Advanced Prediction Models

Deep Learning, Graphical Models and Reinforcement Learning

Today's Outline

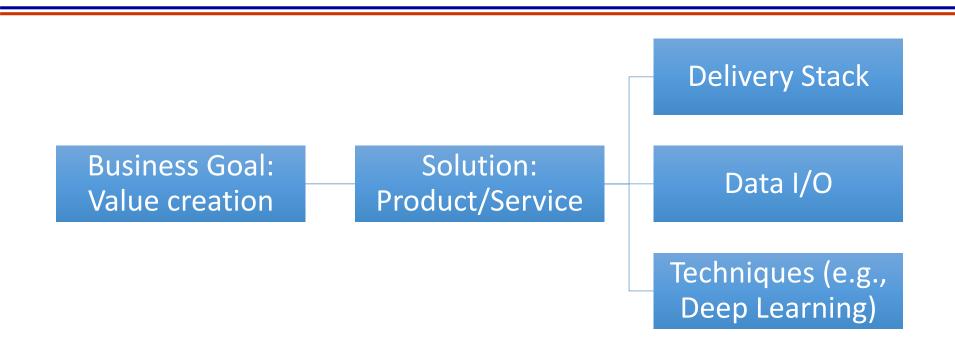
- Course Logistics
- Introduction to the Course
- Getting Started with Neural Nets
 - Classification
 - Backpropagation
 - Feedforward Neural Nets

Course Topics

- We will cover several tools under the umbrella of
 - Deep Learning
 - Probabilistic Graphical Models
 - Online and Reinforcement Learning

Introduction to the Course

20000 Ft View



- You need a critical understanding of the domain to be successful in shipping solutions
- Before venturing into a complex technique, try a shallow/easy technique

A Business Analyst's Toolkit

- Techniques
 - Prediction
 - Decision Trees
 - Linear classifiers and logistic regression
 - Naïve Bayes classifier
 - SVMs
 - Neural networks (and deep learning)
 - Graphical models
 - Online/reinforcement learning
 - Exploration
 - Clustering
 - Market basket analysis

Example I

- You are an online fashion retailer
- Want to adaptively recommend products
- Cannot measure certain quantities directly
 - Substitution behavior
 - Stock-level sensitivities

Example I

- You are an online fashion retailer
- Want to adaptively recommend products
- Cannot measure certain quantities directly
 - Substitution behavior
 - Stock-level sensitivities
- Build a personalization system that infers the most likely product that would be bought given censored/partial information
 - Recommend products
 - Tweak prices

Example II

- You are a home insurance provider
- Want to check houses for risks and opportunities
- Manually checking houses and neighborhood does not scale

Example II

- You are a home insurance provider
- Want to check houses for risks and opportunities
- Manually checking houses and neighborhood does not scale
- Fly a helicopter/drone and capture video
- Tag objects in the video
 - Classify if a outdoor pool is present or not
 - Classify greenery
 - Segment the house from the background
- Figure out insurance premiums across neighborhoods

Example III

- Fashion retailing
 - The customer dislikes our recommendation
 - The customer finds the price too high
 - How to update our recommendations and prices?
- Home insurance
 - Prices the premium too low for this year
 - Had to payout a lot
 - How to update the premium for next year?

Example III

- Fashion retailing
 - The customer dislikes our recommendation
 - The customer finds the price too high
 - How to update our recommendations and prices?

Data Variety

- Structured data
 - Examples:
 - Medical/healthcare data
 - Advertising data
 - Have ordinal, integer, binary or categorical fields
 - Among other tools, one can use graphical models

Data Variety

- Structured data
 - Examples:
 - Medical/healthcare data, advertising data
 - Have ordinal, integer, binary or categorical fields
 - If there is missing/noisy data, one can use graphical models
- Unstructured data
 - Examples:
 - Images (tensor, i.e., typically a 3 dimensional array) and videos (a sequence of images), text strings/documents
 - Deep learning reduces feature engineering effort

Complex Decisions

- Decisions
 - Examples:
 - which articles to show, how to price products
 - May use many predictions, may need to be taken repeatedly for different contexts
 - Online and reinforcement learning methods address this 'learning on the go' problem

Two Themes of the Course

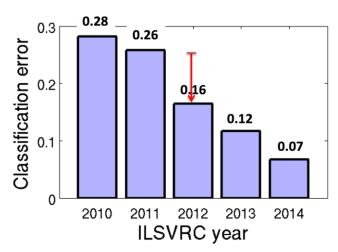
- Data Variety
 - Images and Videos
 - Speech
 - Text and Language
- Complex Decisions
 - Sequential Decision Making

Three Techniques covered in the Course

- To address data variety and complex decision problems, we will look at:
 - Deep Learning
 - Probabilistic Graphical Models
 - Online and Reinforcement Learning

Deep Learning

- One example (in vision) of its success is at the ILSVRC¹
- ImageNet dataset has 22000 categories across 14 million images
- ILSVRC Task 1 was a classification challenge
 - Given 1000 categories and 1.5 million images, predict 5 categories for a test image



¹ImageNet Large Scale Visual Recognition Challenge ²Figure: Russakovsky et al. arxiv:1409.0575

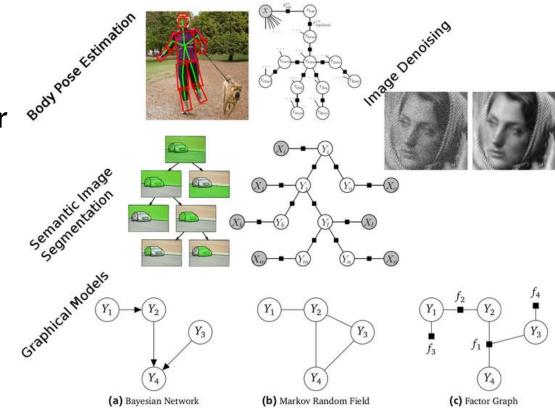
Deep Learning

- Neural nets are not new (1960s). Applied to handwritten digit recognition back in 1998
- Were not mainstream till around 2010/2012*
 - What changed? Access to GPUs and Data
- Caveat:
 - Deep learning achieves good performance on some tasks
 - Typically has not worked well beyond classification...
 - There is a lot of scope for improvement, engineering, system building, model building

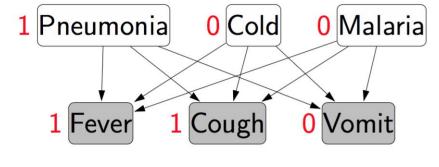
^{*}Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition, Dahl et al. 2010 Imagenet classification with deep convolutional neural networks, Krizhevsky et al. 2012

Graphical Models

- Probability distribution and graphs!
- Method of choice for complex machine learning models

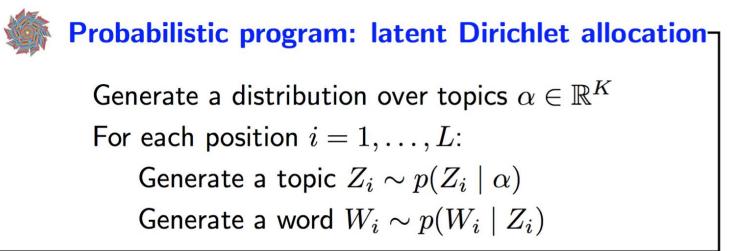


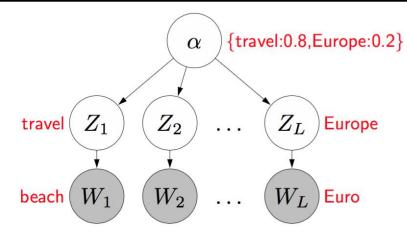
¹Figure: https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/ teaching/courses/probabilistic-graphical-models-and-their-applications/ Question: If patient has has a cough and fever, what disease(s) does he/she have?



Graphical Models

Question: given a text document, what topics is it about?





Graphical Models

- Probabilistic
- Dependencies btw. RVs
- Low capacity
- Domain knowledge: easy to encode

Deep Neural Networks

- Deterministic
- Input/Output Mapping
- High capacity
- Domain knowledge: hard

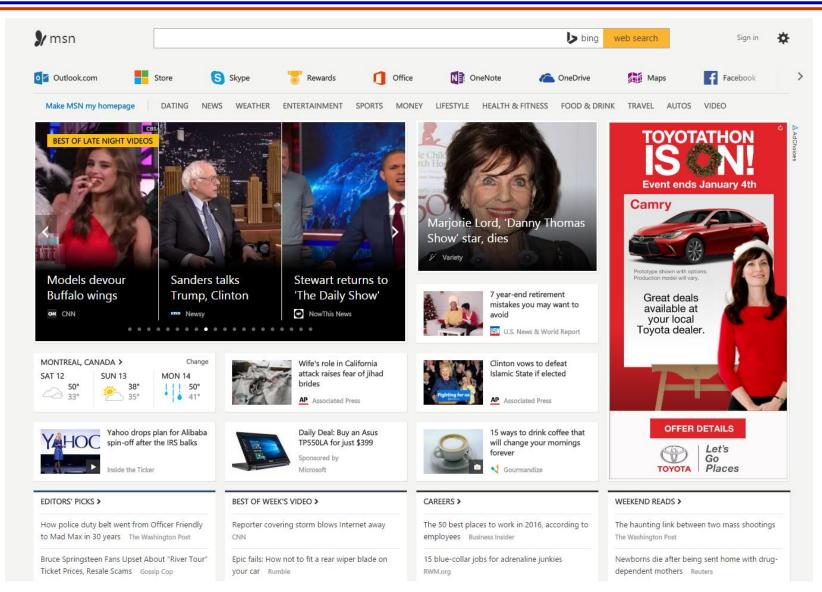
Combinations:

D. Kingma and M. Welling: Auto-encoding variational Bayes. ICLR, 2014.

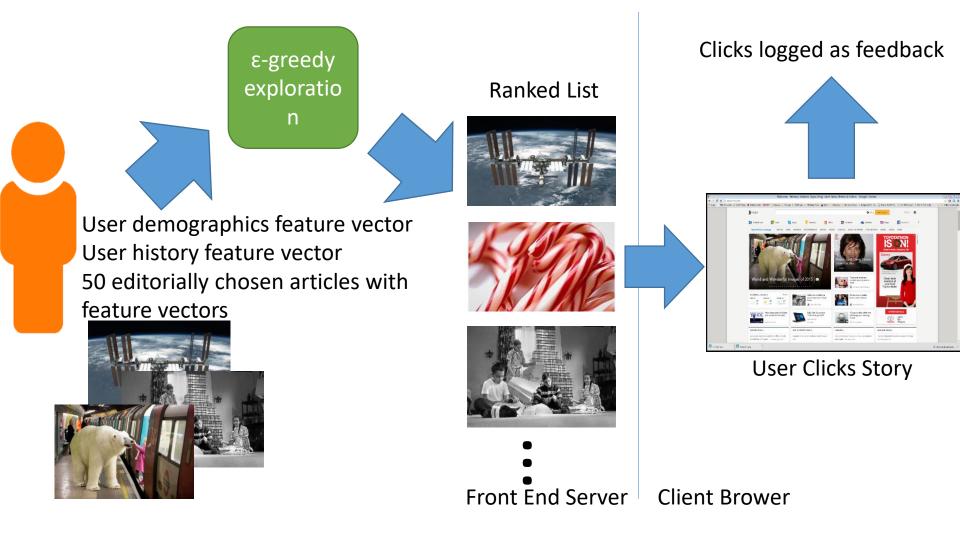
L. Chen, A. Schwing and R. Urtasun: Learning Deep Structured Models. ICML, 2015.

J. Domke: Learning graphical model parameters with approximate marginal inference. PAMI, 2013, Vol. 35, no. 10, pp. 2454–2467.

¹Reference: Andreas Geiger, Autonomous Vision Group, MPI (2017)



¹Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966



¹Reference: Alekh Agarwal et al., http://arxiv.org/abs/1606.03966

¹Reference: DeepMind, March 2016

¹Figure: Defazio Graepel, Atari Learning Environment

Caveat

- Measurable metrics of business success take priority over technical success metrics
- Need to ask:
 - Does a Y% increase in classification accuracy help in X% increase in sales?
 - Does a Z% increase in classification accuracy due to using a deep learning solution help the bottomline?
 - What is the technical debt incurred? Who will maintain?

Questions?

Today's Outline

- Course Logistics
- Introduction to the Course
- Getting Started with Neural Nets
 - Classification
 - Backpropagation

Classification

- Classification
 - Data
 - Model
 - Loss
 - Optimization

Classification

- To design the classifier, we need
 - Training data
 - Model specification for the classifier
 - Loss function to define the best model
 - Optimization to get to the best model

Data (I)

- Lets pick a domain: vision
- What is an image?
 - A bunch of numbers between 0 to 255
 - A 3 dimensional array
 - The same object can look different based on
 - Location of the camera
 - Location of the light source
 - Rigidity of the object
 - Occluding objects
 - Background
 - Variation across objects of the same category

Data (II)

- Say we have N training examples $(x_i, y_i), i = 1, ..., N$
 - x_i is the feature vector for the i^{th} example
 - y_i is the label for the i^{th} example
- Before deep learning
 - Carefully designed features
 - Histogram of colors
 - Histogram of Oriented Gradients (HOG)
 - Scale Invariant Feature Transform (SIFT)
 - Various types of filters
- With deep learning
 - Almost no feature engineering

Model (I)

- Parametric vs non-parametric
- Example:
 - Logistic classifier is parametric
 - K-Nearest Neighbor is a non-parametric classifier
- We will focus on parametric models
- A fixed set of parameters and hyper-parameters determine a model completely

Model (II)

- Pick a concrete parametric model f(x, W, b)
 - x is the input ($d \times 1$ dimensional)
 - Vectorize the image or get features
 - W is a parameter ($p \times d$ dimensional)
 - b is also a parameter ($p \times 1$ dimensional)
- Let f(x, W, b) = Wx + b
 - This is a linear model
 - We will change this later
 - The output of the linear model is a vector of scores

Model (III)

- Given a model (i.e., a fixed W, b pair) our classifier can be
 - Pick the index with the highest 'score'
 - $\hat{l} = \operatorname{argmax}_{\{j=1,\dots,p\}} f(x, W, b)$
 - Pick the index with the highest 'probability'
 - Need a map/function from scores to probabilities
- We want to use the best model. How?
 - Define best: Loss function
 - Find the best: Optimization

Loss functions (I)

- Let the j^{th} coordinate of f(x, W, b) be s_j
- Loss L_{data} is defined over the training data
- Is chosen to be decomposable over N terms, one per example

•
$$L_{data} = \sum_{i=1}^{N} L_i$$

Loss functions (I)

- Let the j^{th} coordinate of f(x, W, b) be s_j
- Loss L_{data} is defined over the training data
- Is chosen to be decomposable over N terms, one per example

•
$$L_{data} = \sum_{i=1}^{N} L_i$$

• Logistic loss (Cross-entropy or softmax) for example i

•
$$L_i = -\log P(Y = y_i | X = x_i)$$
 where
• $P(Y = j | X = x_i) = \frac{e^{s_j}}{\sum_k e^{s_k}}$

- SVM loss (2 class, \boldsymbol{W} is a row vector) for example \boldsymbol{i}

•
$$L_i = \max(0, 1 - y_i s_{y_i})$$

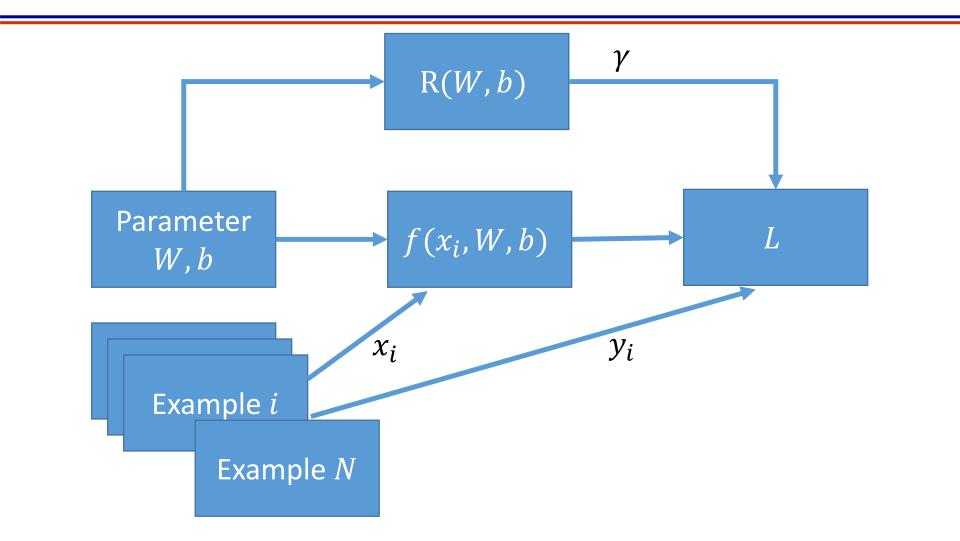
Loss functions (II)

- Need for regularization
 - Unique model
 - Desired model
 - Control overfitting
- Final loss $L = L_{data} + \lambda R(W, b)$
- R(W, b) can be just a function of W or b or both

Loss functions (III)

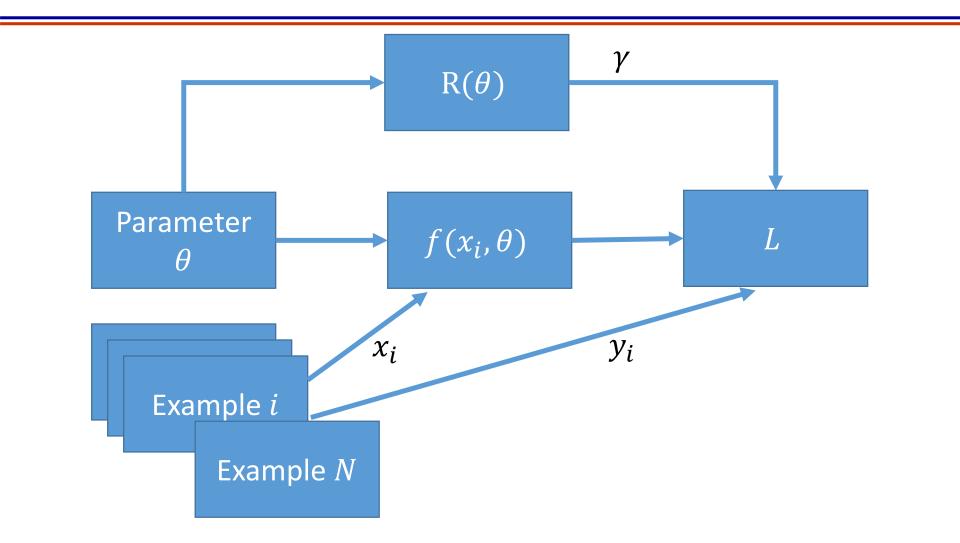
- L2 regularization: $||W||_2^2 = \sum_i \sum_j W_{ij}^2$
- L1: $||W||_1 = \sum_i \sum_j |W_{ij}|$
- Elastic net: $\alpha ||W||_1 + (1-\alpha) ||W||_2^2$
- Regularization may not always be and explicit function of the parameters
 - We will see dropout later

Optimization (I)



Need to find parameters W, b and hyper-parameter γ

Optimization (I)



Need to find parameters θ and hyper-parameter γ

Optimization (II)

- Many ways to optimize
- We will focus on first order methods
 - Key ingredient: Gradient
- Gradient is the vector of partial derivatives of a function
- Can be computed
 - Numerically: $\lim_{h \to 0} \frac{f(z+h) f(z)}{h}$
 - Analytically: Calculus and chain rules

Optimization (III)

- Build on the intuition
 - Start with a model (i.e., W_0, b_0)
 - Evaluate L for this model on the training data
 - Change W_0, b_0 to W_1, b_1 such that the new L is smaller
 - Repeat

- This intuition is the essence of Gradient Descent methods
 - Gradient of L with respect to the parameters is used to change W_0 , b_0 to W_1 , b_1

Optimization (IV)

- Example method: Batched Gradient Descent
- Get a sample of training data
 - Example: AlexNet¹ used 256 examples as one batch
- Get gradient of L with respect to parameters W, b
- Update

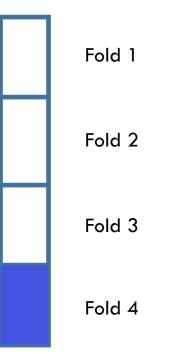
•
$$W_{k+1} \leftarrow W_k - \alpha \nabla_W L$$

- $b_{k+1} \leftarrow b_k \beta \nabla_b L$
- Step sizes (learning rates) α , β need careful choice

Optimization (V)

- Tuning the hyper-parameter(s)
 - Break dataset into two parts: test and train
 - Remove test data access while you are tuning the parameters of your model
 - Do cross validation to tune hyper-parameters

Essentially cycle through the choice of validation fold Optimize parameters over the remaining folds



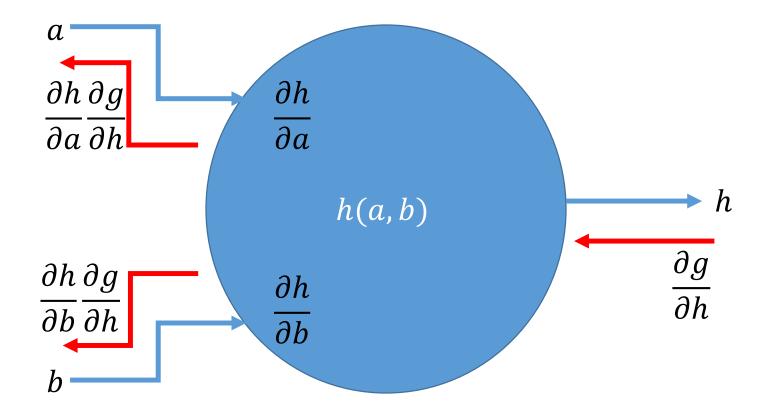
Questions?

Today's Outline

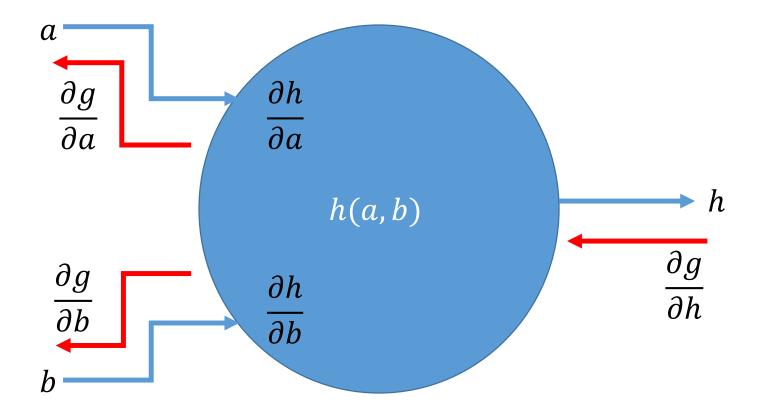
- Course Logistics
- Introduction to the Course
- Getting Started with Neural Nets
 - Classification
 - Backpropagation

Backpropagation

• An efficient way to get the gradient needed for optimization

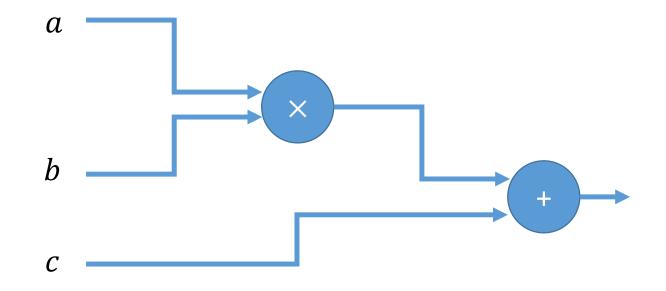


Backpropagation

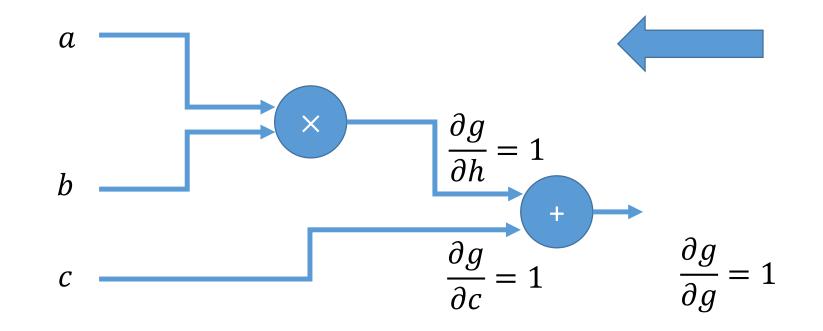


Notion of a Computational Graph

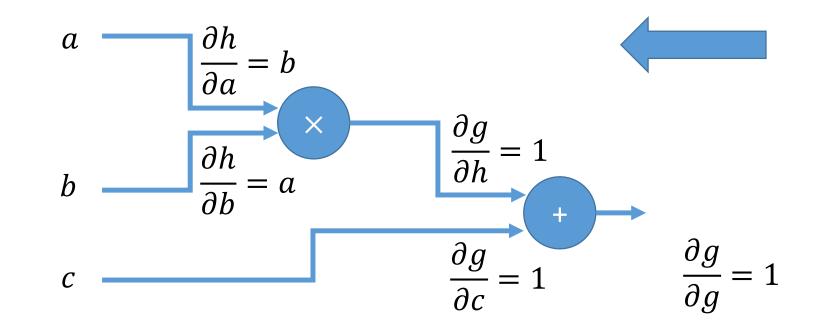
- Consider a function g(a, b, c) = a * b + c
- Draw a graph



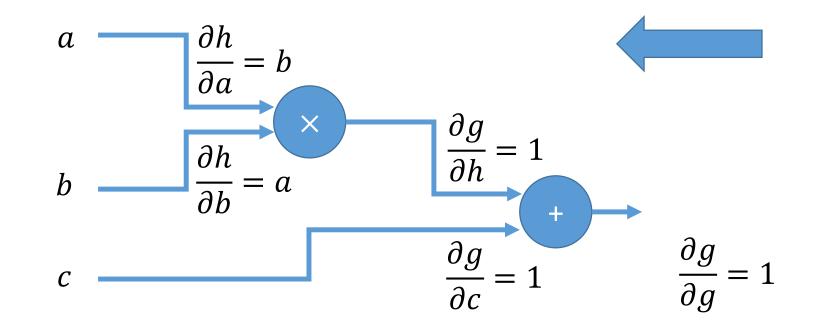
- The circles represent compute nodes
- Let h = a * b. Then g = h + c



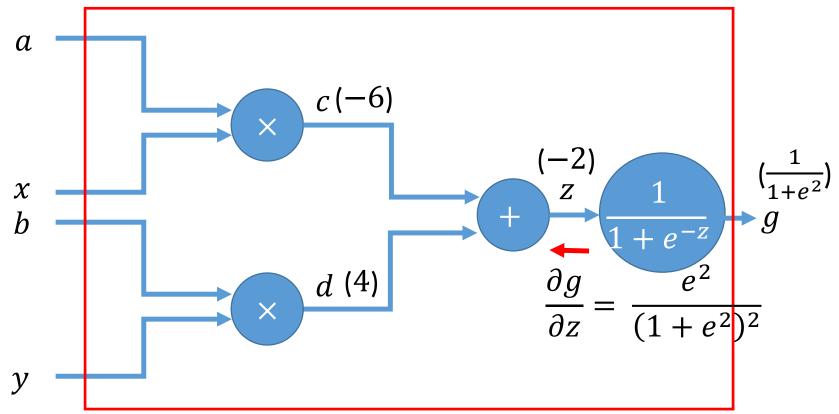
- The circles represent compute nodes
- Let h = a * b. Then g = h + c



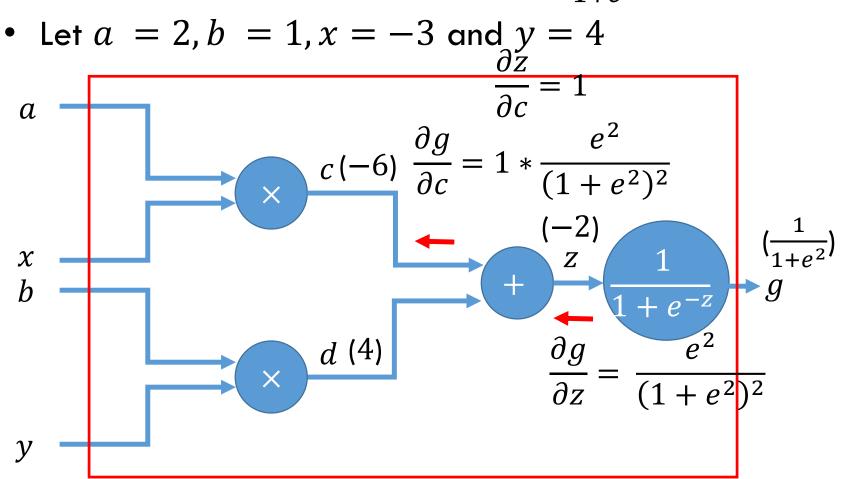
• We can find $\frac{\partial g}{\partial a}$, $\frac{\partial g}{\partial b}$ and $\frac{\partial g}{\partial c}$ by chain rule!



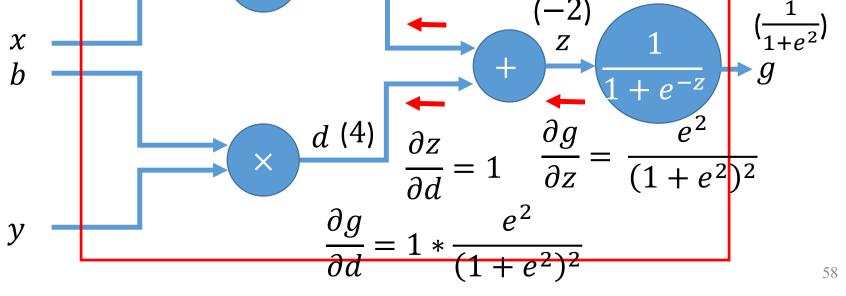
- Consider a function $g(a, b, x, y) = \frac{1}{1 + e^{-(ax+by)}}$
- Let a = 2, b = 1, x = -3 and y = 4



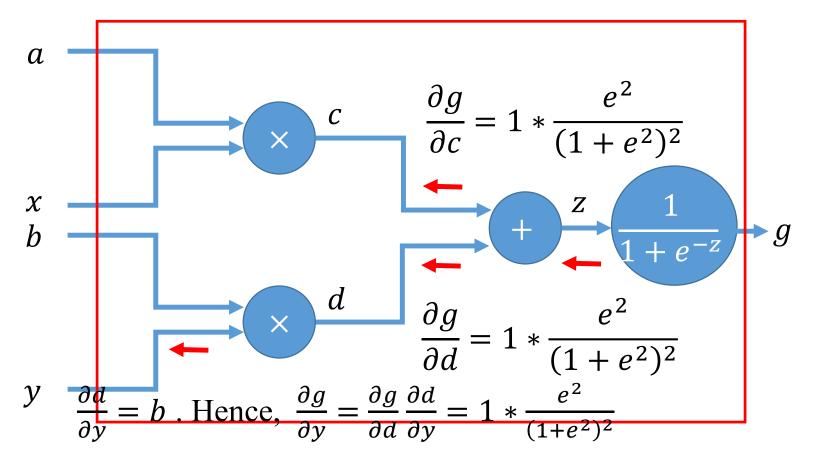
• Consider a function $g(a, b, x, y) = \frac{1}{1 + e^{-(ax+by)}}$



• Consider a function $g(a, b, x, y) = \frac{1}{1+e^{-(ax+by)}}$ • Let a = 2, b = 1, x = -3 and y = 4 a a c(-6) $\frac{\partial g}{\partial c} = 1 * \frac{e^2}{(1+e^2)^2}$ (-2) z $(\frac{1}{1+e^2})$

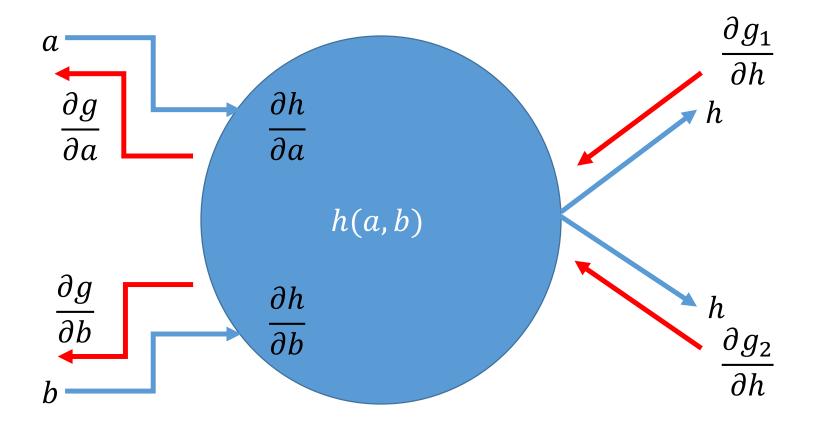


- Consider a function $g(a, b, x, y) = \frac{1}{1 + e^{-(ax+by)}}$
- Let a = 2, b = 1, x = -3 and y = 4



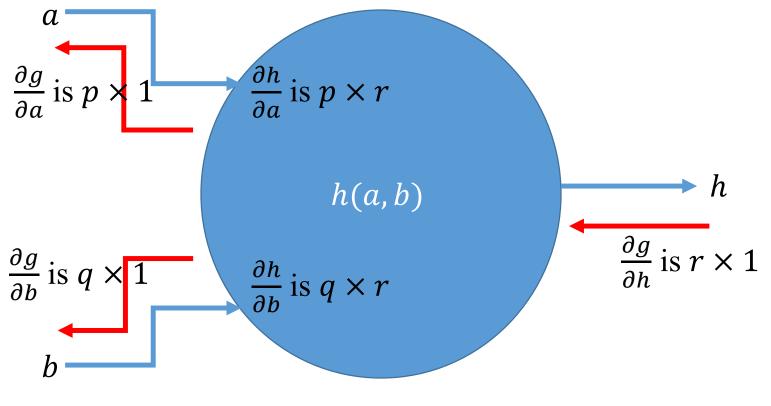
59

Backprop for multiple outputs



Backprop for vectors

• Say, a is $p \times 1$ dimensional, b is $q \times 1$ dimensional and h is $r \times 1$ dimensional and g is scalar



Node tracks matrices (cleverly)

Backprop API for a node

- Implement two functions
 - Forward
 - Backward
- Forward
 - Get input from preceding node(s)
 - Track inputs and local gradients
 - Return computation
- Backward
 - Get gradient from succeeding node(s)
 - Compute gradients (simple multiplication)
 - Return gradients to preceding node(s)

Computational Graph API

- Data structure a graph (nodes and directed edges)
- Implement two functions for it
 - Forward
 - Backward
- Forward
 - Recursively pass the inputs to the next nodes
 - Return *L*
- Backward
 - Recursively traverse the graph backwards
 - Return gradients

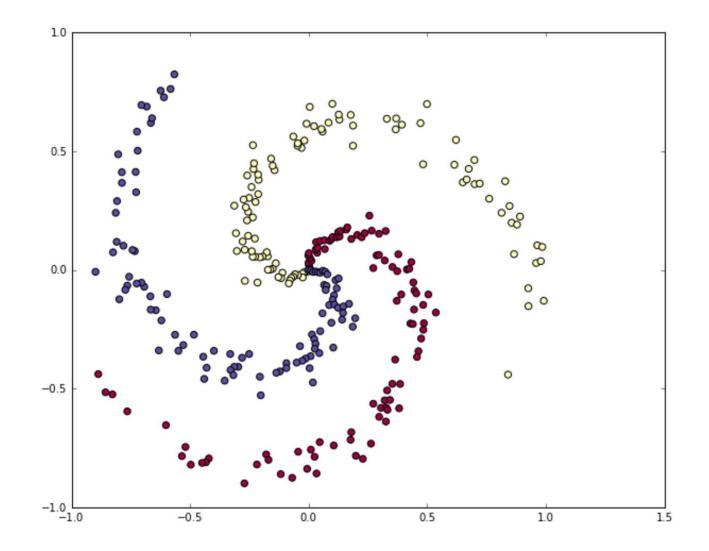
Backprop and batched Gradient Descent

- Choose a mini-batch (sample) of size B
- Forward propagate through the computation graph
 - Compute losses $L_{i_1}, L_{i_2}, \dots L_{i_B}$ and R(W, b)
 - Get loss L for the batch
- Backprop to compute gradients with respect to W, b
- Update parameters W, b
 - In the direction of the negative gradient

```
#Example modified from http://cs231n.github.io/neural-networks-case-study/
#Imports
import numpy as np #Represent ndarrays a.k.a. tensors
import matplotlib.pyplot as plt #For plotting
np.random.seed(0) #For repeatability of the experiment
import pickle #To read data for this experiment
#Setup
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
```

Data

```
#Read data
X = pickle.load(open('dataX.pickle','rb'))
y = pickle.load(open('dataY.pickle','rb'))
#Define some local varaibles
D = X.shape[1] #Number of features
K = max(y)+1 #Number of classes assuming class index starts from 0
#Plot the data
fig = plt.figure()
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
```



Model

```
# Linear model
# Start with an initialize parameters randomly
W = 0.01 * np.random.randn(D,K)
b = np.zeros((1,K))
# Initial values from hyperparameter
reg = 1e-3 # regularization strength
#For simplicity, we will not optimize this using grid search here.
```

```
#Perform batch SGD using backprop
```

```
#For simplicity we will take the batch size to be the same as number of examples
num_examples = X.shape[0]
```

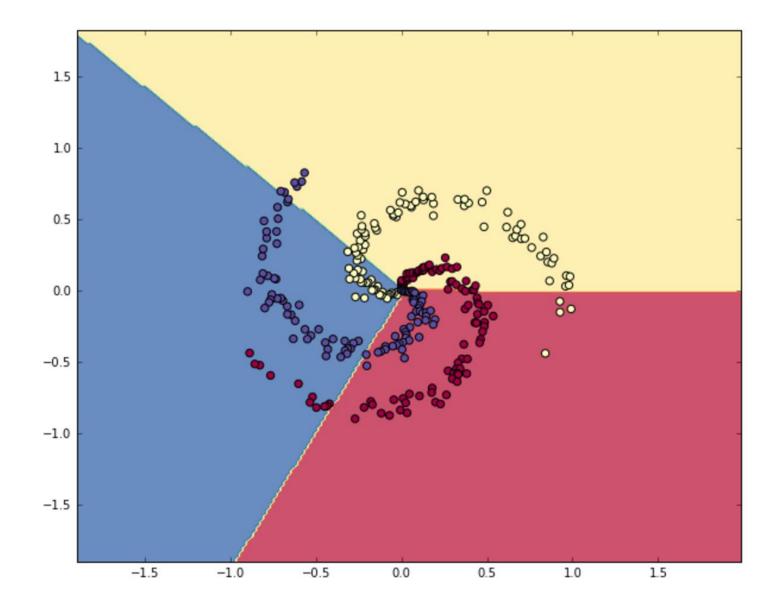
```
#Initial value for the Gradient Descent Parameter
step size = 1e-0 #Also called learning rate
```

#For simplicity, we will not hand tune this algorithm parameter as well.

```
# gradient descent loop
for i in xrange(200):
   # evaluate class scores, [N x K]
   scores = np.dot(X, W) + b
   # compute the class probabilities
   exp scores = np.exp(scores)
   probs = exp scores / np.sum(exp scores, axis=1, keepdims=True) \# [N x K]
   # compute the loss: average cross-entropy loss and regularization
   corect logprobs = -np.log(probs[range(num_examples),y])
   data loss = np.sum(corect logprobs)/num examples
   reg loss = 0.5*reg*np.sum(W*W)
    loss = data loss + reg loss
    if i % 10 == 0:
       print "iteration %d: loss %f" % (i, loss)
    # compute the gradient on scores
   dscores = probs
    dscores[range(num examples),y] -= 1
    dscores /= num examples
   # backpropate the gradient to the parameters (W,b)
   dW = np.dot(X.T, dscores)
   db = np.sum(dscores, axis=0, keepdims=True)
   dW += reg*W # regularization gradient
   # perform a parameter update
   W += -step size * dW
   b += -step size * db
```

Post Training

```
# Post-training: evaluate test set accuracy
#For simplicity, we will use training data as proxy for test. Do not do this.
X_test = X
y_test = y
scores = np.dot(X_test, W) + b
predicted_class = np.argmax(scores, axis=1)
print 'test accuracy: %.2f' % (np.mean(predicted class == y test))
```



72

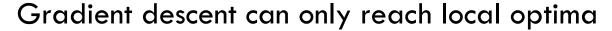
Questions?

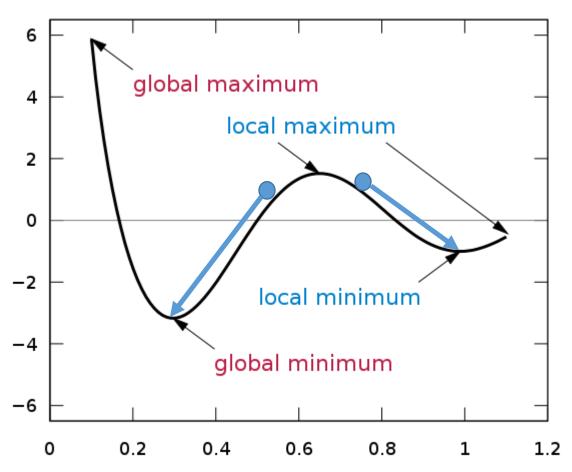
Summary

- Data variety poses challenges
 - Missing
 - Noisy
- Complex decisions poses challenges
 - Learning on the go
- We reviewed classification
 - Regression would have similar considerations
- Discussed backpropagation
 - A useful method for optimizing for the best model parameters

Appendix

Gradient Descent



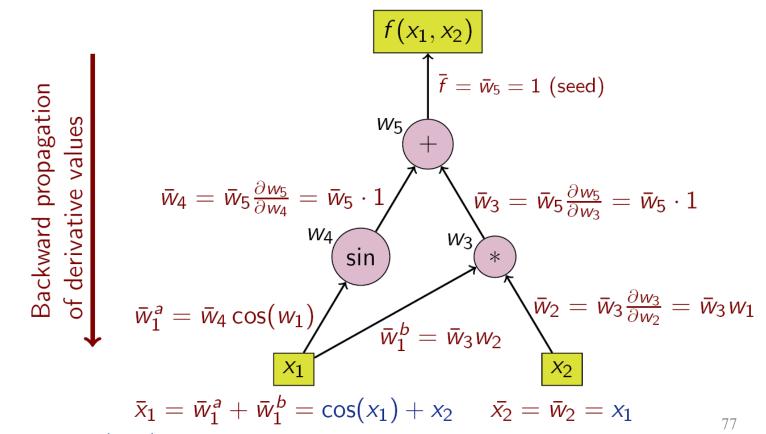


¹By I, KSmrq, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2276449

Reverse mode AutoDiff

 Backpropagation is a case of reverse accumulation automatic differentiation¹

An example from wikipedia



¹See <u>https://en.wikipedia.org/wiki/Automatic_differentiation</u>