommon.EMBEDDING_SIZE=50.png



43
1Figure: http://metaoptimize.s3.amazonaws.com/cw-embeddings-ACL2010/embeddings-mostcommon.EMBEDDING_SIZE=50.png



Quality of Embedding (II)

• We see similar words are close together

44



Quality of Embedding (III)

• Look at words closest in the embedding to a given 
word

• 10 nearest neighbors are listed here

45
1Figure: https://arxiv.org/pdf/1103.0398v1.pdf Page 23

https://arxiv.org/pdf/1103.0398v1.pdf


An Attempt at Intuition (I)

• Is it natural for words with similar meanings to have 
similar vectors (hence nearest neighbors)?

• Example: 

• Change “operates the largest medical school” to 
“operates the biggest medical school”

• If � maps biggest and largest close by

• Then classifier � should still be able to work

46
1Reference: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/



An Attempt at Intuition (II)

• Similar words getting mapped to close by vectors is 
great!

• We are not just limited to synonyms

• Example 1: “the inside wall is blue” to “the inside wall 
is red”

• Example 2: “the inside wall is blue” to “the inside 
ceiling is red”

47
1Reference: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/



How Much Data?

• Clearly, we have to see all words (for whom we need 
embeddings)

• But we need not see their combinations

• Analogies allow us to generalize to new combination 
of words

• This is similar to humans: we have seen all words but 
have not seen all sentences with those words

48
1Reference: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/



Difference of Vectors Property (I)

• Many word embeddings exhibit the following 
property as a side-effect:

• Analogies are encoded in difference vectors

49
1Reference: https://www.aclweb.org/anthology/N/N13/N13-1090.pdf



Difference of Vectors Property (II)

• For a pair of words, subtract their difference and add 
to another word. For example,
• �ሺ“France”ሻ – �ሺ“Paris”ሻ +�ሺ“Rome”ሻ ≈ �ሺ“Italy”ሻ

50
1Reference: https://arxiv.org/pdf/1301.3781.pdf



Use of Embeddings (I)

• Embeddings represent unstructured data 
automatically in such a way that a subsequent task’s 
performance is good

• We have already seen image embeddings

• Here, we are seeing word embeddings

• Once a word embedding � is learned, we can use it 
for many other NLP (Natural Language Processing) 
tasks

• Transfer learning (just like for images!)

51



Use of Embeddings (I)
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Use of Embeddings (II)

• Learn a good representation (i.e., �) on some task 
and use it for other tasks

53

C

1Figure: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/



Use of Embeddings (III)

• Key benefit of �
• Can train using more than one kind of data

• Thus, we can learn a way to map multiple kinds of 
data into a single representation!

• Example: Bilingual word embedding1

• English words

• Mandarin words

• Embed both words in the same space

54
1Reference: http://ai.stanford.edu/~wzou/emnlp2013_ZouSocherCerManning.pdf



Bilingual Word Embedding (I)

• Train ��� and ��ℎ simultaneously

• Impose the following: words that we know are 
close translations should be close together

• Example:

55

���(‘university’) = Ͳ.͵,−Ͳ.ͳ,ʹ.Ͳ,ͳ.ͳ,−ͳ.ͷ,…��ℎ(‘                ’) = Ͳ.ʹ,−Ͳ.ͳ,ʹ.ʹ,ͳ.Ͳ,−ͳ.Ͷ,…

2Figure: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

1Pronounciation of          : Dàxué



Bilingual Word Embedding (II)

• After training ��� and ��ℎ we observe:

• Words that we didn’t know were translations end 
up close together

• Example:

• We did not know          and business are 
translations. Still we get:

56

���(‘business’) = Ͳ.,−Ͳ.Ͷ,ͳ.Ͳ,ͳ.ͺ,−Ͳ.ͺ,…��ℎ(‘                ’) = Ͳ.ͺ,−Ͳ.͵,Ͳ.ͻ,ʹ.Ͳ,−Ͳ.ͻ,…
1Pronounciation of          : Shāngyè



Bilingual Word Embedding (III)

57
1Reference: http://ai.stanford.edu/~wzou/emnlp2013_ZouSocherCerManning.pdf



General Shared Embeddings

• We can also embed very different kinds of data into 
the same space

• Example:

• Images and words

• Map the image of an object near the object
word vector

• Map the image of a dog near the dog word 
vector

58



General Shared Embeddings

• Essentially the output of the image classifier is not a 
score vector but a vector in the range(W)

59
1Figure: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/



General Shared Embeddings

• When we test the model on new classes of images

• Note: new means not seen in training

• For example, we didn’t have images of cats

60
1Figure: http://nlp.stanford.edu/~socherr/SocherGanjooManningNg_NIPS2013.pdf



General Shared Embeddings

• Images of cats are mapped to regions where dog 
vectors are!

61
1Figure: http://nlp.stanford.edu/~socherr/SocherGanjooManningNg_NIPS2013.pdf

t-SNE Visualization



Questions?

62



Word2Vec In Detail

63



Word2Vector

• A technique proposed by Google in 2013

• Is a predictive method rather than a count based 
method

• Objective: Vector representations of words that 
capture their co-occurence statistics

64



Word2Vector: Two Versions

• Continuous Bag of Words and Skip-Gram

• Lets go through the skip-gram model in some detail 
now

65



W2V: The Skip-Gram Version

• This is a very simple neural network model to learn �
• We will train a single hidden layer NN to perform an 

auxiliary task

• The goal will be to just learn the weights of the 
network

• This will give us �
66

1Reference: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



W2V: The Auxiliary Task

• Task:
• Pick a word in the middle of a sentence
• Pick one of the nearby words at random 
• Make network learn probability of every word in 

our vocab of being this nearby word

• Input: a word pair (one hot encoded)

• Output: normalized scores (of length: vocab size)

• Meaning of ‘nearby’:
• Essentially defined using a window size
• Example: Window size 2 means 2 words to left 

and 2 to right of the input word are nearby
67



W2V: The Auxiliary Task

• Feed word pairs

• Example: “The quick brown fox jumps over the lazy 
dog”

68

1Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



W2V: The Network

• Say we have 10000 words in our vocab

• Then the input word is 10000 dimensional vector

• Example: Cat word will have ’Cat’ coordinate 1, 
everything else 0

• The true label (word) is also 10000 dimensional 
vector

• Network outputs 10000 scores which pass through 
softmax

• Each coordinate is the probability that a particular 
word is the randomly selected nearby word

69



W2V: The Network

• Notice: No nonlinearity in the hidden layer!

70

1Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



W2V: The Objective

• The objective is to maximize the normalized score 
(recall normalization by softmax operation) of the 
correct context word

• Say our training data is made with � words, each 
having a context window size ʹ
• That is, each word is associated with Ͷ other words

• Total training data is Ͷ�
• The objective is 

ଵ�σ�=ଵ� σ∈{−ଶ,−ଵ,ଵ,ଶ} log �ሺݓ�+|ݓ�ሻ
71



W2V: The Hidden Layer

• Is represented by a weight matrix �
• Lets represent it by its transpose (just for 

convenience)

• ℎ� = ���ݔ = ��ݔ for each example

• Number of rows of � is 10000

• Number of columns of � is 300

• Then the rows of � are our word vectors!

72



W2V: The Hidden Layer

• Our real goal was just to learn the hidden layer 
weights

73

1Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



W2V: The Lookup

• Say word ‘Cat’ has coordinate � for some � ∈{ͳ, … , ͳͲ,ͲͲͲ}
• If we multiply the 1*10000 dim one hot vector for the 

word ‘Cat’ with W
• It will just select the ��ℎ row of W

• The output of the hidden layer is the word vector!

• Example visualization

74

1Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
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1Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



W2V: Auxiliary Task Again

• Output of the network is a bunch of normalized scores 
(i.e., probabilities)

• Denote the probability that the this word is a 
nearby word

• Example:

• Pick the word vector for ‘ants’
• Pic the output neuron for word ’car’

76

1Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



W2V: Intuition for Vectors

• If two different words have similar “contexts”
• Words that are likely to appear around them

• Then the output probability vector should be 
similar

• For output vector to be similar

• The word vector (weights of hidden layer) should 
be similar

• Since the inputs are 1-hamming distance apart 
always

77



W2V: Intuition for Vectors

• Word2Vec is capturing nothing but the co-occurence
statistics!

• Example:

• Words like ‘university’ and ‘masters’ would have 
similar contexts, hence similar word vectors

• This will also handle stemming!

• Example: words like ‘car’ and ‘cars’ will have 
similar vectors because contexts would be similar

78



W2V: Practice

• The network is relatively large

• Two weight matrices

• 300*10000 parameters each

• Need a lot of data to train

• And engineering tricks are needed to deal with data

79

1Reference: http://arxiv.org/pdf/1310.4546.pdf



W2V: Engineering Tricks

• Subsample frequent words
• Example: Too many pairs like (‘the’,…). So delete them 

proportional to how frequent they are

• Treat common phrases as single ‘words’
• Optimization trick: negative sampling

• Only update the weights of neurons corresponding 
to a few (5-20) non-nearby words

• These few are sampled inversely proportional to 
their frequency

80



W2V: From Google

• 100 Billion words from the Google News Dataset

• Vocab size totals about 3 million!

81

1Reference: https://github.com/chrisjmccormick/inspect_word2vec/tree/master/vocabulary
2word2Vec file: https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit

https://github.com/chrisjmccormick/inspect_word2vec/tree/master/vocabulary


W2V: From Google

• 100 Billion words from the Google News Dataset

• Vocab size totals about 3 million!
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1Reference: https://github.com/chrisjmccormick/inspect_word2vec/tree/master/vocabulary
2word2Vec file: https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit

https://github.com/chrisjmccormick/inspect_word2vec/tree/master/vocabulary


W2V: The CBOW Version

• Continuous Bag of Words (CBOW) version of 
Word2Vec

• Essentially, a slightly different prediction task

• There is another popular embedding called GLoVe

83
1Figure: https://arxiv.org/pdf/1301.3781.pdf
2Reference for GLoVe: http://nlp.stanford.edu/projects/glove/

https://arxiv.org/pdf/1301.3781.pdf


Word2Vec Example Code

• For an implementation in Python see

• See 
https://github.com/tensorflow/tensorflow/blob/master
/tensorflow/examples/tutorials/word2vec/word2vec_
basic.py

• Many other pretrained embeddings are also available

• See https://github.com/3Top/word2vec-api

84

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/word2vec/word2vec_basic.py
https://github.com/3Top/word2vec-api


NLP Ecosystem in Python

• There are many tools to choose from

• Gensim, NLTK, SpaCy, TextBlob, Pattern

• Also, there are many traditional NLP tasks and 
techniques that may be helpful to know about:

• These include tokenizing, stop words, stemming, 
Parts-of-speech tagging, chunking and chinking, 
Named Entity Recognition, lemmatizing and 
knowing the wordnet ecosystem among others.
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Questions?
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Summary

• Text processing is very useful in multiple applications

• We saw some models that did not need to understand 
word meanings

• Naïve bayes, Markov assumption based, CRF, LDA

• The notion of embedding words (or characters or 
phrases …) is useful and such embeddings can be 
learned

• We saw how Word2Vec embeddings were created
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Appendix
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LDA: More Intuition (different notation)

89
1Reference: Percy Liang, CS221 (2015)



Advanced Prediction 
Models

Deep Learning, Graphical Models and Reinforcement 
Learning



Today’s Outline

• Recurrent Neural Networks

• Long-Short Term Memory based RNNs

• Sequence to Sequence Learning and other RNN 
Applications

2



Recurrent Neural 
Network

3



The Idea of Persistence (I)

• Our thoughts have persistence

• We understand the present given what we have seen 
in the past

• Feedforward neural networks and CNNs don’t have 
persistence

• Example: 

• classify every scene in a movie

• Output size (number of classes) is fixed

• Number of layers is fixed

• Unclear how a CNN can use information from 
previous scenes 4



The Idea of Persistence (II)

• Architectures called Recurrent Neural Networks 
address the idea of persistence

• They are networks with ‘loops’ that try to persist past 
information

5
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Unrolled Diagrams (I)

• Here, � is a network with two inputs and two outputs

• But the loop is just for drawing

6
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Unrolled Diagrams (II)

• There is no self-loop

• Here is the unrolled representation

7
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Unrolled Diagrams (III)

• This sequential or repetitive structure is useful for 
working with sequences

• Of images

• Of words

8
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Unrolled Diagrams (V)

• At a stage, they accept an input and give an output, 
which are parts of sequences

9
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Vanilla RNN (I)

• Unrolled representation is key to understanding

• For vanilla RNN  it is:

• Assuming a single hidden layer with tanh
nonlinearity

10
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Vanilla RNN (II)

• Some quick notation

• Dark arrow represents a vector

• Box represents a (fully connected hidden) layer

11
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Vanilla RNN (III)

• Unrolled representation is key to understanding

• For vanilla RNN  it is:

• Assuming a single hidden layer with tanh
nonlinearity

12
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Vanilla RNN in Code

13

• Training an RNN means finding � (e.g., � and �) that give 
rise to a desired behavior quantified by a loss function



Language Model (LM) Example

• Build a character-level language model

• Give RNN a large text dataset

• Model the probability of the next character given a 
sequence of previous characters

• Allows us to generate new text!

• Note: This is a toy example where better methods exist

14
1Reference: http://karpathy.github.io/2015/05/21/rnn-effectiveness/



LM Example: Data and Embedding

• Vocabulary: {h,e,l,o}

• Training sequence: {h,e,l,l,o}

• Four training examples:

• P(e|h) should be high

• P(l|he) should be high

• P(l|hel) should be high

• P(o|hell) should be high

• Embedding:

• Encode each character as a 4-dimensional vector
15

1Reference: http://karpathy.github.io/2015/05/21/rnn-effectiveness/



LM Example: RNN

• Feed each vector into the RNN

• Output is a sequence of vectors
• Let dimension be 4
• Interpret as the confidence that the corresponding character is 

the next in sequence 16

1Figure: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

We want green numbers 
to be high and red 
numbers to be low



LM Example: RNN

• Define loss as the cross entropy loss (i.e., multiclass 
logistic) on every output vector simultaneously

• When first time {l} is input, the next character should 
be {l}

• When the second time {l} is input, the next character 
should be {o}

• Hence, we need state/persistence, which the RNN 
hopefully captures

17



RNN Application Categories

• Input: Red, Output: Blue, RNN’s state: Green

18
1Figure: 1Figure: http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Questions?
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Today’s Outline

• Recurrent Neural Networks

• Long-Short Term Memory based RNNs

• Sequence to Sequence Learning and other RNN 
Applications

20



Long-Short Term Memory 
RNNs

21



Long Term vs Short Term (I)

• Why are we looking at RNN?

• Hypothesis: the network can connect past 
information to the current

• Can they?

• It depends…

22



Long Term vs Short Term (II)

• Consider a model predicting next word based on 
previous words 

• Case A:

• R(“… advanced prediction”) = “models”
• Here, the immediate preceding words are helpful

• Case B:

• R(“I went to UIC… I lived in [?]”) = “Chicago”
• Here, more context is needed

• Recent info suggests [?] is a place.

• Need the context of UIC from further back 23
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Long Term vs Short Term (III)

• Consider a model predicting next word based on 
previous words 

• Case A:

• Case B:

25
1Figures: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



A Special RNN: LSTM

• The gap between the relevant information and the point 
where it is needed can become unbounded

• Empirical observation: RNNs are unable to learn to connect 
long range information.

• Thus, we look at LSTMs (Long Short Term Memory Cells)

26
1Reference: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM: Long Short Term Memory based RNN

• Capable of learning long-term dependencies

• Designed to avoid the long range issue that a vanilla 
RNN faces

• How do they do that? We will address that now

27



LSTM: Block Level

• LSTM RNN have a similar structure to vanilla RNNs

• Only the repeating module is different

• Instead of a single neural layer, they have four

28
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM: Recall Notation

• Dark arrow represents a vector, output from one layer 
and input to another

• Circle represents element-wise operations 

• Example: sum of two vectors

• Box represents a  (fully connected) hidden layer

29
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM: Cell State (I)

• There is a notion of cell state

• Horizontal line

30
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM: Cell State (I)

• There is a notion of cell state

• Horizontal line

31



LSTM: Cell State (II)

• Cell state: 

• Runs straight down the unrolled network

• Minor interactions

• Information could flow along it unchanged

32
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM: Gates (I)

• The LSTM can add or remove information to the cell 
state by regulating gates

• Gates optionally let information through

• Made of a sigmoid NN layer and a pointwise 
multiplication

33
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM: Gates (I)

• The LSTM can add or remove information to the cell 
state by regulating gates

• Gates optionally let information through

• Made of a sigmoid NN layer and a pointwise 
multiplication

34

Mathematically,� ,ݑ ݒ = ݒ ⊗ �ሺ�ݑ + �ሻ
ݒ

ݑ
�ሺݑ, ሻݒ

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM: Gates (II)

• Gate:

• The sigmoid layer outputs numbers in ሺͲ,ͳሻ
• Determines how much of each component to let 

through

• 0 means ‘do not let input through’
• 1 means ‘let input through’

35
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM: Gates (III)

• LSTM has three gates to control the cell state

36
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM: Forget Old Information

• First Step: what information to throw away from cell 
state

• Decided by forget gate layer

• Input: ℎ�−ଵ and ݔ�
• Output: a vector with entries in ሺͲ,ͳሻ

corresponding to entries in ��−ଵ
• 1 corresponds to keep the input

• 0 corresponds to get rid of the input

37



LSTM: Forget Old Information

• Example: In the task of predicting the next word 
based on all previous ones

• Cell state may include gender of current subject

• This will be useful to predict/use correct 
pronouns (male: he, female: she)

• When a new subject is observed

• Need to forget the gender of old subject

38
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM: Remember New Information

• Next step: decide what new information we will store 
in cell state

• Two ingredients

• Input gate layer

• Tanh layer

• Input gate layer

• Decides which values to update

• Tanh layer

• Creates a vector of new candidate values ሚ�� that 
can be added to the cell state 39
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LSTM: Remember New Information

• Next step: decide what new information we will store 
in cell state

• Two ingredients

• Input gate layer

• Tanh layer

• Input gate layer

• Decides which values to update

• Tanh layer

• Creates a vector of new candidate values ሚ�� that 
can be added to the cell state 41

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM: Remember New Information

• Combine ሚ�� with the output �� of the input gate layer to 
get ��⊗ ሚ��

• In the language model example
• Add the gender of the new subject to the cell state (this 

replaces the old one we are forgetting)
42

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM: Forget and Remember

• Last step: 

• Modify the cell state

• ��⊗ ሚ�� are the new values, scaled by how much we 
want to update each coordinate of cell state

43
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM: Output

• Output a filtered or transformed version of cell state

• Two stages:

• Pass the cell state through a tanh layer

• Scale it with a sigmoid layer output

• The sigmoid layer decides what parts of the 
cell state we will output

44



LSTM: Output

• In the language model example

• Since it just saw a new subject, it may output 
information related to actions (verbs)

• Output whether the subject is singular or plural 
so verb can be modified appropriately

45
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM: Architecture Summary

46

Forget Modify cell state

Remember Output

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Other Variations in the Family of RNNs (I)

• The vanilla RNN and the LSTM we saw are just one of 
many variations

• Example: Gated Recurrent Unit (GRU)

• Combines the forget and input gates

• Merges the cell state and hidden state

• …

47
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Other Variations in the Family of RNNs (II)

• One can also go deep by stacking RNNs on top of 
each other

48
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Other Variations in the Family of RNNs (II)

• One can also go deep by stacking RNNs on top of 
each other

49
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Other Variations in the Family of RNNs (II)

• One can also go deep by stacking RNNs on top of 
each other

50
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Other Variations in the Family of RNNs (III)

• Extensive investigation has been done to see which 
variations are the best1,2

• As a practitioner, just use the popular architectures

• To recap, we are studying RNNs because we:

• Want a notion of state/persistence to capture long 
term dependence

• Want to process variable length sequences

51

1Reference: http://arxiv.org/pdf/1503.04069.pdf
2Reference: http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf



Training RNNs

• These networks consist of differentiable operations

• Suitably define loss

• Run backpropagation to find best parameters

52



Example Code

• LSTM applied to IMDB sentiment classification task

• See 
https://github.com/fchollet/keras/blob/master/ex
amples/imdb_lstm.py (Keras)

• Or see 
https://github.com/tflearn/tflearn/blob/master/e
xamples/nlp/lstm.py (tflearn with Tensorflow)

• Dataset: 
http://ai.stanford.edu/~amaas/data/sentiment/

53

https://github.com/fchollet/keras/blob/master/examples/imdb_lstm.py
https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm.py


LSTM: Accounting for Dimensions

• Think of ℎ� as 2 dimensional and cell state as 2 
dimensional

54
1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Questions?

55



Today’s Outline

• Recurrent Neural Networks

• Long-Short Term Memory based RNNs

• Sequence to Sequence Learning and other RNN 
Applications

56



Sequence to Sequence 
Learning and other RNN 
Applications

57



Example I: Sentence Classification

• We saw how to use a CNN for this task.

• We can use the unrolled RNN:

58
1Additional Info: http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/



Example II: Image Captioning

• Use CNNs and RNNs together to go from one data 
type to another

59
1Figure: http://cs231n.stanford.edu/ Lecture 10

http://cs231n.stanford.edu/


Example II: Image Captioning

60
1Figure: http://cs231n.stanford.edu/ Lecture 10

http://cs231n.stanford.edu/


Example II: Image Captioning

61
1Figure: http://cs231n.stanford.edu/ Lecture 10

http://cs231n.stanford.edu/


Example II: Image Captioning
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1Figure: http://cs231n.stanford.edu/ Lecture 10

http://cs231n.stanford.edu/


Example II: Image Captioning

63
1Figure: http://cs231n.stanford.edu/ Lecture 10

http://cs231n.stanford.edu/


Example II: Image Captioning

64
1Figure: http://cs231n.stanford.edu/ Lecture 10

http://cs231n.stanford.edu/


Example III: Auto-Reply

• In this family of applications, we want mapping 
between variable length inputs to variable length 
outputs

• Other applications:

• Translation

• Summarizing

• Speech transcription

• Question answering

65



Example III: Auto-Reply

• Auto-reply is a feature 
where the computer 
reads your email and 
responds appropriately

66
1Figure: Quoc Le, Google Brain



Example III: Auto-Reply

• First version

• Note that the number of classes in output is the 
number of words in the vocab!

67
1Figure: Quoc Le, Google Brain



Example III: Auto-Reply

• Second version

• Feed back the true output at each stage

68
1Figure: Quoc Le, Google Brain

Encoder Decoder



Example III: Auto-Reply

• As we saw with image captioning example,

• Given input sequence ݔ, we first output ݕ which has 
the highest probability

• Given ݔ and ݕ, we output ݕଵ, which has the highest 
probability

• This is greedy

• Does not correct for mistakes

69
1Figure: Quoc Le, Google Brain



Example III: Auto-Reply

• Beam Search Decoding

• Retain � best candidate output sequences up to the time we 
see < end >

70
1Figure: Quoc Le, Google Brain



Example III: Auto-Reply
• Issue with second version: ℎ� is the only link

• In fact, it is a fixed length vector. Whereas input is 
variable length

• Can be fixed with an ‘attention’ layer

71
1Figure: Quoc Le, Google Brain

Encoder Decoder



Example IV: Speech Transcription

• Traditional pipeline has

• Acoustic model �ሺݓ|ݐݑݐݑ��ሻ
• Language model �ሺݓ��ሻ
• Feature engineering

• …

• Sequence to sequence learning can do ‘end-to-end’ 
without much feature engineering or blockwise 
modeling

72



Example IV: Speech Transcription

• What we want is the following

73
1Figure: Quoc Le, Google Brain



Example IV: Speech Transcription

• Step 1: Get some fixed length vectors

74
1Figure: Quoc Le, Google Brain



Example IV: Speech Transcription

• Step 2: Pass through an encoder

75
1Figure: Quoc Le, Google Brain



Example IV: Speech Transcription

• Step 3: Decode

• This is only a high level idea. Many many challenges.

76
1Figure: Quoc Le, Google Brain



Questions?

77



Summary

• Need for RNNs

• Understood the internals of RNNs (incl. LSTMs)

• Looked at some implementation details for the 
‘sequence to sequence’ family of problems.
• These significantly extend beyond classification

78



Appendix

79



Sample Exam Questions

• What is the need for an RNN architecture?

• What shortcoming of vanilla RNNs does an LSTM RNN 
attempt to fix?

• Describe how sentence classification can be done with 
both an RNN and a CNN.

80



Yet Another Diagram of LSTM

81

By Tim Rocktäschel



Understanding LSTM: LSTMVis

• A visual tool to see which cell states do what

82
1Reference: https://github.com/HendrikStrobelt/LSTMVis



Tensorflow Seq2Seq/RNN Models

• For sequence to sequence modeling nuances, 
especially about how to deal with variable length 
training input and output data, see 
https://www.tensorflow.org/tutorials/seq2seq/

83

https://www.tensorflow.org/tutorials/seq2seq/


Example III (Extension): Auto-Reply

• Third version: Attention Mechanism

• Ideally output could consider ‘attention’ to parts of history

84
1Figure: Quoc Le, Google Brain



Example III (Extension): Auto-Reply

• Could look at every state in the past

85
1Figure: Quoc Le, Google Brain



Example III (Extension): Auto-Reply

• So instead of returning a word, output the current 
state

86
1Figure: Quoc Le, Google Brain



Example III (Extension): Auto-Reply

• Take inner products with previous states

87
1Figure: Quoc Le, Google Brain



Example III (Extension): Auto-Reply

• Take inner products with previous states

88
1Figure: Quoc Le, Google Brain



Example III (Extension): Auto-Reply

• Pass through a neural net layer to predict final word

89
1Figure: Quoc Le, Google Brain



Example III (Extension): Same with Translation!

• Same principle also applies for translation. The first 
prediction learns to focus on certain part of the input

90
1Figure: Quoc Le, Google Brain



Example III (Extension): Auto-Reply

• The second prediction learns to focus on certain part 
of the input

91
1Figure: Quoc Le, Google Brain



Example V: Object Recognition with Visual 
Attention

• Even if we do not have sequences, we can still use 
RNNs to process the single fixed input in a sequence

92
1Figure: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
2Reference: http://arxiv.org/abs/1412.7755

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Advanced Prediction 
Models

Deep Learning, Graphical Models and Reinforcement 
Learning



Today’s Outline

• Unsupervised Learning Landscape

• Autoencoders and Variational Autoencoders (VAE)

• Generative Adversarial Networks (GAN)

2



Unsupervised Learning 
Landscape

3



Unsupervised Learning

4

• Supervised learning

• Involves feature and label pairs as training data

• Goal is to find a map from feature to label/value

• Unsupervised learning

• Involves only feature vectors

• Example: images

• Goal is to learn some patterns of data

• There is no objective measure of success

1Reference: CS231n (Stanford, Spring 17) 



Unsupervised Learning Tasks

5
1Reference: CS231n (Stanford, Spring 17) 

• Clustering

• Association rules

• Dimensionality reduction

• Density estimation

• Embedding

• Sampling



Unsupervised Learning Tasks

6
1Figure:mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/42541/versions/3/screenshot.jpg
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Unsupervised Learning Tasks
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• Clustering

• Association rules

• Dimensionality reduction

• Density estimation

• Embedding

• Sampling

1Reference: CS231n (Stanford, Spring 17) 



Unsupervised Learning Tasks
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• Clustering

• Association rules

• Dimensionality reduction

• Density estimation

• Embedding

• Sampling

1Reference: CS231n (Stanford, Spring 17) 



Unsupervised Learning Tasks

9

• Clustering

• Association rules

• Dimensionality reduction

• Density estimation

• Embedding

• Sampling

1Reference: CS231n (Stanford, Spring 17) 



Unsupervised Learning Tasks

10

• Clustering

• Association rules

• Dimensionality reduction

• Density estimation

• Embedding

• Sampling

1Reference: https://www.youtube.com/watch?v=rs3aI7bACGc



Learning a Distribution

11
1Reference: Ian Goodfellow (NIPS 2016 Tutorial)

• Given (large amount of) data drawn from �" , we 
want to estimate �# such that samples from �# are as 
similar as possible to samples from �"

• Two approaches:

• Explicit

• If we construct �# explicitly, we can address all 
the other tasks mentioned

• Implicit

• We can directly generate a sample from �#
without explicitly defining it!



Explicit and Implicit Approaches

12
1Reference: Ian Goodfellow (NIPS 2016 Tutorial)



Explicit and Implicit Approaches

13

• When would we be okay with an implicit approach

• Simulate possible futures for planning

• When samples themselves are useful for other 
tasks…

1Reference: Ian Goodfellow (NIPS 2016 Tutorial)



Explicit and Implicit Approaches

14

• When would we be okay with an implicit approach

• Simulate possible futures for planning

• When samples themselves are useful for other 
tasks…

1Reference: Ian Goodfellow (NIPS 2016 Tutorial), Ledig et al. 2016



Explicit and Implicit Approaches

15

• When would we be okay with an implicit approach

• Simulate possible futures for planning

• When samples themselves are useful for other 
tasks…

1Reference: Ian Goodfellow (NIPS 2016 Tutorial)



Explicit and Implicit Approaches

16

• When would we be okay with an implicit approach

• Simulate possible futures for planning

• When samples themselves are useful for other 
tasks…

1Reference: Ian Goodfellow (NIPS 2016 Tutorial)



Explicit and Implicit Approaches

17

• We will look at one model under each approach and 
work with image data

• Explicit: Variational Autoencoders (VAE)

• Implicit: Generative Adversarial Networks (GAN)

• Both use neural networks as a core object

• Their number of parameters should be smaller than 
the amount of training data, so the models 
discover some intrinsic aspect of the data

1Reference: Ian Goodfellow (NIPS 2016 Tutorial)



More than Memorization

• Consider Deep Convolutional Generative Adversarial 
Network (DCGAN)

• You can walk from one point to another in the 
bedroom latent space (e.g., 6th and 10th rows)

18
1References: http://arxiv.org/abs/1511.06434 and https://github.com/Newmu/dcgan_code



More than Memorization

• Either model (VAE or GAN) will essentially build the 
yellow box below:

19
1Reference: https://blog.openai.com/generative-models/



Questions?

20



Today’s Outline

• Unsupervised Learning Landscape

• Autoencoders and Variational Autoencoders (VAE)

• Generative Adversarial Networks (GAN)

21



Autoencoders and 
Variational Autoencoders

22



Neural Net as a Transformation Map

23
1Reference: http://kvfrans.com/variational-autoencoders-explained/

• NN is a function that maps an input to output

• Here is a deconvolutional/transposed-convolutional 
network



Neural Net as a Transformation Map

24
1Reference: http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html#transposed-convolution-arithmetic

• Transposed convolution is also a linear map

16-dim vec = *4-dim vec



Transformation from a Single Vector

25

• For example, set inputs to all ones

• Train network to reduce MSE between its output and 
target image

• Then information related to image is captured in 
network parameters

1Reference: http://kvfrans.com/variational-autoencoders-explained/



Transformation from Multiple Vectors

26

• Do the same with multiple input vectors (e.g., one hot 
encoded)

• These input vectors are called codes. The network is 
called a decoder.

• In an autoencoder, we also have an ‘encoder’ that 
takes original images and ‘codes’ them

1Reference: http://kvfrans.com/variational-autoencoders-explained/



Autoencoder: The Objective

27

• Captures information in training data

• The latent variable � (also called code) can be 
thought of as embedding

• Keep the dimension of � smaller than input �, 
otherwise we have a trivial solution

• If we choose a larger dimension, add noise to �
during training (this is called a denoising
autoencoder)

1Reference: http://kvfrans.com/variational-autoencoders-explained/



Autoencoder: The Architecture

28

• No labels are needed here

1Reference: CS231n (Stanford, Spring 2017)



Autoencoder: Uses

29

• Reduction in dimension achieved by the encoder is useful
• Just like PCA
• Captures meaningful variations in the data via the 

embeddings

• Named ‘autoencoder’ because it attempts to reconstructs 
original data

• Cannot generate new samples yet!
1Reference: CS231n (Spring 2017)



Variational Autoencoder

30

• Probabilistic extension of autoencoding

• The intuitive idea is to make � random, and in 
particular make �& a Gaussian

• If we can manage this, then we can sample from �&
and generate new images

• Two high level changes needed

• Architecture

• Loss function

1Reference: http://kvfrans.com/variational-autoencoders-explained/



Variational Autoencoder: Loss

31

• Loss will be sum of two losses

• Reconstruction loss

• Latent loss (how far from Gaussian the distribution 
obtained from encoder is)

• Measured using KL divergence

• Encoder generates the mean and covariance of 
the Gaussian

• We will look at the math behind this shortly

1Reference: http://kvfrans.com/variational-autoencoders-explained/



Variational Autoencoder: Architecture

32

• Architecture involves a sampling in between

1Reference: http://kvfrans.com/variational-autoencoders-explained/



Variational Autoencoder: Architecture

33

• Architecture involves a sampling in between

• Can still backprop given realized sample

1Reference: http://kvfrans.com/variational-autoencoders-explained/



Variational Autoencoder: Generalization

34

• This sampling allows for generalization

• Gaussian noise ensures we are not remembering 
only the training data

• More noise means less information is stored in the 
decoder

• Once we have trained, we can sample from a 
Gaussian and pass it through the decoder to get a 
new image

1Reference: http://kvfrans.com/variational-autoencoders-explained/



Variational Autoencoder: Samples

35

• Experiments on MNIST

• Samples generated during training (left, center) 
and original data

1Reference: http://kvfrans.com/variational-autoencoders-explained/

Source: https://github.com/kvfrans/variational-autoencoder



VAE: Derivation

36

• Assume a model as below

• Variable � represents image, � represents the latent 
variable 

• We want to estimate �∗

1Reference: CS321n (Stanford, Spring 2017)



VAE: Derivation

37

• Let �& be Gaussian

• Let �(�|�) be a neural network: decoder

• We can train by maximizing likelihood of training 
data

1Reference: CS321n (Stanford, Spring 2017)



VAE: Derivation

38

• Let �& be Gaussian

• Let �(�|�) be a neural network: decoder

• We can train by maximizing likelihood of training 
data

1Reference: CS321n (Stanford, Spring 2017)



VAE: Derivation

39

• Unfortunately, maximizing                                    is 
hard

• Because of the decoder network

• We fix this by assuming an approximation ‘encoder’ 
�- � � to �/(�|�)

1Reference: CS321n (Stanford, Spring 2017)



VAE: Derivation

40

• The encoder and decoder are probabilistic

1Reference: CS321n (Stanford, Spring 2017)



Aside: Notion of Information

41

• Information: − log�(�)

• Entropy: −∑� � log �(�)5
5

• KL divergence:

• A notion of dissimilarity between two distributions

• �78(�| � = 	∑� � log
; <

=(<)

5
5

1Reference: Ian Goodfellow (NIPS 2016 Tutorial)



Aside: Notion of Information

42
1Reference: Ian Goodfellow (NIPS 2016 Tutorial)



VAE: Derivation

43
1Reference: CS321n (Stanford, Spring 2017)



VAE: Derivation

44
1Reference: CS321n (Stanford, Spring 2017)



VAE: Derivation

45
1Reference: CS321n (Stanford, Spring 2017)



VAE: Derivation

46
1Reference: CS321n (Stanford, Spring 2017)



VAE: Derivation

47
1Reference: CS321n (Stanford, Spring 2017)



VAE: Derivation

48
1Reference: CS321n (Stanford, Spring 2017)

• The first two terms constitute a lower bound for the 
data likelihood that we can maximize tractably

• The first term of ℒ is essentially reconstruction error

• The second term  of ℒ is making the encoder network 
close to Gaussian prior



VAE: Derivation

49
1Reference: CS321n (Stanford, Spring 2017)

• In summary,



VAE: Samples (Recap)

50
1Reference: CS321n (Stanford, Spring 2017)

• We can create new samples!



VAE: Experiments

51
1Reference: CS321n (Stanford, Spring 2017)

• Some generated samples

Further reading: https://arxiv.org/pdf/1606.05908.pdf



Questions?
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Today’s Outline

• Unsupervised Learning Landscape

• Autoencoders and Variational Autoencoders (VAE)

• Generative Adversarial Networks (GAN)

53



Generative Adversarial 
Networks

54



GANs: Two Scenarios

55
1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 

• Instead of working with an explicit density function, 
GANs take an ‘adversarial’ or ‘game-theoretic’ 
approach



GANs: Two Scenarios

56
1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



The Generator and the Discriminator

• Assume �	 = 	�/A(�)

• Differentiable

• �/B(�)	takes values in {0,1}

57
1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



The Generator and the Discriminator

58
1Reference: CS231n (Stanford, Spring 2017) 



The Generator and the Discriminator

59
1Reference: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



The Objectives

• There are many variations. We will look at the 
original one.

• The generator and the discriminator are playing a 
minimax game.

• � � = 	−�;B log� � − �;J log(1 − �(�))

• Where �# � is the derived distribution using 
�(�) and �&

• �(�) 	= 	−�(�)

60
1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



The Objectives

• The optimal strategy for the discriminator at 
equilibrium is

• � � = 	
;B <

;B < K;J <

• The optimal strategy for the generator is to find 
parameters such that

• �" 	= 	�#

• Caveat: Other variations of GANs are non minimax in 
nature and often times work better
• Example: no saturation issue

61
1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



The Objectives

• The optimal strategy for the discriminator at 
equilibrium is

• � � = 	
;B <

;B < K;J <

• The optimal strategy for the generator is to find 
parameters such that

• �" 	= 	�#

• Caveat: Other variations of GANs are non minimax in 
nature and often times work better
• Example: no saturation issue

62
1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



The Training Procedure

• Create a minibatch of real data

• Create a minibatch of generated data

• Score the discriminator

• Backprop to update the parameter �"

• Score the generator

• Backprop to update the parameter �L

63
1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



The Training Procedure

64
1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



The Training Procedure

65
1Reference: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



The Training Procedure

66
1Reference: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



Example Generator Architecture

67

• DCGAN

1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



GAN Properties: Latent Space Arithmetic as 
a Byproduct

68
1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



GAN Properties: Mode Collapse Issue

69
1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



GAN: Experiments

70
1Reference: http://kvfrans.com/generative-adversial-networks-explained/

• Experiments on CIFAR-10 (only generated images below)

• Code: https://github.com/kvfrans/generative-adversial



Questions?
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VAE and GAN

• VAEs 

• Are generative models that use regularized log 
likelihood to approximate performance score

• Tend to achieve higher likelihoods of data, but the 
generated samples don’t have real-world 
properties like sharpness

• Can compare generated images with original 
images, which is not possible with GANs

• Part of graphical models with principled theory

72



VAE and GAN

• GANs
• Are generative models that use a supervised learning 

classifier to approximate performance score
• No constraint that a ‘bed’ should look like a ‘bed’

• Try to solve an intractable game, vastly more difficult 
to train

• Tend to have sharper image samples
• Start with latent variables and transform them 

deterministically
• There is no Markov chain style of sampling required
• They are asymptotically consistent (will converge to 
�"), whereas VAEs are not

• Many many variations have been proposed in the past 
3 years (>150!)

73
1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



VAE and GAN

74



Summary

• Both models are recent (VAEs from 2013, GANs from 
2014) and have initiated very exciting new directions 
in machine learning and AI 

• Useful in many applications such as
• Image denoising
• Image Super-resolution
• Reinforcement learning
• Generating embeddings
• Artistic help

• Eventually help the computer understand the world 
better

75
1Reference: https://blog.openai.com/generative-models/



Appendix
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Sample Exam Questions

• What are the uses of generative models?

• What is the difference between a regular 
autoencoder and a variational autoencoder?

• What is the qualitative objective of the discriminator 
in a GAN? What is the qualitative objective of the 
generator?

• Describe some differences between a VAE model and 
a GAN.

77



Maximum Likelihood Estimation I

78
1Reference: Ian Goodfellow (NIPS 2016 Tutorial)



Maximum Likelihood Estimation II

79
1Reference: ICCV 2017 GAN Tutorial, Ming-Yu et al.



VAE: Original Work

80
1Reference: Ian Goodfellow (NIPS 2016 Tutorial)



Recent Work: Plug and Play Generative 
Models

81

• A recent work combines GANs with denoising autoencoders
and other techniques to generate realistic samples

• There are many other such attempts in the past 2 years

1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 
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Today’s Outline

• Quick Review

• CNN Visualization for Fun

• Deeper Nets: Recent Advances

• Practical Tips
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Review of Deep Learning

3



Key Topics

• Basics of machine learning
• Classification pipeline
• Regularization

• Neural networks
• Backpropagation
• CNNs: convolution, pooling
• RNNs (including LSTMs)
• VAEs and GANs

• Data domains
• Vision (images)
• Text
• Embeddings: word2vec
• Language models

4



Sample Concepts

• Backpropagation

• Convolution, Pooling and Batch Normalization in CNNs

• LSTMs

• VAEs and GANs

• Word2Vec

5



Backpropagation Example I

• Backpropagation is a case of reverse accumulation 
automatic differentiation1

6
1See https://en.wikipedia.org/wiki/Automatic_differentiation

An example from wikipedia



Backpropagation Example II

• Compute the gradient using backpropagation

7



Sample Concepts

• Backpropagation

• Convolution, Pooling and Batch Normalization in CNNs

• LSTMs

• VAEs and GANs

• Word2Vec

8



CNN: Computing Convolutions

9Figure: http://cs231n.github.io/convolutional-networks/



CNN: Computing Pooled Outputs

10

Figure: http://cs231n.github.io/convolutional-networks/



CNN: Batch Normalization

• Idea: Make each activation unit-Gaussian by subtracting the 
mean and then dividing by standard deviation

• Is a differentiable function: hence no issue with 
backpropagation

• At test time, there is no batch. Use the training data means 
and variances 11

Batch-size = 	�

Number of output neurons = 	�

�×�

� �' =
�(�	 − � � )

���[�]
2

+ �

�×�

�'



Sample Concepts

• Backpropagation

• Convolution, Pooling and Batch Normalization in CNNs

• LSTMs

• VAEs and GANs

• Word2Vec

12



LSTMs

13

Forget Modify cell state

Remember Output

1Figure: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Sample Concepts

• Backpropagation

• Convolution, Pooling and Batch Normalization in CNNs

• LSTMs

• VAEs and GANs

• Word2Vec

14



VAE: The Training Procedure

15

1Reference: CS321n (Stanford, Spring 2017)



GAN: The Training Procedure

16
1Reference: https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016



VAE and GAN

17



VAE and GAN

• VAEs 

• Are generative models that use regularized log 
likelihood to approximate performance score

• Tend to achieve higher likelihoods of data, but the 
generated samples don’t have real-world 
properties like sharpness

• Can compare generated images with original 
images, which is not possible with GANs

• Part of graphical models with principled theory

18



VAE and GAN

• GANs
• Are generative models that use a supervised learning 

classifier to approximate performance score
• No constraint that a ‘bed’ should look like a ‘bed’

• Try to solve an intractable game, vastly more difficult 
to train

• Tend to have sharper image samples
• Start with latent variables and transform them 

deterministically
• There is no Markov chain style of sampling required
• They are asymptotically consistent (will converge to 
�6), whereas VAEs are not

• Many many variations have been proposed in the past 
3 years (>150!)

19

1Reference: Ian Goodfellow (NIPS 2016 Tutorial) 



Sample Concepts

• Backpropagation

• Convolution, Pooling and Batch Normalization in CNNs

• LSTMs

• GANs

• Word2Vec

20



Word2Vector Word Embeddings

• An embedding of words proposed by Google in 
2013

• Is based on a predictive method rather than on a 
count based method

• Objective: Vector representations of words that 
capture their co-occurence statistics

21



Word2Vector: Two Versions

• Continuous Bag of Words and Skip-Gram

• Lets go through the skip-gram model in some detail 
now

22



W2V: The Skip-Gram Version

• This is a very simple neural network model to learn �

• We will train a single hidden layer NN to perform an 
auxiliary task

• The goal will be to just learn the weights of the 
network

• This will give us �

23

1Reference: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



W2V: The Auxiliary Task

• Task:
• Pick a word in the middle of a sentence
• Pick one of the nearby words at random 
• Make network learn probability of every word in 

our vocab of being this nearby word

• Input: a word (one hot encoded)

• Output: normalized scores (of length: vocab size)

• Meaning of ‘nearby’:
• Essentially defined using a window size
• Example: Window size 2 means 2 words to left 

and 2 to right of the input word are nearby
24



W2V: The Auxiliary Task

• Word pairs as feature-label pairs

• Example: “The quick brown fox jumps over the lazy 
dog”

25

1Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



W2V: The Network

• Say we have 10000 words in our vocab

• Then the input word is 10000 dimensional vector

• Example: Cat word will have ’Cat’ coordinate 1, 
everything else 0

• The true label (word) is also 10000 dimensional 
vector

• Network outputs 10000 scores which pass through 
softmax

• Each coordinate is the probability that a particular 
word is the randomly selected nearby word

26



W2V: The Network

• Notice: No nonlinearity in the hidden layer!

27

1Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



W2V: The Objective

• The objective is to maximize the normalized score 
(recall normalization by softmax operation) of the 
correct context word

• Say our training data is made with � words, each 
having a context window size 2

• That is, each word is associated with 4 other words

• Total training data is 4�

• The objective is 
;

<
∑ ∑ log	�(�CDE|�C)	E∈{IJ,I;,;,J}
<
CM;

28



W2V: The Hidden Layer

• Is represented by a weight matrix �N

• Lets represent it by its transpose (just for 
convenience)

• ℎ< 	= 	 �<�N
< = �<� for each example

• Number of rows of � is 10000

• Number of columns of � is 300

• Then the rows of � are our word vectors!

29



W2V: The Hidden Layer

• Our real goal was just to learn the hidden layer 
weights

30

1Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



W2V: The Lookup

• Say word ‘Cat’ has coordinate � for some � ∈
	{1, … , 10,000}

• If we multiply the 1*10000 dim one hot vector for the 
word ‘Cat’ with W

• It will just select the �CT row of W

• The output of the hidden layer is the word vector!

• Example visualization

31

1Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



W2V: Auxiliary Task Again

• Output of the network is a bunch of normalized scores 
(i.e., probabilities)

• Denote the probability that the this word is a 
nearby word

• Example:

• Pick the word vector for ‘ants’

• Pic the output neuron for word ’car’

32

1Figure: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/



W2V: Intuition for Vectors

• If two different words have similar “contexts”

• Similar words are likely to appear around them

• Then the output probability vectors should be 
similar

• For output vectors to be similar the word vector 
(weights of hidden layer) should be similar

• Since the inputs are 1-hamming distance apart 
always

33



W2V: Intuition for Vectors

• Word2Vec is capturing nothing but the co-occurence
statistics!

• Example:

• Words like ‘university’ and ‘masters’ would have 
similar contexts, hence similar word vectors

• This will also handle stemming!

• Example: words like ‘car’ and ‘cars’ will have 
similar vectors because contexts would be similar

34



W2V: From Google

• 100 Billion words from the Google News Dataset

• Vocab size totals about 3 million!

35

1Reference: https://github.com/chrisjmccormick/inspect_word2vec/tree/master/vocabulary
2word2Vec file: https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit



W2V: From Google

• 100 Billion words from the Google News Dataset

• Vocab size totals about 3 million!

36

1Reference: https://github.com/chrisjmccormick/inspect_word2vec/tree/master/vocabulary
2word2Vec file: https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit



W2V: The CBOW Version

• Continuous Bag of Words (CBOW) version of 
Word2Vec

• Essentially, a slightly different prediction task

• There is another popular embedding called GLoVe

37
1Figure: https://arxiv.org/pdf/1301.3781.pdf
2Reference for GLoVe: http://nlp.stanford.edu/projects/glove/



Questions?
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Today’s Outline

• Quick Review

• CNN Visualization for Fun

• Deeper Nets: Recent Advances

• Practical Tips
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CNN Visualization for 
Fun

40



CNN Visualization for Fun

• What we know

• Each layer extracts features of increasing 
complexity

• First layer may look for basic things like edges

• Intermediate layers may look for components

• Final layer neurons activate for very complex 
things like a face or a building

• Lets look at a fun way to further our intuition of what 
goes on in a CNN …

41



Neural Style Transfer (I)

• Image transformation task (merge an image style onto 
another)

42
1Figure: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Activation gram matrix

Activation vector

2Work: http://cs.stanford.edu/people/jcjohns/papers/eccv16/JohnsonECCV16.pdf



Neural Style Transfer (II)

• Image transformation task (merge an image style onto 
another)

43
1Painting: https://afremov.com/RAIN-PRINCESS-Palette-knife-Oil-Painting-on-Canvas-by-Leonid-Afremov-Size-30-x30.html

Activation gram matrix

Activation vector



Neural Style Transfer (III)

• Optimizing for an image that satisfies: match content 
of first image and style of second image

44

And match activation gram 
matrices of

Match activation vector of

2Related work: A neural algorithm for artistic style, https://arxiv.org/abs/1508.06576



Neural Style Transfer (IV)

• Results in

45

And match activation gram 
matrices of

Match activation vector of

1Source: https://github.com/lengstrom/fast-style-transfer



Neural Style Transfer (V)

46
1Figure: https://github.com/lengstrom/fast-style-transfer



Questions?
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• Quick Review

• CNN Visualization for Fun
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• Practical Tips
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Engineering Deeper Nets

49



Engineering Deeper Nets

• Remember, we generally have millions of parameters 
in deep neural networks
• What if we want deeper networks?
• How to handle computation?
• How to handle memory?

• Several computational and other best practices have 
been proposed and investigated

• We will look at some:
• Vectorization
• Architectures
• Parallelism
• Precision

50



Deeper Nets: Vectorization

• Vectorization

• We have already seen this in the example 
classifiers

51
1Figure: http://cs231n.stanford.edu/



Deeper Nets: Vectorization

• Even the filter computations in the CONV layers

52
1Figure: http://cs231n.stanford.edu/



Deeper Nets: Vectorization

• Even the filter computations in the CONV layers
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1Figure: http://cs231n.stanford.edu/



Deeper Nets: Vectorization

• Even the filter computations in the CONV layers

54
1Figure: http://cs231n.stanford.edu/



Deeper Nets: Vectorization

• Even the filter computations in the CONV layers

55
1Figure: http://cs231n.stanford.edu/



Deeper Nets: Vectorization

• Extensions and alternatives:

• Faster matrix multiplies (e.g., Strassen’s algorithm)

• Fast Fourier Transform routines
56

2Figure: http://cs231n.stanford.edu/

1Related work: https://arxiv.org/abs/1509.09308



Deeper Nets: New Architectures

• GoogLeNet (2014 ILSVRC winner)

• 22 layers

• Notion of modules

• It has 5 million parameters

• AlexNet (2012 winner) has 60 million

• VGG Net has 180 million

57
1Figure: https://arxiv.org/abs/1409.4842



Deeper Nets: New Architectures

• ResNet (2015 ILSVRC winner): 

• Add skip connections

• Notion of a residual block

• Overcome optimization 
difficulties

• 152 layers (8x VGG depth)

58
1Figure: http://torch.ch/blog/2016/02/04/resnets.html



Deeper Nets: Parallelism

59
1Figure: http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf

• Software systems such as Tensorflow can take care of 
data and model parallelism



Deeper Nets: Parallelism

60
1Figure: http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf

• Software systems such as Tensorflow can take care of 
data and model parallelism



Deeper Nets: Compute Precision

61
2Figure: https://github.com/soumith/convnet-benchmarks

• Smaller precision does not significantly impact 
performance
• For example, check effect on computation time when using 

numpy by changing dtype to float32, float64 etc)

• One can also use 1-bit activations and weights (retain higher 
precision for gradients)

1Related work: https://arxiv.org/abs/1602.02830



New Architectures (Addendum)

621Source:  https://arxiv.org/abs/1605.07678
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Today’s Outline

• Quick Review

• CNN Visualization for Fun
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• Practical Tips
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Deep Learning in 
Practice
From the “Nuts and Bolts of Applying Deep Learning” talk by 
Andrew Ng (Oct 2016)

65



The Practice of Deep Learning

• Major DL Trends in the Industry

• End-to-end DL

• Bias/Variance

• Human Level Performance

66
1Reference: https://www.youtube.com/watch?v=eyovmAtoUx0

DL Research is different from DL for production!



Major DL Trends

• Scale is what is behind the success of deep learning 
methods

• And it has impact on the workflow of an ML project

67Data

Performance

Deep Nets

Medium Nets

Shallow Nets

Shallow ML



Major DL Trends

• Deep Nets capacity can absorb all the data

• Small data regime: Just use shallow ML

68Data

Performance

Deep Nets

Medium Nets

Shallow Nets

Shallow ML



Production Ready DL models

• Fully connected models: FFNs

• Sequence models: RNNs

• Image models: CNNs

• Not-so-production-ready techniques:

• Unsupervised

• Reinforcement learning

69

So focus on these for now.



Rise of End-to-End DL

• Shallow ML:
• Outputs were numbers
• Example: sentiment is +/-

• DL:
• Output can be very rich
• Example: 
• Image captioning, input is image, output is text 

string
• Machine translation
• Speech recognition: speech to text directly , no 

need for phonemes!

• Unfortunately, this cannot be done always!
70



Rise of End-to-End DL

• Unfortunately, this cannot be done always!

• Example 

• Scenario 1 (less realistic):

• Image to steering action

• Scenario 2 (more realistic):

• Image to detect pedestrians, other cars

• Explicit trajectory planner plans a path

• Then steering control is actuated

• Scenario 1 may work if you have lots of data
71



What to do after Training?

• Lots of decisions to potentially improve

• How to take these decisions?

• Lets look at Bias-Variance tradeoff

72



What to do after Training?

• Example Goal: Build a human level speech recognition 
system

• Measure (error)

• Human-performance: 1%

• Training error: 5%

• Validation error: 6%

73

“Bias”: pick a more complex model



What to do after Training?

• Example Goal: Build a human level speech recognition 
system

• Measure (error)

• Human-performance: 1%

• Training error: 2%

• Validation error: 6%

74

“Variance”: Get more data, try regularizing, early stopping



What to do after Training?

• Example Goal: Build a human level speech recognition 
system

• Measure (error)

• Human-performance: 1%

• Training error: 5%

• Validation error: 10%

• Always good to compute all these numbers! 75

“Variance”: Get more data, try regularizing, early stopping

“Bias”: pick a more complex model



ML Workflow

• Different from the shallow ML era, we always have a 
way out

• In shallow ML, there was a tradeoff of ‘bias’ and 
‘variance’, here the coupling is weaker

• More data, bigger model → scale!
76

Training	

error	high?

•Train	a	bigger	

model,	train	

longer,	new	

architecture

Validation	

error	high?

• More	data,	

regularize,	

new	model



More Data Cheaply

77

• Shift towards hand engineering of data rather than 
features

• Example: 

• For OCR data: get an image, put text in a 
random font

• For speech data: add speech to car, outdoor or 
crowded noise as needed

• Video games data for reinforcement learning

• Sometimes this is not possible…

• Also have a (logical) unified data warehouse with 
proper access management.



Validation and Test

• Validation examples should be very similar to test 
data
• Validation data is the problem spec for the ML 

project. 
• If it is not the same as test, then months of effort 

wasted

• Validation performance
• Break down the error to figure out where errors 

are being made
• There will be a risk of overfitting on this compared 

to test eventually.
78



Human Level Performance

• Progress after human-level becomes difficult

• Labels come from humans

• No more knowledge of the theoretical limit of 
performance

79

Data

Performance

Deep Nets

Human level



Human Level Performance

• When worse than humans, we can do better by
• Getting more data
• Doing error analysis
• Estimating bias and variance

• Example (error values)
• Human-performance: 4%

• Training error: 5%

• Validation error: 10%

80



Human Level Performance

• When worse than humans, we can do better by
• Getting more data
• Doing error analysis
• Estimating bias and variance

• Example (error values)
• Human-performance: 4%

• Training error: 5%

• Validation error: 10%
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Human Level Performance

• When human performance is lower, it is not clear what to 
do.

• When its way higher and you are using shallow ML, again 
it is not clear what to do.

• Example (error values)
• Human-performance: 15%

• Training error: 5%

• Validation error: 10%
82



What can DL do?

• How should a product manager specify 

• a self-driving car?

• what accuracy is needed for sentiment classifier?

• Rules of Thumb: DL can do

• Anything …

83



What can DL do?

• How should a product manager specify 

• a self-driving car?

• what accuracy is needed for sentiment classifier?

• Rules of Thumb: DL can do

• Anything that a typical person can do in less than 
1 sec

• Example: Look at a picture and tell the 
expression of the person

• Predicting outcome of next from a sequence of 
events

84



Questions?
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Deep Learning Not Discussed

• Covered only core blocks: CNNs, RNNs, Embeddings, 
GANs

• Lots of aspects we have not touched
• Optimization: Adagrad, momentum …
• Unsupervised methods: autoencoders, sparse coding, 

…
• Many variations of state of the art models in speech, 

text and vision

• Later
• In graphical models, we will touch VAE again.
• In reinforcement learning, we will touch CNN again.

86



Summary

• Recapped some salient aspects of modern deep 
learning

• Saw a style transfer application

• Considered some of the engineering tricks that are 
crucial to obtain state of the art performances

• Looked at the practical considerations of ML 
workflows in workplaces

• As you pursue business analytics/data science 
careers, good to have this perspective in mind.
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Appendix
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Sample Exam Questions

• How does style transfer take place?

• What are a few computer engineering tricks needed 
to make deep networks work?

• Describe the auxiliary task designed for word2vec.

• When training error is high, what could be a possible 
approach to fix it? What if the validation error is 
high?

89
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Deep Learning, Graphical Models and Reinforcement 
Learning



Today’s Outline

• Motivation

• Primer on Graphs

• Directed Graphical Models

• Undirected Graphical Models

2



Why Graphical Models

• We have seen deep learning techniques for 
unstructured data
• Predominantly vision and text/audio
• We will see control in the last part of the course
• (Reinforcement Learning)

• For structured data, graphical models are the most 
versatile framework
• Successfully applications: 
• Kalman filtering in engineering
• Decoding in cell phones (channel codes)
• Hidden Markov models for time series
• …

3



Why Graphical Models

• We have seen deep learning techniques for 
unstructured data
• Predominantly vision and text/audio
• We will see control in the last part of the course
• (Reinforcement Learning)

• For structured data, graphical models are the most 
versatile framework
• Successfully applications: 
• Kalman filtering in engineering
• Decoding in cell phones (channel codes)
• Hidden Markov models for time series
• …
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Graphical Models Landscape

• What are graphical models good for?

• Representation

• Capture uncertainty (joint distribution)

• Capture conditional independences (metadata)

• Visualization of metadata for a distribution

• Inference

• Create data structures for computing marginal 
or conditional distributions quickly

• Learning

• Learning the parameters of the distribution can 
be aided by graph techniques

5



Graphical Models Landscape

• What are graphical models good for?

• Representation
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Graphical Models Landscape

• What are graphical models good for?

• Representation

• Capture uncertainty (joint distribution)

• Capture conditional independences (metadata)

• Visualization of metadata for a distribution

• Inference

• Create data structures for computing marginal 
or conditional distributions quickly

• Learning

• Learning the parameters of the distribution can 
be aided by graph techniques
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Graphical Models Landscape

• We are learning them in three parts

• Part 1: Representation (this lecture)

• How does a directed or undirected probabilistic 
graphical model (DPGM/UPGM) look like? What 
does it encode?

• Part 2: Inference

• How to compute marginal and conditional 
probabilities efficiently? (next lecture)

• Part 3: Learning

• How to estimate the parameters of a 
DPGM/UPGM? (next to next lecture)

8



Graphical Models Landscape

• We are learning them in three parts

• Part 1: Representation (this lecture)

• How does a directed or undirected probabilistic 
graphical model (DPGM/UPGM) look like? What 
does it encode?

• Part 2: Inference

• How to compute marginal and conditional 
probabilities efficiently? (next lecture)

• Part 3: Learning

• How to estimate the parameters of a 
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Graphical Models Landscape

• We are learning them in three parts

• Part 1: Representation (this lecture)

• How does a directed or undirected probabilistic 
graphical model (DPGM/UPGM) look like? What 
does it encode?

• Part 2: Inference

• How to compute marginal and conditional 
probabilities efficiently? (next lecture)

• Part 3: Learning

• How to estimate the parameters of a 
DPGM/UPGM? (next to next lecture)

10



Turing Award

11
1Reference: David Sontag, (2013) 



Graphical Models vs Deep Learning

12
1Reference: Andreas Geiger, Autonomous Vision Group, MPI (2017)
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Graphical Models Landscape

13
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Application 1: Hidden Markov Model

14
1Reference: David Sontag (2013)



Application 1: Hidden Markov Model

15
1Reference: David Sontag (2013)



Application 2: Naïve Bayes Spam Filter

16
1Reference: Alex Smola (2011)



Application 3: Latent Dirichlet Allocation

17
1Reference: David Sontag (2013)



Application 4: Conditional Random Field

18
1Reference: David Sontag (2013)



Questions?

19



Today’s Outline

• Motivation

• Primer on Graphs

• Directed Graphical Models

• Undirected Graphical Models
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Primer on Graphs

21



Graph

• A network with

• Edges (links)

• Vertices (nodes)

• Heavily used in Computer Science for algorithms and 
data structures

• Here, we will only need the terminology of graphs.

• As we will see, their primary purpose will be 
visualization

22



Undirected Graph

• An undirected graph

• Edges have no direction information

23
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Notation for Undirected Graphs

• Set of vertices denoted 1,… ,�

• Size of graph is �

• Edge is an (unordered) pair (�, �)

• (�, �)	is the same as (�, �)

• indicates that i and j are directly connected

• Maximum number of edges: �(� − 1)/2	(order �-)

• � and � connected if there is a path of edges between 
them

• Subgraph of G:

• restrict attention to certain vertices and edges 
between them

24



Path

• A sequence of vertices where each successive pair are 
connected by an edge

• For example, (3,4,5) is not a path. (3,1,4,5) is a path

25
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Neighbor

• All vertices that share an edge with the node are its 
neighbors. Denote as ��ℎ�(�)

• For example, (3,4,2) are neighbors of 1.

• ��ℎ�(1) 	= 	 (3,4,2) 26

1 2

3 4

5



Cliques and Independent Sets

• A clique in a graph G is a set of vertices:

• informal: that are all directly connected to each other

• formal: whose induced subgraph is complete

• an edge is a clique of just 2 vertices

• Independent set:

• set of vertices whose induced subgraph is empty (no 
edges)

• Maximum clique or independent set: largest in the graph

• Maximal clique or independent set: can’t grow any larger

27



Cliques and Independent Sets

• A clique in a graph G is a set of vertices:

• informal: that are all directly connected to each other

• formal: whose induced subgraph is complete

• an edge is a clique of just 2 vertices

• Independent set:

• set of vertices whose induced subgraph is empty (no 
edges)

• Maximum clique or independent set: largest in the graph

• Maximal clique or independent set: can’t grow any larger

28



Directed Acyclic Graph

• A directed graph

• Edges have directions or orientations

• Edge (u,v) means u →v 

• May also have edge (v,u)

• Common for capturing asymmetric relations

• A directed acyclic graph (DAG)

• No directed cycles

• No way to follow the oriented edges and come 
back to the starting node

29



DAG

• A directed acyclic graph (DAG)

30
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DAG Paths vs Directed Paths

• Path: 

• Same as undirected graph. Ignore directions

• Example: (3,1,2) is a path

• Directed path

• Take direction into account. E.g., (5,4,1,3) is a 
directed path

31
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Parents of a Node

• Notation:

• ��(�) = Parents of node �

• In this graph, parents of � are (�, �)

• Neighbors of that vertex that point to that 
vertex
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Parents of a Node

• In the below graph, parents of A is the empty set �

• In the graph on the right, ��(�>) 	= 	 (�?)
33
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Descendants of a Node

• All nodes that can be reached by following the arrow 
directions

• In the below graph, descendants of A are {�, �}

• In the graph on the right, Desc(�?) 	= 	 (�>)
34
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Connected Graphs

• G (directed or undirected) is connected if there is a 
path between any two vertices. 

• Otherwise, we have connected components.

• subgraphs determined by mutual connectivity

• Connected graph: only one connected component

• Complete graph: edge between all pairs of vertices
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Singly-Connected

• If for any vertex pair, there is no more than one path 
between them. This is also called a tree.

• Otherwise, it is multiply-connected. Also called loopy.

• Similar definition for undirected graphs as well.
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Questions?
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Today’s Outline

• Motivation

• Primer on Graphs

• Directed Graphical Models

• Undirected Graphical Models
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Directed (Probabilistic) 
Graphical Models
Based on notes by MathematicalMonk1

39
1Reference: https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA



DPGM

• DPGM: Directed Probabilistic Graphical Model

• Also called a Bayesian Network or Belief Net

• Nothing Bayesian here

• These are conditional independence diagrams

• So we have directed graphs that tell about 
conditional independence properties of a probability 
distribution

40



Factorization

• Key idea: 
• Factorization
• The diagrams tell how the joint distribution 

factors

• Graphs
• Will be used as a notational gadget
• For visualizing 
• Conditional independence properties
• Inference algorithms
• Dynamic programming, Markov Chain 

Monte Carlo

41



Tractable Inference Objective

• Why do we care about conditional independence?

• Because we can perform tractable or efficient 
inference (we will address this next lecture!)

• Lets associate a graph with a probability distribution

42



Joint Distribution

• Let �, �, �	be RVs

• Joint distribution

• � � = �, � = �, � = �

• = 	� � �, � � �, �

• = 	�(�|�, �)�(�|�)�(�)

• This is a factorization

• We can always do this
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Non-unique Factorizations

• �(�|�, �)�(�|�)�(�)

• Create a node for each factor

• Graph has directed edges

• No cycles

• Can’t return to a node

• Nothing special about this factorization

• We could have factored in a completely different 
way

44



Distribution to a DAG

• If � is conditionally independent of � given �

• Use notation C ⊥ �	|	�

• Then �(�|�, �) 	= 	�(�|�)

• So we got a different graph

• Not every distribution could have lead to this graph.
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DAG to a Distribution

• What if we start with a graph?

• Can we construct a probability distribution?

• This is a DAG
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DAG to a Distribution

• Write	one	term	per	node

• �(�, �, �, �) 	= 	�(�|�)�(�|�, �)�(�)�(�)

• This may/may not be a distribution

• This is a product of factors

• One factor per node
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Non-unique Graphs

• Given �	 = 	 �@, … , �S ∼ �, and a DAG G

• We say � respects G (or � respects G) if

• � �@, … , �S =	∏�(�W|��	(�W))
X
X 	∀� = 1,… , �

• Formalizes the ideas in the examples we saw earlier

• The graph G does not uniquely determine the 
probability distribution P

• Also, the graph G does not imply that any RVs are 
conditionally dependent. 
• At most, it only implies conditional independence

48



Non-unique Graphs

• Given �	 = 	 �@, … , �S ∼ �, and a DAG G

• We say � respects G (or � respects G) if

• � �@, … , �S =	∏�(�W|��	(�W))
X
X 	∀� = 1,… , �

• Formalizes the ideas in the examples we saw earlier

• The graph G does not imply that any RVs are 
conditionally dependent. 
• At most, it will imply is conditional independence

• The graph G does not uniquely determine the 
probability distribution P
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Non-unique Graphs

• Say A,B,C are independent

• �(�, �, �) 	= 	�(�)�(�)�(�)

• Let X = (A,B,C)

• Then X respects the graph G

• X also respects G’
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Non-unique Graphs

• Graph G’ is not saying C depends on A and B

• It only says that the distribution of X = (A,B,C) factors 
in a way that can be represented by G’

• X also respects G’’
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Aside: Complete DAG

• A complete directed acyclic graph is a graph where 
all vertices are connected to all (permissible) others

• Any distribution on n variables respects a complete 
directed acyclic graph with n nodes
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Aside: Variables to Vectors

• We can combine RVs into random vectors and nothing 
discussed so far changes.

• For example, A,B,C can be random vectors
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Advantage of Graphs

• Key fact: if factors are normalized conditional distributions, 
then the joint distribution is a valid distribution

• Summary till now:

• Connected a graph to a joint distribution

• Two (of many) advantages of DPGMs:

• Visualization

• Sampling (we will see this later)

• We can sample sequentially according to the graph
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Example: Linear Regression

• Graphical model for (Bayesian) linear regression

• Data: �W , �W W[@
\ where �W	 is � dimensional

• Model: �̂ � = 	�`� �

• Linear in � (not a matrix, a random vector)

• Let � ∼ �(0, �c
-�)

• Let �W ∼ �(�`� �W , �
-)

• Let �W be conditionally independent of �f given �
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Example: Linear Regression

• �(�, �@, … . , �\) 	= �(�)∏�(�W|�)
X
X

• Can also use a plate notation

• Stack the plates on top of each other

• Variable � is called a latent or hidden variable

• Variables �W are called observed variables 56
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Example: Student Network

57
1Reference: David Sontag (2013)



Example: Car Network

58
1Reference: David Sontag (2013)



Aside: Observed vs Hidden

59
1Reference: Sam Roweis (2002)

• Observed variables:

• Sometimes no need to model their density

• For example, inputs in regression or classification 

• This leads to conditional density estimation

• Unobserved variables:

• Called hidden or latent

• Can be marginalized out

• Can make the density modeling of observed 
variables easier



Conditional Independence (I)

• Given a graphical model, we can determine if two sets 
of RVs are conditionally independent or not

• �(�, �, �) 	= 	�(�|�)�(�|�)�(�)	is the joint distribution 
that respects this graph

• What happens when we condition on C?

• � �, � � = 	
i j,k,l

i l
= � � � �(�|�)

• Thus, A and B are conditionally independent given C
• Use notation A ⊥ �	|	�	 60
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Conditional Independence (II)

• Given a graphical model, we can determine if two sets of RVs 
are conditionally independent or not

• � �, �, � = � � � � � � � � = [� � � � � ]�(�|�)	is 
the joint distribution that respects this graph

• What happens when we condition on C?

• � �, � � = 	
i j,k,l

i l
= � � � �(�|�)

• Thus, A and B are conditionally independent given C

• Use notation A ⊥ �	|	�	
61
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Conditional Independence (III)

• Given a graphical model, we can determine if two sets 
of RVs are conditionally independent or not

• � �, �, � = � � �(�)� � �, � 	is the joint distribution 
that respects this graph

• What happens when we condition on C?

• � �, � � = 	
i j,k,l

i l
≠ � � � �(�|�)

• A and B are not conditionally independent given C 62
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Head-to-Head Example

• Say � ∼ ����
@

-
, � ∼ ����(

@

-
)

• Say �	 = 	1	if � = � and 0 otherwise

• Conditioned on C
• If we know A, we know B.
• They are dependent!

• Similarly, if we know B, we know A.

• Hence, A ⊥ �	|	� (i.e., not true for every distribution 
that respects the graph)

• But unconditionally, A ⊥ �

• � �, � = 	∑ � �, �, �X
l = ∑ � � �(�)� � �, �X

l

• = � � �(�)∑ � � �, �X
l = � � �(�)
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Conditional Independence: Summary of 3 
Node Setting

• Given a graphical model, we can determine if two sets 
of RVs are conditionally independent or not
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D-Separation Criterion: N Node Setting

• We saw how conditional independence properties 
unfold due to graph structure

• This was only for three node graphs

• We will now move to larger DAGs

• We will look at the idea of d-separation
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D-Separation (I)

• Helps you read off the conditional independence 
properties

• Notation

• Sets of RVs A,B and C

• Disjoint

• Not necessarily covering all
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D-Separation (II)

• A path between two vertices is 
blocked with respect to � if it passes 
through a node v such that

• v ∈ 	�, arrows are head-to-tail or 
tail-to-tail

• OR, � ∉ �, arrows are head-to-
head, and Descendants(v) ∉ �

• Example

• �>, �? and �- are in head-tail

• So path is blocked
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D-Separation (III)

• Definition of D-Separation
• A and B are d-separated by C if all paths from 

vertices in A to vertices in B are blocked with 
respect to C

• Key result
• If A and B are d-separated by C, then A ⊥ �	|	�

• Note: the above result is only ‘necessary’ not 
‘sufficient’
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D-Separation Example I

• Let C = {�?}

• Is A ⊥ �	|	� ?

• We can check that by checking d-
separation for all pairs of vertices 
Xz ⊥ �f	|	� ?

• �	 = 	 {5}

• �	 = 	 {2,4}

• Easy to see that 
• �-, �t are blocked by C
• �>, �t are not blocked by C

• Hence, not d-separated

• Hence cannot say A ⊥ �	|	� 69
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D-Separation Example II

• Let C = {�?}

• Is A ⊥ �	|	� ?

• We can check that by checking d-
separation for all pairs of vertices 
Xz ⊥ �f	|	� ?

• �	 = 	 {1}

• �	 = 	 {2,4}

• We can see that 
• �@, �- are not blocked by C
• �@, �> are blocked by C

• Hence, not d-separated

• Hence cannot	say A ⊥ �	|	�
70

�@

�>

�?

�-

�t

B

C

A



DAG and Probability (I)

• We have showed that the structure of the DAG 
corresponds to a set of conditional independence 
assumptions

• We can read conditional independence easily!

• We just need to specify �(�W|��(�W))

• This does not mean that non-parent variables have no 
influence

• Thus, the DAG does not imply

• � � �, � = � � � 	
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DAG and Probability (II)

• DPGMs are good for representing independence, not 
for representing dependence

• We have seen this

• Multiple graphs for the same distribution

• D-separation only says conditional independence 
if true. If not true, then no conclusion is drawn.

72



Filter view of DPGM

• Only distributions that satisfy conditional 
independences are allowed to pass

• One graph can describe many probability 
distributions

• Edge cases:
• When DAG is fully connected, all distributions pass
• When DAG is fully disconnected, only the product 

distribution (∏ �(�W)
X
W ) passes

73
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Continuous Distributions

• We never had to state whether �(�|�) was 
continuous or discrete

• The graph is agonistic to the support of the random 
variables!
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Questions?
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Today’s Outline

• Motivation

• Primer on Graphs

• Directed Graphical Models

• Undirected Graphical Models
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Undirected (Probabilistic) 
Graphical Models
Based on notes from Bjoern Andres and Bernt Schiele (2016) 

77
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



UPGM

• Also called Markov Networks or Markov Random 
Fields

• No edge directions

• Again, diagrams of probability distributions that 
capture conditional independences

78
1Reference: Daphne Koller (2011)



UPGM vs DPGM

• DPGMs are more used in data analytics, ML, statistics

• UPGMs have been used in computer vision and physics but 
have applications in data analytics as well

• DPGM
• Factor of the distribution was a (cond.) distribution

• UPGM
• Factor (also called potential) need not be a distribution

• Let �(�, �, �) 	= 	
@

�
�@ �, � �-(�, �)

• Here � is the normalization constant or partition function. 
�	 = ∑ �@ �, � �-(�, �)

X
j,k,l

79
1Reference: Daphne Koller (2011)



Notion of a Potential

• Potential �(�) is a non-negative function of variable 
�. Joint potential �(�@, … , ��) is a non-negative 
function of a set of variables.

• Let �(�, �, �) 	= 	
@

�
�@ �, � �-(�, �)
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Potentials Over Cliques

• For RVs �@, … , �� , an UPGM is defined as a product 
of potentials over the cliques of graph G

• � �@, … , �� =	
@

�
∏ �l(�l 	)
X
l

• Here �	 = 	∑ ∏ �l({�W: �W ∈ �l}	)
X
l

X
��,…,��

• Special cases:
• When cliques are of size 2: the UPGM is called a 

pairwise UPGM
• When all potentials are strictly positive: the 

distribution is called a Gibbs distribution
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Example Potentials

82
1Reference: David Sontag (2013)



Marginalization

• Marginalizing over B makes A and C graphically 
dependent

• � �, � = 	∑ �(�, �, �)X
k 	= 	

@

�
�?(�, �)
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Conditional Independence (I)

• Conditioning on B makes A and C independent

• �(�, �|�) 	= 	�(�|�)�(�|�)

• Key: This is different from the head-to-head directed 
graph example, where conditioning introduced 
dependency!
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Conditional Independence (II)

• Global Markov property

• Two sets of nodes (say A and B) are conditionally 
independent given a third set C if

• All nodes in A and B are connected through 
nodes in C

• Local Markov property

• Conditioning on the neighbors of X makes X 
independent of the rest of the graph.

• � �W �@, …�W�@, �W�@	, �� = �(�W|��ℎ�(�W))
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Global Markov Property

• In the following graph G, as a consequence of global 
Markov property:

• {�@, �-, �?} ⊥ {�t, ��, ��}|�>

86
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Local Markov Property

• In the following graph G, as a consequence of local 
Markov property:

• �> ⊥ {�@, ��}|{�-, �?, �t, ��}

• �@ ⊥ {�>, �t, ��, ��}

87
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Graph to Distribution

• So, clearly the undirected graph specifies a set of 
conditional independence statements

• We can write down a joint distribution using the graph

• For example, we may consider a factorization 
involving maximal cliques.
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Graph to Distribution

• � �@, … , �� =

	
@

�
�@(�@, �-, �?)�-(�-, �?, �>)�?(�>, �t, ��)�>(�t, ��, ��)

• But, we could have also considered some other factorization
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1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Filter view of UPGM

• Only distributions that satisfy conditional 
independences are allowed to pass

90
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Limitations of DPGM and UPGM

• Cannot always represent all conditional independences 
of a given joint distribution

• Example: we cannot draw a DPGM for the following 
distribution
• �(�, �, �, �) with � ⊥ �|{�, �} and � ⊥ �|{�, �}

• Another example: we cannot represent the following 
using a UPGM
• �(�, �, �) with � ⊥ �|{�} and � ⊥ �

• You should verify this yourself
91
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DPGM vs UPGM

92

Property UPGMs DPGMs

Form Prod. potentials Prod. potentials

Potentials Arbitrary Cond. probabilities

Cycles Allowed Forbidden

Partition func. Z = ? Z = 1

Indep. check Graph separation D-separation

Indep. props. Some Some

Inference MCMC, BP, etc. Convert to UPGM

1Reference: Pedro Domingos, CSE 515 (2017)



Questions?
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Summary

• What are graphical models good at?
• Capture complexity and uncertainty
• Capture conditional independences
• We can visualize what’s happening with a 

distribution

• They unify many probabilistic techniques: mixture 
models, factor analysis, hidden Markov models, 
Kalman filters etc.

• Today we saw: visualization, conditional 
independence properties

• Next: computations (inference and learning)
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Appendix
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Additional Resources

• Book 1: Graphical models, exponential families, and 
variational inference by Martin J. Wainwright and 
Michael I. Jordan

• See 
https://people.eecs.berkeley.edu/~wainwrig/Pap
ers/WaiJor08_FTML.pdf

• Book 2: Bayesian Reasoning and Machine Learning by 
David Barber

• See 
http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/p
mwiki.php?n=Brml.Online
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Review: Probability
Based on Sam Roweis’s slides (2002)

97



Probability

98
1Reference: Sam Roweis (2002); Also see https://en.wikipedia.org/wiki/Cox%27s_theorem



Probability

99
1Reference: Sam Roweis (2002); Also see https://en.wikipedia.org/wiki/Cox%27s_theorem



Probability

100
1Reference: David Sontag (2013)



Probability

101
1Reference: David Sontag (2013)



Random Variables

102
1Reference: Sam Roweis (2002)



Random Variables
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1Reference: Sam Roweis (2002)



Expectation

104
1Reference: Sam Roweis (2002)



Expectation
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1Reference: Sam Roweis (2002)



Joint Probability

106
1Reference: Sam Roweis (2002)



Conditional Probability

107
1Reference: Sam Roweis (2002)



Marginal Probability

108
1Reference: Sam Roweis (2002)



Bayes Rule
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1Reference: Sam Roweis (2002)



Conditional Independence

110
1Reference: Sam Roweis (2002)



Independent Event Examples

111
1Reference: Alex Smola (2011)

• Independent event example

• Hardware failures events in different data centers

• Dependent event examples

• Queries to a search engine and news

• Tweets and news

• IM and email communications



Independent Event Examples

112
1Reference: David Sontag(2013)



Independent Event Examples

113
1Reference: David Sontag(2013)



Relation to Statistics

114
1Reference: Sam Roweis (2002)



Relation to Statistics

115
1Reference: Sam Roweis (2002)



Conditional Probability Table

116
1Reference: Sam Roweis (2002)



Conditional Probability Table

117
1Reference: Sam Roweis (2002)



Likelihood Function

118
1Reference: Sam Roweis (2002)



Complete Data, IID Sampling

119
1Reference: Sam Roweis (2002)



Maximum Likelihood

120
1Reference: Sam Roweis (2002)



What to do with a Distribution

121
1Reference: Sam Roweis (2002)



What to do with a Distribution

122
1Reference: Sam Roweis (2002)



Advanced Prediction 
Models

Deep Learning, Graphical Models and Reinforcement 
Learning



Recap: Why Graphical Models

• We have seen deep learning techniques for 
unstructured data
• Predominantly vision and text/audio
• We will see control in the last part of the course
• (Reinforcement Learning)

• For structured data, graphical models are the most 
versatile framework
• Successfully applications: 
• Kalman filtering in engineering
• Decoding in cell phones (channel codes)
• Hidden Markov models for time series
• Clustering, regression, classification …

2



Recap: Graphical Models Landscape

• Three key parts:

• Representation

• Capture uncertainty (joint distribution)

• Capture conditional independences (metadata)

• Visualization of metadata for a distribution

• Inference

• Efficient methods for computing marginal or 
conditional distributions quickly

• Learning

• Learning the parameters of the distribution can 
deal with prior knowledge and missing data

3



Today’s Outline

• Inference

• Factor Graph

• Variable Elimination

• Inference using Belief Propagation

• Inference using Markov Chain Monte Carlo

4



Inference
Based on notes from Bjoern Andres and Bernt Schiele (2016) 

5
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Inference Objectives

• Let �" = 	�%, … . , �) be a random vector.

• Let �" ∈ � and X- ∈ �.

• Given �(�") compute functions of it

• Example, find

• Mode �̅∗ ∈ argmax:̅∈	�	�(�̅)

• Mean E �(�̅) = 	∑ �(�̅)�(�̅)>
:̅∈	�

• A marginal argmax:?∈	�? ∑ �(�̅)>
:@,..,:?A@:?B@,..,:C

• A conditional �(�.|�%, … , �.E%, �.F%, … , �))
6



Inference Objectives

• Let �" = 	�%, … . , �) be a random vector.

• Let �" ∈ � and X- ∈ �.

• Given �(�") compute functions of it

• Example, find

• Mode �̅∗ ∈ argmax:̅∈	�	�(�̅)

• Mean E �(�̅) = 	∑ �(�̅)�(�̅)>
:̅∈	�

• A marginal argmax:?∈	�? ∑ �(�̅)>
:@,..,:?A@:?B@,..,:C

• A conditional �(�.|�%, … , �.E%, �.F%, … , �))
7



Algorithms for Inference

• Variable Elimination

• Belief Propagation

• Sampling based methods (MCMC)

8
1Note: There are others, but we will not discuss them here



DPGMs and UPGMs

• Inference algorithms can typically run on both graphs

• For convenience, we will construct a UPGM from a 
DPGM and discuss inference on UPGM

• The construction is straightforward

• For each factor in DPGM, call it a potential now

• Moralize the DPGM and remove directions

• (We lose some information in the graph)

9
1Reference: David Sontag (2013)



DPGMs and UPGMs

• Inference algorithms can typically run on both graphs

• For convenience, we will construct a UPGM from a 
DPGM and discuss inference on UPGM

• The construction is straightforward

• For each factor in DPGM, call it a potential now

• Moralize the DPGM and remove directions

• (We lose some information in the graph)

10
1Reference: David Sontag (2013)



• For both DPGM and UPGMs, factorization is simply not 
specified by the graph!

• Consider the following example graph

• It could be �(�, �, �) 	= 	
%

J
�(�, �, �)

• Or it could be �(�, �, �) 	= 	
%

J
�% �, � �L �, � �M(�, �)

Factor Graphs

11
1Reference: Daphne Koller (2011)

A

B

C



• Hence, we define new graphs called factor graphs

• Consider a square node for each factor

• Then, �(�, �, �) 	= 	
%

J
�(�, �, �) can be represented by

Factor Graph for UPGM

12
1Reference: Daphne Koller (2011)

A

B

C

A

B

C



• We define new graphs called factor graphs to capture 
the factorization in the graph itself

• For a function �(�%, . . , �)) 	= 	∏ �.(�.)
>
. the factor 

graph has a square node for each factor �.(�.) and a 
circular variable node for each variable �Q

• Factor graphs will allow us to define inference 
algorithms for both DPGMs and UPGMs

• Just a more richer way of drawing graphs for �(�)

Factor Graph

13
1Reference: Daphne Koller (2011)



• The following example shows two factor graphs for the 
same UPGM

Factor Graphs for a UPGM

14
1Reference: David Sontag (2013)



Factor Graph Example (I)

• Which distribution does the following graph correspond to?

• It corresponds to 

• � �%, �L, �M =
%

J
�R(�%, �L)�S(�%, �L) �T(�L, �M) �U(�M)

15
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

We will use � or � to denote factors

We will use lower case to minimize notation clutter



Factor Graph Example (I)

• Which distribution does the following graph correspond to?

• It corresponds to 

• � �%, �L, �M =
%

J
�R(�%, �L)�S(�%, �L) �T(�L, �M) �U(�M)

16
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Factor Graph Example (II)

• What is the factor graph for the distribution

• � �%, �L, �M =
%

J
�T �M|	�%, �L �R �% �S(�L)

• The following is the desired factor graph

17



Factor Graph Example (II)

• What is the factor graph for the distribution

• � �%, �L, �M =
%

J
�T �M|	�%, �L �R �% �S(�L)

• The following is the desired factor graph

18

1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



• We can do this for DPGMs as well (although redundant)

• Consider the graph on the right

• Its factor graph representation is shown below

Factor Graph for DPGM

19
1Reference: Daphne Koller (2011)

A B

C

A

C
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Inference using Variable Elimination

• An algorithm that uses dynamic programming to avoid 
enumerating all configurations/assignments

• Works for DPGMs and UPGMs

• It is a very simple idea, which is

• Don’t sum over all configurations simultaneously

• Do it one variable at a time

20



Variable Elimination Example

21

We will use lower case to minimize notation clutter

(compute this for all c)

(compute this for all b)

This can be for a DPGM or a UPGM

Objective: Find �(�, �)



Variable Elimination Example

22

1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

(compute this for all c)

(compute this for all b)

This can be for a DPGM or a UPGM

Objective: Find �(�, �)



Variable Elimination Example

23

1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

(compute this for all c)

(compute this for all b)

Objective: Find �(�, �)



Variable Elimination Example

24

1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

(compute this for all c)

(compute this for all b)

Objective: Find �(�, �)



Questions?

25



Today’s Outline

• Inference

• Factor Graph

• Variable Elimination

• Inference using Belief Propagation

• Inference using Markov Chain Monte Carlo

26



Inference using Belief 
Propagation

27



Belief Propagation (BP)

28
1Reference: See https://en.wikipedia.org/wiki/Belief_propagation

• Generalizes the idea of Variable Elimination

• Also called the Sum-Product Algorithm

• Will give exact answers (marginals, conditionals) on 
factor graphs that are trees

• Can also be used for general graphs but may give 
wrong answers



BP Example: Compute a Marginal

29
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

• We will introduce the notion of 
• messages, and 
• message passing



BP Example: Messages

30
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

• Messages are functions (vectors) that are passed from 
one node to another



BP Example: Messages

31
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



32
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

BP Example: Message from Factor to 
Variable



33
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

BP Example: Message from Factor to 
Variable



34
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

BP Example: Message from Variable to 
Factor



35
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

BP Example: Message from Variable to 
Factor



BP Example: Compute a Different Marginal

36
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Belief Propagation Algorithm

37
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

• We described the concept of ‘messages’ via  an 
example (computing marginals for a given factor 
graph)

• Now we will summarize the algorithm in general

• It has three key ingredients

• Initialization

• Variable to factor message

• Factor to variable message

• Don’t forget the original objective: efficient inference



BP: Initialization

38
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

• Messages from extremal/leaf node factors are 
initialized to be the factor itself

• Messages from extremal/leaf node variables are 
initialized to value 1



BP: Variable to Factor Message

39
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



BP: Factor to Variable Message

• We sum over all values possible in the scope of the 
factor

40
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



BP: Ordering of Messages

• Messages depend on all incoming messages

• To compute all messages

• Go from leaves to a designated root (say �M)

• Go from the designated root back to leaves

41
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

Designated root: �M



BP: Computing a Marginal

• Marginal is simply the product of messages the 
variable of interest receives

42
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



BP: Computing Maximal State

• BP variant can also solve for the maximal state �̅∗ ∈
argmax:̅∈��(�̅)

• This version is called Max-Product Belief Propagation

• Has three ingredients just as before

• Initialization (same as before)

• Variable to factor message (same as before)

• Factor to variable message

43
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



BP: Computing Maximal State

• Factor to variable message is different from Sum-Product

• Additionally, we need to track values achieving maximums 
as well

44
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



BP: Computing Maximal State

• Maximal state of a variable is

45
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



BP: General Factor Graphs

• Is in-exact

• Since it is not clear whether BP is a clear winner for 
inference with general graphs (among competing 
algorithms), we will not explore this further.

• See https://en.wikipedia.org/wiki/Belief_propagation for 
more details

46
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Questions?
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Today’s Outline

• Inference

• Factor Graphs

• Variable Elimination

• Inference using Belief Propagation

• Inference using Markov Chain Monte Carlo

48



Inference using Markov 
Chain Monte Carlo
See https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo

49



Approximate Inference

• BP and Variable Elimination are exact algorithms

• They work for tree structured factor graphs

• We will resort to numerical sampling to perform 
approximate inference for general graphical models

• Essentially, use random sampling to approximate

50



Monte Carlo Methods

51
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Monte_Carlo_method



Sampling

52
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

• Many methods in the literature

• Monte Carlo methods

• Rejection sampling

• Importance sampling

• Markov Chain Monte Carlo methods

• Gibbs sampling

• Metropolis-Hastings sampling

• …



Rejection Sampling

53
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

�(�) is a proposal distribution

such that �� � ≥ � � ∀�

2Reference: https://en.wikipedia.org/wiki/Rejection_sampling



Rejection Sampling

54
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)

• Impractical in high dimensions (lots of samples will get 
rejected)



Rejection Sampling

55
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)



Importance Sampling

• This is a variance reduction technique to Monte Carlo 
averaging

• A clever way to estimate expectations

• Objective is

• Solution

• Sample � points

• Compute

56
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Importance_sampling



Importance Sampling

57
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Importance_sampling



Importance Sampling

• If we can only evaluate up to a normalizing constant, 
then additional tricks needed.

58
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Importance_sampling

For example,



Gibbs Sampling MCMC

59
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Gibbs_sampling



Gibbs Sampling Example I

60
1Reference: Percy Liang, CS221 (2015)



Gibbs Sampling Example I
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1Reference: Percy Liang, CS221 (2015)



Gibbs Sampling Example I

62
1Reference: Percy Liang, CS221 (2015)



Gibbs Sampling Example I

63
1Reference: Percy Liang, CS221 (2015)



Gibbs Sampling Example I

64
1Reference: Percy Liang, CS221 (2015)



Gibbs Sampling Example II

65
1Reference: Percy Liang, CS221 (2015)



Gibbs Sampling Example II

66
1Reference: Percy Liang, CS221 (2015)



Gibbs Sampling Example II

67
1Reference: Percy Liang, CS221 (2015)

)



Gibbs Sampling Example II

68
1Reference: Percy Liang, CS221 (2015)



Gibbs Sampling MCMC

69
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Gibbs_sampling



Gibbs Sampling MCMC

70
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Gibbs_sampling



Gibbs Sampling MCMC

71
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Gibbs_sampling



Gibbs Sampling Iterations

72
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Gibbs_sampling



Markov Chain Analysis

73
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm



Markov Chain Terminology

74
1Reference: Pedro Domingos, CSE 515 (2017)



Stationary Distribution of a MC

75
1Reference: Pedro Domingos, CSE 515 (2017)



Detailed Balance Equation

76
1Reference: Pedro Domingos, CSE 515 (2017)



Gibbs Satisfies Detailed Balance

77
1Reference: Pedro Domingos, CSE 515 (2017)



Metropolis-Hasting MCMC

78
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm

• We will now mention one other MCMC method in 
passing.

• Metropolis-Hasting (MH)

• A special case is called  Metropolis sampling.



MH MCMC Algorithm

79
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm



MH MCMC Special Case: 
Metropolis Sampling

80
1Reference: Bjoern Andres and Bernt Schiele, MPI (2016)
2Reference: https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm



Questions?

81



Summary

• Inference computations on joint distributions is a hard 
problem

• Graphical models help us do this in efficient ways
• For tree models, this is linear time!

• We discussed two exact methods
• Variable Elimination
• Belief propagation

• We discussed one family of approximate methods
• Based on sampling via Markov Chain Monte Carlo 

techniques 82



Appendix

83



Sample Exam Questions

• What is a factor graph? How is it related to DPGMs? 
How is it related to UPGMs?

• What are the key steps of Belief propagation?

• What is the use of BP? Can it be used for inference 
over general factor graphs?

• How would one use sampling for inference?

• Why is Gibbs sampling a MCMC technique?

• Why does BP do better than variable elimination?

84



Advanced Prediction 
Models

Deep Learning, Graphical Models and Reinforcement 
Learning



Recap: Why Graphical Models

• We have seen deep learning techniques for 
unstructured data
• Predominantly vision and text/audio
• We will see control in the last part of the course

• (Reinforcement Learning)

• For structured data, graphical models are the most 
versatile framework
• Successfully applications: 

• Kalman filtering in engineering
• Decoding in cell phones (channel codes)
• Hidden Markov models for time series
• Clustering, regression, classification …

2



Recap: Graphical Models Landscape

• Three key parts:

• Representation

• Capture uncertainty (joint distribution)

• Capture conditional independences (metadata)

• Visualization of metadata for a distribution

• Inference

• Efficient methods for computing marginal or 
conditional distributions quickly

• Learning

• Learning the parameters of the distribution can 
deal with prior knowledge and missing data

3



Today’s Outline

• Applications

• Learning

• DPGM/UPGM

• Parameter Estimation

• Structure Estimation

• Complete/Incomplete Data

4



Applications

5



Applications of Graphical Models

• Given all that we have learned up to now, we will 
sample the following applications

6

Hidden Markov 

Models

time series, tracking

Gaussian 

Mixture Models

clustering

Latent Dirichlet

Allocation

topic modeling

Conditional 

Random Fields

structured 
classification/regression



Example Graphical Model I

7
1Reference: Percy Liang, CS221 (2015)



Example Graphical Model II

8
1Reference: Percy Liang, CS221 (2015)

• A generative process is nothing but a description of the joint 
distribution in terms of how the random variables realize



Example Graphical Model III

9
1Reference: Percy Liang, CS221 (2015)



Example Graphical Model IV

10
1Reference: Percy Liang, CS221 (2015)



Object Tracking via Hidden Markov Model

11
1Reference: Percy Liang, CS221 (2015)



Generative Program for HMM

12
1Reference: Percy Liang, CS221 (2015)



Object Tracking via HMM

13
1Reference: Percy Liang, CS221 (2015)



HMM Parameter Sharing

14
1Reference: Percy Liang, CS221 (2015)



Mixture Models

15
1Reference: Pedro Domingos, CSE 515 (2017)



Gaussian Mixture Models

16
1Reference: David Sontag (2013)



Gaussian Mixture Model in 1D and 2D

17
1Reference: David Sontag (2013)



Learning a GMM

18
1Reference: Pedro Domingos, CSE 515 (2017)



Learning a 1D GMM

19
1Reference: Pedro Domingos, CSE 515 (2017)



Latent Dirichlet Allocation

20
1Reference: David Sontag (2013)



Latent Dirichlet Allocation

21
1Reference: David Sontag (2013)



Latent Dirichlet Allocation

22
1Reference: David Sontag (2013)



Latent Dirichlet Allocation

23
1Reference: David Sontag (2013)



Latent Dirichlet Allocation

24
1Reference: David Sontag (2013)



Latent Dirichlet Allocation

25
1Reference: David Sontag (2013)



Conditional Random Field based Classifier

26
1Reference: David Sontag (2013)



Conditional Random Field based Classifier

27
1Reference: David Sontag (2013)



CRF for Natural Language Processing: Log-
linear Terms

28
1Reference: David Sontag (2013)



CRF for Natural Language Processing: The 
Task

29
1Reference: David Sontag (2013)

and �"



CRF for Natural Language Processing: The 
Task

30
1Reference: David Sontag (2013)



Questions?
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Today’s Outline

• Applications

• Learning

• Parameter Estimation in DPGMs with 
Complete/Incomplete Data

• Structure Estimation in DPGMs

• Parameter Estimation in UPGMs with 
Complete/Incomplete Data

32



Estimation/Learning

33



Different Estimation/Learning 
Problems

• There are many variants

34
1Reference: Pedro Domingos, CSE 515 (2017)

Model DPGM UPGM

Data Complete Incomplete

Structure Known Unknown

Objective Generative Discriminative



Different Estimation/Learning Problems

• We will look at the following problems

• Learning DPGMs with complete data and known 
structure

• MLE via counting and normalizing

• Learning DPGMs with incomplete data and known 
structure

• EM

• Learning DPGM structure

• Learning UPGMs in a generative setting

• Learning UPGM in a discriminative setting

35



Different Estimation/Learning 
Problems

• There are many variants

36
1Reference: Pedro Domingos, CSE 515 (2017)

Model DPGM UPGM

Data Complete Incomplete

Structure Known Unknown

Objective Generative Discriminative



Learning in DPGM: Parameters

37
1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Parameter Estimation

38
1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: One Variable Example

39
1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: One Variable Example

40
1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Two Variables Example

41
1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Two Variables Example

42
1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Three Variables Example I

43
1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Three Variables Example II

44
1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Parameter Sharing

45
1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Maximum Likelihood via 
Counting and Normalizing

46
1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Maximum Likelihood via 
Counting and Normalizing

47
1Reference: Percy Liang, CS221 (2015)



Learning in DPGM: Maximum Likelihood via 
Counting and Normalizing

48
1Reference: Percy Liang, CS221 (2015)



Different Estimation/Learning 
Problems

• What if we have missing data?

49
1Reference: Pedro Domingos, CSE 515 (2017)

Model DPGM UPGM

Data Complete Incomplete

Structure Known Unknown

Objective Generative Discriminative



Learning in DPGM: Latent Variables

50
1Reference: Percy Liang, CS221 (2015)



DPGM: Maximizing Marginal 
Likelihood

51
1Reference: Percy Liang, CS221 (2015)



Expectation Maximization

52
1Reference: Percy Liang, CS221 (2015) 2Note: EM was first proposed in 1977



EM: Revisiting K-Means

53
1Reference: Percy Liang, CS221 (2015)

• EM tries to maximize marginal likelihood

• K-means 

• Is a special case of EM (for GMMs with variance 
tending to 0)

• Objective: Estimate cluster centers

• But don’t know which points belong to which 
clusters

• Take an alternating optimization approach

• Find the best cluster assignment given current 
cluster centers

• Find the best cluster centers given assignments



EM: Revisiting K-Means

54
1Reference: Percy Liang, CS221 (2015)

• EM tries to maximize marginal likelihood

• K-means 

• Is a special case of EM (for GMMs with variance 
tending to 0)

• Objective: Estimate cluster centers

• But don’t know which points belong to which 
clusters

• Take an alternating optimization approach

• Find the best cluster assignment given current 
cluster centers

• Find the best cluster centers given assignments



The Two Steps of EM

55
1Reference: Percy Liang, CS221 (2015)

• E-step

• Here, we don’t know what the hidden variables are, 
so compute their distribution given the current 
parameters (�(�|� = �; �))

• Need inference! (BP/Gibbs MCMC)

• This distribution provides a weight �(ℎ) (temp 
variable in the EM algo) to every value � can take

• Conceptually, the E-step generates a set of weighted 
full realizations/configurations (ℎ, �)	with weights �(ℎ)



The Two Steps of EM

56
1Reference: Percy Liang, CS221 (2015)

• M-step

• Just do MLE (i.e., counting and normalizing) to re-
estimate parameters

• If we repeat E-step and M-step again and again, 
eventually we will converge to a local optima of 
parameters



EM: Example

57
1Reference: Percy Liang, CS221 (2015)



Different Estimation/Learning 
Problems

• What if the structure is unknown?

58
1Reference: Pedro Domingos, CSE 515 (2017)

Model DPGM UPGM

Data Complete Incomplete

Structure Known Unknown

Objective Generative Discriminative



• Given data, which model is correct?

59
1Reference: Pedro Domingos, CSE 515 (2017)

X Ymodel 1:

X Ymodel 2:

Learning Structure: Bayesian 
Approach



Learning Structure: Bayesian 
Approach
• Given data, which model is correct? more likely?

• Can do model averaging

• Can do model selection to pick a model that is

• tractable, understandable, explainable
60

1Reference: Pedro Domingos, CSE 515 (2017)

X Ymodel 1:

X Ymodel 2:

7.0)( 1 =mp

3.0)( 2 =mp

Data d

1.0)|( 1 =dmp

9.0)|( 2 =dmp



Learning Structure: Model Scoring

• Use Baye’s theorem to score a model

61
1Reference: Pedro Domingos, CSE 515 (2017)

Given data d:

)|()()|( mpmpmp dd µ

ò= qqq dmpmpmp )|(),|()|( dd

"marginal

likelihood"

model

score

likelihood
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Combined Learning

• Although structure learning is hard in general, still 
useful to do it by using prior knowledge and data

62
1Reference: Pedro Domingos, CSE 515 (2017)
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Different Estimation/Learning 
Problems

• There are many variants

63
1Reference: Pedro Domingos, CSE 515 (2017)

Model DPGM UPGM

Data Complete Incomplete

Structure Known Unknown

Objective Generative Discriminative



Learning in UPGM

64

Cancer

CoughAsthma

Smoking

Potential functions defined over cliques

Smoking Cancer Ф(S,C)

False False 4.5
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Learning in UPGM
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Cancer

CoughAsthma

Smoking

Can be thought in terms of a log-linear representation

1Reference: Pedro Domingos, CSE 515 (2017)
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Learning in UPGM: Generative

66
1Reference: Pedro Domingos, CSE 515 (2017)

• Maximize likelihood or posterior probability

• Numerical optimization (gradient or 2nd order) 

• No local maxima

• Requires inference at each step (slow!)

No. of times feature i is true in data

Expected no. times feature i is true according to model
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Learning in UPGM: Pseudo-likelihood

67
1Reference: Pedro Domingos, CSE 515 (2017)

• Likelihood of each variable given its neighbors in the 
data

• Does not require inference at each step

• Consistent estimator

• Widely used in vision, spatial statistics, etc.

• But PL parameters may not work well for
long inference chains

Õº
i
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Different Estimation/Learning 
Problems

• There are many variants

68
1Reference: Pedro Domingos, CSE 515 (2017)

Model DPGM UPGM

Data Complete Incomplete

Structure Known Unknown

Objective Generative Discriminative



Learning in UPGM: Discriminative

• This is related to Conditional Random Fields (CRFs)

69
1Reference: Pedro Domingos, CSE 515 (2017)

• Maximize conditional likelihood of query (y) given 

evidence (x)

• Inference is easier, but still hard

No. of true values of feature i in data

Expected no. of true values according to model
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Different Estimation/Learning 
Problems

• There are many variants

70
1Reference: Pedro Domingos, CSE 515 (2017)

Model DPGM UPGM

Data Complete Incomplete

Structure Known Unknown

Objective Generative Discriminative



Learning in UPGM: Missing Data

71
1Reference: Pedro Domingos, CSE 515 (2017)

• Gradient of likelihood is now difference
of expectations

• Can use gradient descent or EM
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Exp. no. true values given observed data

Expected no. true values given no datax: Observed

y: Missing



Learning Summary

• We looked at the following problems

• Learning DPGMs with complete data and known 
structure

• MLE via counting and normalizing

• Learning DPGMs with incomplete data and known 
structure

• EM

• Learning DPGM structure

• Learning UPGMs in a generative setting

• Learning UPGM in a discriminative setting

72



Learning Summary

• There are many other variants

• Some of these tasks necessarily rely on heuristics

• Many ways have been proposed in research, and as 
practitioners, we have to pick and choose.

73
1Reference: Pedro Domingos, CSE 515 (2017)



Questions?
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Summary

• We discussed some of the applications where they 
have been successfully applied

• We looked at parameter and structure estimation of 
these graphical models

• Bottom line: When there is structure in the inputs and 
outputs of a ML pipeline, consider DPGMs/UPGMs

• An unified way of thinking about supervised and 
unsupervised learning

75



Appendix
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Sample Exam Questions

77
1Reference: Percy Liang, CS221 (2015)

• In which settings would one use MLE and EM for 
learning in graphical models? Give examples.

• How is the graph structure learned? Can it be 
specified as prior information?

• Mention 3 applications of graphical models and 
specify their descriptions. Explain how learning 
happens in one of these models.



Gibbs Sampling when 
Observations/Evidence are Given

78
1Reference: Pedro Domingos, CSE 515 (2017)



Additional Applications: Naïve Bayes Spam 
Filter

79
1Reference: Alex Smola (2011)



Additional Applications: Naïve Bayes Spam 
Filter

80
1Reference: Alex Smola (2011)



Additional Applications: Naïve Bayes Spam 
Filter

81
1Reference: Alex Smola (2011)



Additional Applications: MAP Problem in 
Low Density Parity Check Codes

82
1Reference: David Sontag (2013)



Additional Applications: MAP Problem in 
Low Density Parity Check Codes

83
1Reference: David Sontag (2013)



Advanced Prediction 
Models

Deep Learning, Graphical Models and Reinforcement 
Learning



Beyond Prediction

• Recall from the introductory class

• We discussed complex prediction problems and 
addressed them using

• Deep learning architectures

• Graphical models

• We also discussed complex decisions, especially in 
the presence of feedback

• A way to make data-driven decisions: we will look at

• Online machine learning (this lecture)

• Reinforcement learning (next)

• Deep reinforcement learning (next to next)

2



Examples of Complex Decisions

3
1Reference: John Schulman, MLSS 2016



Reinforcement Learning: The Next Frontier in 
Data Science

4
1Reference: technologyreview.com/s/603501/10-breakthrough-technologies-2017-reinforcement-learning/ 

March/April 2017 Issue 



Reinforcement Learning: The Next Frontier in 
Data Science

1Figure: Defazio Graepel, Atari Learning Environment



1Reference:  DeepMind, March 2016

Reinforcement Learning: The Next Frontier in 
Data Science



Today’s Outline

• Online Machine Learning

• A/B Testing

• Multi-armed bandits

• Contextual bandits

7



Online Machine Learning

8



The Gist of Online (Machine) Learning

1. (Optionally) observe the state of the world (aka context)

2. Choose an action 

3. Obtain feedback on the chosen action

Repeat

Goal: Optimize feedback (e.g. maximize reward) for chosen 
actions

Assumption: Agent’s actions do not influence future contexts

9
1Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966
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MSN Deployment for Personalized News

11
1Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966



MSN Deployment for Personalized News

Loop:

1. User arrives at MSN 
with browsing history, user 
account, previous visits,… 

2. Microsoft chooses news 
stories, … 

3. User responds to 
content (clicks, navigation, 
etc)

12

Goal: Choose content to yield desired user behavior
Assumption: Recommendations to one user do not affect other 

users
1Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966



MSN Deployment for Personalized News

13

User	demographics	feature	vector

User	history	feature	vector

50	editorially	chosen	articles	with	

feature	vectors

User	Clicks	Story

…

Online	

Machine

Learning
Ranked	List

Front	End	Server Client	Brower

Clicks	logged	as	feedback

1Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966



MSN Deployment for Personalized News

• 10 million+ users

• 1000s of requests per second

• 5% overhead on front end machines

• 10s of servers for training

• 5 minute model update frequency

14

…

1Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966



MSN Deployment for Personalized News

• Relative gains observed

15
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1Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966

> 25% increase in clicks
(without much tuning)



Multitude of Applications

• Content Recommendation: Apps, Movies, Books, …

• Personalization of search results

• Customer churn prevention

• Adaptive UI personalization

• …

• Question:

• How to build a solution to power these applications?

16
1Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966

Algorithm	

generates	

decisions

Online Machine Learning



Questions?
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Today’s Outline

• Online Machine Learning

• A/B Testing

• Multi-armed bandits

• Contextual bandits

18



A/B Testing

19



Motivation for A/B Tests

• Typical business scenario

• Say there is a meeting to decide on how to 
improve a product or service

• Multiple competing ideas emerge

• Want to make this decision after making some 
field observations.

• How to pick one?

• Use A/B testing (this is related to two-sample 
hypothesis testing)

20



Motivation for A/B Tests

• Full time companies such as Optimizely, Apptimize, APT, 
Monetate, etc. provide A/B testing services

• Extensively used at 

• Microsoft for Bing.com (see http://exp-platform.com )

• Google, Facebook, Amazon, Airbnb, Linkedin …

• Marketing tools

• Clinical trials ($11b+ market)
21



Example with Two Solutions

• Which page has a higher conversion rate?

• With B, site lost 90% of revenue: users want to find 
coupons to reduce price

22
1Reference: Bruno Ribeiro, CS57300 (2016)



Example with Two Solutions

• Which page has a higher conversion rate?
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coupons to reduce price
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A/B Testing Setup

• First we will ignore the online aspect of the problem

• That is, we will ignore instantaneous feedback

• We will only use these feedbacks at the end of a period

• In particular,

• They will be used to decide on good recommendation 
policies

24



A/B Testing Setup

• A/B testing is about showing users two solutions

• And figuring out if solution A is different than solution B

25
1Reference: http://hbx.hbs.edu/blog/post/word-of-the-week-ab-testing



A/B Testing Setup

26
1Reference: http://alexdeng.github.io/public/files/Amazon%20Tech%20Talk.pdf

• A/B testing is about showing users two 
solutions

• A (control)

• B (treatment)

• Randomly split the users while showing

• Collect the outcomes and decide 
which option was better

• Best scientific way to establish 
cause-effect relationship

• Compared to offline data analysis 
(error prone)



A/B Testing Setup
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1Reference: http://alexdeng.github.io/public/files/Amazon%20Tech%20Talk.pdf

• A/B testing is about showing users two 
solutions

• A (control)

• B (treatment)

• Randomly split the users while showing

• Collect the outcomes and decide 
which option was better

• Best scientific way to establish 
cause-effect relationship

• Compared to offline data analysis 
(error prone)



A/B Testing is Two Sample Testing

• A/B testing is about collecting statistics across two groups

• Randomized assignment of the two solutions to each user is 
a key requirement
• Eliminates biases and confounding

• Say each group of users has true mean effect �" and  �#
• From data, we want to infer weather
• These are different (statistical significance)? 
• Same? 
• Which is larger?

28
1Reference: Bruno Ribeiro, CS57300 (2016)



Types of Hypothesis Tests

• Fisher

• Reject �% (no acceptance as such)

• More data typically leads to rejection

• Neyman-Pearson

• Compare �% to �"
• Find likelihood ratio �(����|�%)/�(����|�")

• Bayesian

• Compute �(�%|����)/�(�"|����)

• Similar to Neyman-Pearson when � �% = �(�")

29
1Reference: Bruno Ribeiro, CS57300 (2016)



A/B Testing Pros

• Very intuitive setup and conclusions

• Field experiment decides the worth of a 
feature/offering, not gut instinct

• Most used in industry! (compared to bandit techniques)
• Also called split or bucket testing

• Need not be a one time process
• Can repeat if you think users have changed in terms 

of their preferences
30



A/B Testing Cons

• Has many bells and whistles to make it work
• Especially because most treatment effects show small 

incremental improvement
• See http://exp-platform.com for an extensive list of 

issues that affect A/B testing

• What if we can change who sees what treatment (action) 
dynamically?
• Leads to Multi-Armed Bandit problems.

• What if we want to optimize over several options 
dynamically depending on context?
• Leads to Contextual Bandit problems.

31



Questions?
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Today’s Outline

• Online Machine Learning

• A/B Testing

• Multi-armed bandits

• Contextual bandits

33



Bandit Problems

34



The Multi-armed Bandit Problem

• Multi-armed bandit (MAB) problem involves the 
following in each interaction

35
1Reference: Sumeet Kataria (2013)



The Formal Setting

• a

36
1Reference:



MAB Performance

• It is an online problem. 

• We need to come up with algorithms/strategies.

• Example: 

• a round-robin strategy

• A constant strategy (bad idea!)

37



The Epsilon-Greedy Algorithm

• a

38
1Reference: Sumeet Kataria (2013)



The Epsilon-Greedy Algorithm Intuition

• How can we do well? We need to explore the arms. 
We also need to exploit what we have learned so far.

39
1Reference: Sumeet Kataria (2013)



Epsilon-Greedy Synthetic Experiment

• a

40
1Reference: Sumeet Kataria (2013)



The Upper Confidence Bound (UCB) 
Algorithm
• Lets look at a slightly more involved algorithm: UCB

41



UCB Synthetic Experiment

• 10 actions, 101 interactions (is this realistic?)

• Reward for each action has mean 0.5/�	(5 ≤ � ≤ 15)

42
1Reference: https://jeremykun.files.wordpress.com/2013/10/ucb1-simple-example.png

�[�:] ≤ ��log�

�:



The Thompson Sampling Algorithm

• A Bayesian algorithm for MAB problems is as follows

• Regret upper bounds have similar dependencies as UCB.

43
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Thompson Sampling: Conjugate Priors

44
1Reference: http://imagine.enpc.fr/%7Eobozinsg/stats_review.html



Thompson Sampling: Conjugate Priors
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1Reference: http://imagine.enpc.fr/%7Eobozinsg/stats_review.html



Thompson Sampling: Conjugate Priors
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1Reference: http://imagine.enpc.fr/%7Eobozinsg/stats_review.html



Thompson Sampling: Conjugate Priors

47
1Reference: http://imagine.enpc.fr/%7Eobozinsg/stats_review.html



Thompson Sampling: 
Categorical-Dirichlet Conjugacy

48
1Reference: http://imagine.enpc.fr/%7Eobozinsg/stats_review.html



Thompson Sampling: 
Categorical-Dirichlet Conjugacy

49
1Reference: http://imagine.enpc.fr/%7Eobozinsg/stats_review.html



Thompson Sampling: 
Categorical-Dirichlet Conjugacy

50



Non-Probabilistic Setting

• Why do we need to assume that the rewards are 
i.i.d.?

• Can we drop the stochastic assumptions on the 
rewards?

• Reason #1: These rewards may be the output of a 
complex process

• Reason #2: These rewards may be generated by an 
‘adversary’ (someone who is not random)

51



Non-Probabilistic Setting

• We can in fact drop the probabilistic reward assumption!

• Template

• Adversary selects rewards �C 1 ,… , �C(�), which are 
not known to the player (us)

• Player selects arm �C
• In full information, player sees �C 1 ,… , �C(�)

• In bandit information setup, player only sees �C �C

52



Exp3 Algorithm
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Exp3 Algorithm
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Exp3 Algorithm
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Exp3 Synthetic Experiment

• 10 actions, 10H interactions

• Reward for each action is Bernoulli with means 1/�	(2 ≤
� < 12)

56
1Reference: https://jeremykun.files.wordpress.com/2013/11/exp3-regret-graph.png

�: ≤ � ��log�
K

�:



Exp3 Synthetic Experiment

• 10 actions, 10H interactions

• Reward for each action is Bernoulli with means 1/�	(2 ≤
� < 12)

57
1Reference: https://jeremykun.files.wordpress.com/2013/11/exp3-regret-graph.png



Questions?
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Bandits with Contexts

59



Recall: MSN Deployment for Personalized News

Loop:

1. User arrives at MSN 
with browsing history, user 
account, previous visits,… 

2. Microsoft chooses news 
stories, … 

3. User responds to 
content (clicks, navigation, 
etc)

60

Goal: Choose content to yield desired user behavior
Assumption: Recommendations to one user do not affect other 

users
1Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966



Previous Bandit Models are not Enough

• No context!

• No-carry over effect from one interaction to the next

• Say users can change behavior by seeing 
recommendations

• Can be captured by Reinforcement Learning

61



The Contextual Bandit Problem

62

• In the Contextual Bandit problem,

• Every round, we get context

• We want to find the best policy (what to do in 
each context)

• May not see the same context twice!

• Different from MAB setting because in MAB problems

• No context

• We were finding a single best action

1Reference: John Langford (2011)



Benefit of Context

• Say we have 5 ads

• Say we have 4 policies

• These map context to ads

• Now, lets look at one round of Exp3

• For Exp3, it is as if it has 4 “arms” (one per policy)

63
1Reference: http://courses.cs.washington.edu/courses/cse599s/12sp/scribes/lecture13.pdf



Benefit of Context

• In round � say the policies recommend the following:

• Say Exp3 chose “arm” �" by sampling from weights

• And, say �"’s ad choice �# was clicked
64

1Reference: http://courses.cs.washington.edu/courses/cse599s/12sp/scribes/lecture13.pdf



Benefit of Context

• Exp3 assigns reward 	�MN �" =
OP(QR)

SP(QR)

• Rest of the arms all get reward 0

• Can we do better?

• Yes! �# also was recommending �#
• We should better estimate reward of �#

65
1Reference: http://courses.cs.washington.edu/courses/cse599s/12sp/scribes/lecture13.pdf



Exp4 Algorithm

• a

66
1Reference: John Langford (2011)



Exp4 Algorithm

• a

67
1Reference: John Langford (2011)



Exp4 Algorithm

• a
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Exp4 Algorithm

• a
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Exp4 Algorithm

• a
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Exp4 Algorithm

• a

71
1Reference: John Langford (2011)



Questions?
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Reinforcement Learning: Because Contextual 
Bandit Formulation is not Enough

73
1Reference: https://medium.com/@awjuliani/simple-reinforcement-learning-with-tensorflow-part-1-5-contextual-bandits-bff01d1aad9c

Non-exogenous change of states/contexts



Reinforcement Learning: Because Contextual 
Bandit Formulation is not Enough
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1Reference: https://medium.com/@awjuliani/simple-reinforcement-learning-with-tensorflow-part-1-5-contextual-bandits-bff01d1aad9c

Non-exogenous change of states/contexts



Summary

• We looked at A/B testing as a way to introduce 
enhancements in a business product/service

• May need a lot of examples

• Is based on the idea of randomized control trials

• We also looked at two new online ML problems

• Multi-Armed Bandits

• Contextual Bandits

• Contextual bandits are a special case of 
reinforcement learning, which we will study next time. 
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Sample Exam Questions

• What is the difference between A/B testing and 
Multi-armed bandits?

• Can we do A/B testing when we have more than two 
options?

• What is the role of exploration in the Bandit 
problems?

• Can Exp3 be used in a stochastic setting?

• How does the contextual problem differ from the non-
contextual problem?
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Online ML is Difficult to Deploy

• Separate teams for each part of the process

• Faulty logging

• Logging just choice, not probabilities

• Features not logged and change in time

• Runtime behavior incompatible with the ML

• Business logic overriding randomization

• Using the probability as feature for downstream 
ML

• Subtle errors that are difficult to find in complex 
systems!

78
1Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966



Contextual Bandit: Website Example

79
1Reference: John Langford (2011)



Contextual Bandit: Website Example
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Contextual Bandit: Website Example

81
1Reference: John Langford (2011)



Contextual Bandit: Website Example

82
1Reference: John Langford (2011)



Contextual Bandit: Clinical Example

83
1Reference: John Langford (2011)



Additional Resources

• Course at UWash:

• http://courses.cs.washington.edu/courses/cse599s/12sp/scribes.html (lectures 13,14)

• Course at UCSD:

• http://cseweb.ucsd.edu/~kamalika/teaching/CSE291W11/ (lecture5)

• Tutorial by Bygelzimer and Langford:

• http://hunch.net/~exploration_learning/

• Course at UAlberta:

• https://sites.ualberta.ca/~szepesva/CMPUT654/

Note: These are optional. May be slightly theoretical in nature.
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Today’s Outline

• Complex Decisions

• Reinforcement Learning Basics

• Markov Decision Process

• (State Action) Value Function

• Q Learning Algorithm

2



Complex Decisions
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Complex Decisions Making is Everywhere

Optimal 
Control/Engineering Machine Learning/AI

Neuroscience/Psychology
Economics/Operations 

Research

RL

Control

• Fly drones
• Autonomous driving

Operations

• Retain customers, UX
• Inventory management

Logistics

• Schedule transportation
• Resource allocation

Games

• Chess, Go, Atari
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Credit: Sebastien Bubeck
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Complex Decision Making can be addressed 
using RL

6
1Reference: technologyreview.com/s/603501/10-breakthrough-technologies-2017-reinforcement-learning/ 

March/April 2017 Issue 



Playing Atari Using RL (2013)

1Figure: Defazio Graepel, Atari Learning Environment



1Reference:  DeepMind, March 2016

AlphaGo Conquers Go (2016)



• Videos

9



Need for Reinforcement Learning

10
1Reference: https://medium.com/@awjuliani/simple-reinforcement-learning-with-tensorflow-part-1-5-contextual-bandits-bff01d1aad9c

Non-exogenous change of states/contexts
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11



Today’s Outline

• Complex Decisions

• Reinforcement Learning Basics

• Markov Decision Process

• (State Action) Value Function
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RL Overview

• Reinforcement Learning (RL) addresses a version of the 
problem of sequential decision making 

• Ingredients:

• There is an environment

• Within which, an agent takes actions

• This action influences the future

• Agent gets a (potentially delayed) feedback signal

• How to select actions to maximize total reward?

• RL provides several sound answers to this question



The Environment

• Sees Agent’s action �" and generates an observation �"$% and a 
reward �"$%

• Subscript � indexes time. Current observation �" is called state

• Assume the future (at times � + 1, � + 2,… .) is independent of the 
past (… , � − 2, � − 1) given the present (�):  this is called the 
Markov assumption

• Assume everything relevant is observed

� �"$% �" = �(�"$%|�%, �4, … �")



The Agent

• Agent observes �"$%, �"$% and these are not i.i.d. across 
time

• Agent’s objective is to maximize expected total future 
reward E[�"$% + ��"$4 +⋯]

• Agent’s actions affect what it sees in the future (�"$%)

• Maybe better to trade off current reward �"$% to gain 
more rewards in the future

�: Discount Factor



The Reward

1Reference: David Silver, 2015



The Goal

1Reference: David Silver, 2015



The Interactions

• Pictorially
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RL versus other Machine Learning 
Settings

21
1Reference: David Silver, 2015



RL versus other Machine Learning 
Settings

22
1Reference: Joelle Pineau, DLSS 2016



Components of an RL Agent

23
1Reference: David Silver, 2015
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Components of RL: Model
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Questions?
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Today’s Outline

• Complex Decisions

• Reinforcement Learning Basics

• Markov Decision Process

• (State Action) Value Function

• Q Learning Algorithm
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Components of RL: MDP Framework

33

• We will now revisit these components formally

• Policy �(�|�)

• Value function �>(�)

• Model �@@A
B and ℛ@

B

• In the framework of Markov Decision Processes

• And then we will address the question of optimizing
for the best � in realistic environments



Towards a Markov Decision Process

• MDPs are a useful way to describe the RL problem

• MDPs can be understood via the following progression

• Start with a Markov Chain

• State transitions happen autonomously

• Add Rewards

• Becomes a Markov Reward Process

• Add Actions that influences state transitions

• Becomes a Markov Decision Process

1Reference: David Silver, 2015



Markov Chain/Process
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Example Markov Chain
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Markov Chain with Rewards
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Markov Chain with Rewards
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Example Markov Reward Process
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Recursions in Markov Reward Process
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Markov Decision Process



Example Markov Decision Process

1Reference: David Silver, 2015



Markov Decision Process: Policy

• Now that we have introduced actions, we can discuss 
policies again

• Recall

1Reference: David Silver, 2015



MDP is an MRP for a Fixed Policy
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Markov Decision Process: Value 
Function
• We can also talk about the value function(s)
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Recursions in MDP
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Markov Decision Process: Objective
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Markov Decision Process: Objective
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*Also called the Bellman Optimality Equation



Markov Decision Process: Optimal Policy

1Reference: David Silver, 2015
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Today’s Outline

• Complex Decisions

• Reinforcement Learning Basics

• Markov Decision Process

• (State Action) Value Function

• Q Learning Algorithm
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Finding the Best Policy

• Need to be able to do two things ideally

• Prediction: 

• For a given policy, evaluate how good it is

• Compute �>(�, �)

• Control:

• And make an improvement from �

• We will focus on the Q Learning algorithm

• It does prediction and control ‘simultaneously’

1Reference: David Silver, 2015



Intuition for an Iterative Algorithm
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Intuition for an Iterative Algorithm
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The Q Learning Algorithm

• If we know the model

• Turn the Bellman Optimality Equation into an iterative update

• This is called Value Iteration

1Reference: David Silver, 2015



The Q Learning Algorithm

• If we do not know the model

• Do sampling to get an incremental iterative update

• Choose next actions to ensure exploration
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The Q Learning Algorithm

• Initialize �, which is a table of size #states×#actions

• Start at state �%

• For � = 1,2,3, … .

• Take �" chosen uniformly at random with probability �

• Take argmaxB∈O	�(�", �) with probability 1 − �

• Update Q: 
• � �", �" = � �", �" + �"(�"$% + �max

B∈O
� �"$%, � 	− �(�", �"))

• Parameter � is the exploration parameter

• Parameter �" is the learning rate

• Under appropriate assumptions1, lim
"→U

� = �∗

Temporal difference error

1Reference: Christopher J. C. H. Watkins and Peter Dayan, 1992

Explore

Exploit
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The Q Learning Algorithm: Recap

• Bellman Optimality Equation gives rise to the Q-Value 
Iteration algorithm

• Making this algorithm incremental, sampled and adding 
�-greedy exploration gives Q Learning Algorithm

73
1Reference: David Silver, 2015



Questions?
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Summary

• RL is a great framework to make agents intelligent

• Specify goals and provide feedback

• Many challenges still remain: exciting opportunity to 
contribute towards next generation of artificially 
intelligent and autonomous agents.

• In the next lecture, we will see that deep learning 
function approximation based RL agents show promise 
in large complex tasks: representations matter!
• Applications such as 
• Self-driving cars
• Intelligent virtual agents
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Appendix
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Additional Resources

• An Introduction to Reinforcement Learning by Richard Sutton and 
Andrew Barto
• http://incompleteideas.net/sutton/book/the-book.html

• Course on Reinforcement Learning by David Silver at UCL 
(includes video lectures)
• http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

• Research Papers
• Deep RL collection: https://github.com/junhyukoh/deep-

reinforcement-learning-papers
• [MKSRVBGRFOPBSAKKWLH2015] Mnih et al. Human-level 

control through deep reinforcement learning. Nature, 
518:529–533, 2015.

• [SHMGSDSAPLDGNKSLLKGH2016] Silver et al. Mastering 
the game of Go with deep neural networks and tree search. 
Nature, 529: 484–489, 2016.
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Cons of RL

• Reinforcement Learning requires experiencing the 
environment many many times

• This is because it is a trial and error based approach

• Impractical for many complex tasks

• Unless one has access to simulators where an RL agent 
can practice a billon times
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RL versus other Machine Learning 
Settings

79

• There is a notion of exploration and exploitation, 
similar to Multi-armed bandits and Contextual bandits

• Key difference: actions influence future contexts

1Reference: David Silver, 2015



RL versus other Sequential Decision 
Making Settings
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1Reference: David Silver, 2015



Types of RL Agents

81
1Reference: David Silver, 2015

• There are many ways to design them, so we roughly 
categorize then as  below:



Relating the Two Value Functions I

1Reference: David Silver, 2015



Relating the Two Value Functions II

1Reference: David Silver, 2015



Recursion in MDP: Value Function 
Version

1Reference: David Silver, 2015



Relating Policy and Value Function

1Reference: David Silver, 2015


