Advanced Prediction
Models

Deep Learning, Graphical Models and Reinforcement
Learning

Today’s Outline

* Complex Decisions

* Reinforcement Learning Basics
* Markov Decision Process
* (State Action) Value Function

* Q Learning Algorithm

Complex Decisions

Complex Decisions Making is Everywhere

Control

Optimal

i i * Fly d
Control /Engineering Machine Learning /Al y drones

* Autonomous driving

Operations

* Retain customers, UX
* Inventory management

Logistics

. . * Schedule transportation
Economlcs/Operqnons * Resource allocation

Research

Neuroscience /Psychology
Games
* Chess, Go, Atari

Complex Decisions Making is Everywhere

Control

Computer Go Brain computer interface Medical trials
P75 ‘ * Fly drones

* Autonomous driving

)_ Operations

* Retain customers, UX

* Inventory management
Packets routing Ads placement Dynamic allocation o
Logistics

* Schedule transportation
/ * Resource allocation

Credit: Sebastien Bubeck

Games
* Chess, Go, Atari

Complex Decision Making can be addressed

using RL

https://www.technologyreview.com/s/603501/10-breakthrough-technologies-2017-reinforcement-learning/

MIT
Technology
ReVI eW Past Lists+ Topics+ Top Stories

10 Breakthrough Technologies RLEINSES

Reversing Paralysis
Self-Driving Trucks

Paying with Your Face

Practical Quantum Computers

March/April 2017 Issue The 360-Degree Selfie
Hot Solar Cells
Gene Therapy 2.0

The Cell Atlas

Botnets of Things
By experlment Reinforcement Learning

figuring out ho
no programmer could teach them.
TReference: technologyreview.com/s/603501 /10-breakthrough-technologies-2017-reinforcement-learning /

Playing Atari Using RL (201 3)

Figure: Defazio Graepel, Atari Learning Environment

AlphaGo Conquers Go (201 6)

o " le pow.
. e) 0 . & Al haGf-)
@KBA +0: Google DeepMind #98 AlphaGe
THE INTERNATIONAL WEEKLY JOURNAL DF S 1< Challenge Match
< 0F SCIENEE ol 2 sl

{ ' l

\
|
|

.
-
- -
- -
- - - -
- - -
- e e - e s e
- -
— - - - o= -
™ & e \
- o . o e
a ~ & - <
- .~ - - s e s e e -
- W - ..‘ ~ > -
Se ans v _ove ete e
~ - -« -« - -
e & e g TV "
oo oF o aT 8% N o
- - - e
ooy T o
- - —

|

C——

At last — a computer program that
can beat a champion Go player

ALL SYSTEMS GO

CONSERVATION FESEARCH ETHIES POPULAR SCIENCE i
SONGBIRDS SAFEGUARD WHEN GENES
A LA CARTE TRANSPARENCY GOT ‘SELFISH’

Iflegrl harvest of millions xm't let apermess backfre Dawking’s caliing
of Mediterranean birds on ingividuals card forty years on
PACE 452 L 2 A 42

TReference: DeepMind, March 2016

* Videos

Need for Reinforcement Learning

action > reward Multi-armed Bandit

reward

Contextual Bandit

Non-exogenous change of states/contexts

State — > Fu" RL PrObIem

10
'Reference: https://medium.com/@awjuliani/simple-reinforcement-learning-with-tensorflow-part-1-5-contextual-bandits-bff01d 1 aad9c

_/

Questions?

Today’s Outline

* Complex Decisions

* Reinforcement Learning Basics
* Markov Decision Process
* (State Action) Value Function

* Q Learning Algorithm

12

RL Overview

* Reinforcement Learning (RL) addresses a version of the
problem of sequential decision making
* Ingredients:
* There is an environment
* Within which, an agent takes actions
* This action influences the future
* Agent gets a (potentially delayed) feedback signal

* How to select actions to maximize total reward?

* RL provides several sound answers to this question

The Environment

Sees Agent’s action A; and generates an observation S;,4 and a
reward Ry,

Subscript t indexes time. Current observation S; is called state

Assume the future (at times t + 1,t + 2,) is independent of the
past (..., t — 2,t — 1) given the present (t): this is called the
Markov assumption

P(St+1lSe) = P(St+1151, 82, - St)

Assume everything relevant is observed

The Agent

* Agent observes R;, 1, 5.1 and these are not i.i.d. across
time

* Agent’s objective is fo maximize expected total future
reward E[R;y1 + YRiyo + -+]

* Agent’s actions affect what it sees in the future (S;,1)

* Maybe better to trade off current reward R, to gain
more rewards in the future

y: Discount Factor

The Reward

m A reward R; is a scalar feedback signal

m Indicates how well agent is doing at step t
m [he agent’s job is to maximise cumulative reward

Reinforcement learning is based on the reward hypothesis

Definition (Reward Hypothesis)

All goals can be described by the maximisation of expected
cumulative reward

1Reference: David Silver, 2015

The Goal

m Goal: select actions to maximise total future reward
m Actions may have long term consequences

m Reward may be delayed

m |t may be better to sacrifice immediate reward to gain more
ong-term reward

m Examples:

m A financial investment (may take months to mature)
m Refuelling a helicopter (might prevent a crash in several hours)

m Blocking opponent moves (might help winning chances many
moves from now)

1Reference: David Silver, 2015

The Interactions

* Pictorially

Ag

St, Rt

Environment

The Interactions

* Pictorially

St, Rt

Agent Environment

. A, -

St+1' Rt+1

Agent Environment

At+1

The Interactions

* Pictorially

Environment

Environment

St, Ry
Agent
At
St+1, Re+1
A1
St+2, Re+2

Environment

Ao

RL versus other Machine Learning
Settings

What makes reinforcement learning different from other machine
learning paradigms?

m There is no supervisor, only a reward signal
m Feedback is delayed, not instantaneous
m Time really matters (sequential, non i.i.d data)

m Agent’s actions affect the subsequent data it receives

Supervised Reinforce- Unsuper-
learning ment learning vised learning
<€ >
more informative feedback less informative feedback

1Reference: David Silver, 2015

RL versus other Machine Learning
Settings

Training signal = desired (target outputs), e.g. class

Inputs Outputs

Training signal = “rewards”

Inputs Outputs (“actions”)

Reference: Joelle Pineau, DLSS 2016

22

Components of an RL Agent

m An RL agent may include one or more of these components:

m Policy: agent’s behaviour function
m Value function: how good is each state and/or action
m Model: agent's representation of the environment

1Reference: David Silver, 2015

Components of RL: Policy

m A policy is the agent’s behaviour
m It is a map from state to action, e.g.
m Deterministic policy: a = 7(s)

m Stochastic policy: 7(als) = P[A; = a|S; = 5]

1Reference: David Silver, 2015

24

Components of RL: Policy

Start
m Rewards: -1 per time-step

m Actions: N, E, S, W

m States: Agent's location

Goal

1Reference: David Silver, 2015

Components of RL: Policy

Start

m Rewards: -1 per time-step
m Actions: N, E, S, W

m States: Agent's location

Goal

TReference: David Silver, 2015 m Arrows represent policy 7(s) for each state s

Components of RL: Value Function

m Value function is a prediction of future reward
m Used to evaluate the goodness/badness of states

m And therefore to select between actions, e.g.

Ve(s) = Ex [Rt—l—l + YRt42 + ’Y2Rt+3 + ... | St = 5]

27
1Reference: David Silver, 2015

Components of RL: Value Function

Start | -16

EEDDn
B
oE

n

m Numbers represent value v, (s) of each state s

1Reference: David Silver, 2015

Components of RL: Model

m A model predicts what the environment will do next

m P predicts the next state

m R predicts the next (immediate) reward, e.g.

" :P[St+1 :5, | St :S,At = a]

ss’

R2=E[Rtr1 | St = s,A: = 3

29
1Reference: David Silver, 2015

Components of RL: Model

m Dynamics: how actions
change the state

m Rewards: how much reward
from each state

a

m Grid layout represents transition model P2,

m Numbers represent immediate reward RZ from each state s
(same for all a)

1Reference: David Silver, 2015

Questions?

Today’s Outline

* Complex Decisions

* Reinforcement Learning Basics
* Markov Decision Process
* (State Action) Value Function

* Q Learning Algorithm

Components of RL: MDP Framework

* We will now revisit these components formally
* Policy m(als)
* Value function v;(s)
° a a
Model P_.r and R

* |n the framework of Markov Decision Processes

* And then we will address the question of optimizing
for the best 1T in realistic environments

33

Towards a Markov Decision Process

* MDPs are a useful way to describe the RL problem

* MDPs can be understood via the following progression
* Start with a Markov Chain
* State transitions happen autonomously
* Add Rewards
* Becomes a Markov Reward Process
* Add Actions that influences state transitions
* Becomes a Markov Decision Process

1Reference: David Silver, 2015

Markov Chain/Process

For a Markov state s and successor state s’, the state transition
probability is defined by

P =P [5t+1 =35 |5 = s]

State transition matrix P defines transition probabilities from all
states s to all successor states s’,

to

Pll . 7‘)]_n
P = from

Pri - Pon

where each row of the matrix sums to 1.

1Reference: David Silver, 2015

Example Markov Chain

0.9

Sleep |<g—

0.1
0.5 0.2
0.4

1Reference: David Silver, 2015

Example Markov Chain

Sample episodes for Student Markov
Chain starting from $; = C1

517 527 ey ST

@ m C1 C2 C3 Pass Sleep
m C1 FB FB C1 C2 Sleep
m C1 C2 C3 Pub C2 C3 Pass Sleep

m C1FBFB C1C2C3PubClFBEFB
FB C1 C2 C3 Pub C2 Sleep

1Reference: David Silver, 2015

Example Markov Chain

0.9
Sleep |q—
0.1
C1
c2
0.5 0.2 10 c3
Pub
0.4 FB
Sleep

1Reference: David Silver, 2015

C1

C2 C3
0.5

0.8
0.4 0.4

Pass

0.6

Pub FB
0.5
0.4
0.9

Sleep

0.2

1.0

Markov Chain with Rewards

A Markov reward process is a Markov chain with values.

A Markov Reward Process is a tuple (S,P,R,~)

m S is a finite set of states

m P is a state transition probability matrix,

Psss =P [St11=5"| St = 3]
m R is a reward function, Rs = E[R¢y1 | St = 5]
m 7 is a discount factor, v € [0, 1]

1Reference: David Silver, 2015

Markov Chain with Rewards

The return G; is the total discounted reward from time-step t.

o0
Gt = Rey1 +YRep2 + ... = Z’Yth+k—|-1
k=0

1Reference: David Silver, 2015

Markov Chain with Rewards

The return G; is the total discounted reward from time-step t.

(0. @)
Gt = Rtp1 +YRig2 + ... = Z’Yth+k+1
k=0

The value function v(s) gives the long-term value of state s

The state value function v(s) of an MRP is the expected return
starting from state s

v(s) =E[G: | St = 5]

1Reference: David Silver, 2015

Example Markov Reward Process

Sample returns for Student MRP:
Starting from S; = C1 with v = %

Gi=Ry+vRs + ... -I-’YT_ZRT

C1 C2 C3 Pass Sleep i=-2—2x3—2%;+10xg = —2.25

C1 FB FB C1 C2 Sleep i=-2—1x3—1x;—2%g—2x¢ = —3.125

C1 C2 C3 Pub C2 C3 Pass Sleep Vi=—2—2x5 —2x 7 +1xg—2% ;.. = —3.41
— 1 1 1 1

FB FB FB C1 C2 C3 Pub C2 Sleep

1Reference: David Silver, 2015

Recursions in Markov Reward Process

The value function can be decomposed into two parts:

m immediate reward R;y1

m discounted value of successor state yv(S;y1)

V(S) N E[Gt ’ St = 5]
=3 [Rt_|_1 + ’)’Rt_|_2 + ’)’2Rt_|_3 + ... I St = S]

1Reference: David Silver, 2015

Rey1+7(Rey2 +YReg3 +...) | St = 5]
Rit1+7Gey1 | St = 5]

Rey1+yv(St41) | St = 5]

Recursions in Markov Reward Process

v(s) = E[Ret1 +7v(St41) | St = 5]

v(s) =Rs+ 7 Z Pssv(s')

s’eS

1Reference: David Silver, 2015

Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with
decisions. It is an environment in which all states are Markov.

A Markov Decision Process is a tuple (S, A, P,R,~)
m S is a finite set of states

m A is a finite set of actions

m P is a state transition probability matrix,

P, =P[Sty1=5"| St =5,Ar =
m R is a reward function, R = E[R¢y1 | St = s, Ar = 3]
m 7 is a discount factor v € [0, 1].

1Reference: David Silver, 2015

Example Markov Decision Process

Facebook
R=-]
«
Quit Facebook
R=0 R=-1

Study
R=+10

1Reference: David Silver, 2015

Markov Decision Process: Policy

* Now that we have introduced actions, we can discuss
policies again

e Recall

A policy 7 is a distribution over actions given states,

n(als) = P[Ar = a | 5: = 5]

m A policy fully defines the behaviour of an agent

1Reference: David Silver, 2015

MDP is an MRP for a Fixed Policy

m Given an MDP M = (S, A,P,R,~) and a policy 7
m The state sequence 51, Sy, ... is a Markov process (S, P™)

m [he state and reward sequence 51, R», S,, ... is a Markov
reward process (S, P™, R™,~)

1Reference: David Silver, 2015

MDP is an MRP for a Fixed Policy

m Given an MDP M = (S, A,P,R,~) and a policy 7
m The state sequence 51, Sy, ... is a Markov process (S, P™)

m [he state and reward sequence 51, R», S,, ... is a Markov
reward process (S, P™, R™,~)

m where

;T,s’ — Z W(Q’S) :s’

ac A

RT =) w(als)R2

acA

1Reference: David Silver, 2015

Markov Decision Process: Value
Function

* We can also talk about the value function(s)

The state-value function v,(s) of an MDP is the expected return
starting from state s, and then following policy 7

vr(s) = E; [G: | St = 5]

1Reference: David Silver, 2015

Markov Decision Process: Value

Function

* We can also talk about the value function(s)
Definition

The state-value function v,(s) of an MDP is the expected return
starting from state s, and then following policy 7

vr(s) = E; [G: | St = 5]

The action-value function q(s, a) is the expected return
starting from state s, taking action a, and then following policy 7

gr(s,a) =E; [G: | St = s, A = 3]

1Reference: David Silver, 2015

Recursions in MDP

*Also called the Bellman Expectation Equations

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

Vr(S) = Ex [Reg1 +YVa(St41) | St = 5]
The action-value function can similarly be decomposed,

q7r(57 3) =E, [Rt—l-l =+ ’Yqﬂ(5t+17 At—l—l) | S5t =5,A; = 3]

1Reference: David Silver, 2015

Recursions in MDP

*Also called the Bellman Expectation Equations

q-(8,a) <4 s,a

q-(s",d") < a

Gr(s,a) =RI+7 Y Pi Y _ 7(d|s)gx(s, d)

s'eS a'ecA

1Reference: David Silver, 2015

Markov Decision Process: Objective

The optimal state-value function v,(s) is the maximum value
function over all policies

Vi(S) = max Vr(S)

The optimal action-value function q.(s, a) is the maximum
action-value function over all policies

g« (s, a) = max gr(s, a)

1Reference: David Silver, 2015

Markov Decision Process: Objective

*Also called the Bellman Optimality Equation ‘

g«(s,a) <= s,a

q.(s',a’") +a

g«(s,a) = R2 + E P2, max g.(s’,a’)
a/
s'eS

1Reference: David Silver, 2015

Markov Decision Process: Optimal Policy

An optimal policy can be found by maximising over g.(s, a),

(1 if a=argmax g.(s,a)
. 0 otherwise

1Reference: David Silver, 2015

Questions?

Today’s Outline

* Complex Decisions

* Reinforcement Learning Basics
* Markov Decision Process
* (State Action) Value Function

* Q Learning Algorithm

58

Finding the Best Policy

* Need to be able to do two things ideally
* Prediction:
* For a given policy, evaluate how good it is
* Compute q(s,a)
* Control:
* And make an improvement from 1

* We will focus on the Q Learning algorithm
* It does prediction and control ‘simultaneously’

1Reference: David Silver, 2015

Intuition for an Iterative Algorithm

V(St) < Er[Res1 +7V(Se41)]

S
([

o a&z ofe
I’ \ II \\

Q(s,a) + E [R+’y max Q(S",d) | s,a

1Reference: David Silver, 2015

Intuition for an Iterative Algorithm

V(St) « V(St) + a(Res1 +vV(Sts1) — V(St))

1Reference: David Silver, 2015

The Q Learning Algorithm

* If we know the model
* Turn the Bellman Optimality Equation into an iterative update

* This is called Value lteration

g«(s,a) <4 s,a

q«(s',a’") +a

g«(s,a)|=R2 +~ E P2, max g.(s’,a’)
a/
s’eS

1Reference: David Silver, 2015

The Q Learning Algorithm

If we do not know the model
* Do sampling to get an incremental iterative update
* Choose next actions to ensure exploration

g«(s,a) <4 s,a

q.(s',a’") +a

g«(s,a)|=R2 +~ Z 2 max g«(s’,a")

1Reference: David Silver, 2015

The Q Learning Algorithm

* If we do not know the model
* Do sampling to get an incremental iterative update

* Choose next actions to ensure exploration

@ sa

R

Os

@

Q(S,A) «+ Q(S,A)+a (R+vQ(S,A) — Q(S,A))

1Reference: David Silver, 2015

The Q Learning Algorithm

* If we do not know the model
* Do sampling to get an incremental iterative update

* Choose next actions to ensure exploration

@ sa

R

Os

@

Q(S,A) «+ Q(S,A) +a (R+vQ(S'|A) — Q(S,A))

1Reference: David Silver, 2015

The Q Learning Algorithm

* If we do not know the model
* Do sampling to get an incremental iterative update

* Choose next actions to ensure exploration

R(S,A) + Q(S,A) + « (R + max Q(S',d) - Q(S,A))

1Reference: David Silver, 2015

The Q Learning Algorithm

* Initialize Q, which is a table of size #statesX#actions

e Start at state s

The Q Learning Algorithm

* Initialize Q, which is a table of size #statesX#actions
e Start at state s
 Fort=1,2,3,....

* Take A chosen uniformly at random with probability € Explore

The Q Learning Algorithm

* Initialize Q, which is a table of size #statesX#actions

e Start at state s

 Fort=1,2,3,....
* Take A chosen uniformly at random with probability €
* Take argmax,c4 Q(S¢, a) with probability 1 — € Exploit

Explore

The Q Learning Algorithm

* Initialize Q, which is a table of size #statesX#actions
e Start at state s

 Fort=1,2,3,....
* Take A chosen uniformly at random with probability €
* Take argmax,c4 Q(S¢, a) with probability 1 — € Exploit
* Update Q:
* Q(StAr) = QS Ap) + ap(Reyq + Yy max Q(St1,a) — Q(St, Ap))

Temporal difference error

Explore

The Q Learning Algorithm

Initialize (), which is a table of size #statesX#actions
Start at state 54

Fort = 1,2,3,....
* Take A chosen uniformly at random with probability €
* Take argmax,c4 Q(S¢, a) with probability 1 — € Exploit
* Update Q:
* Q(StAr) = QS Ap) + ap(Reyq + Yy max Q(St1,a) — Q(St, Ap))

Temporal difference error

Explore

Parameter € is the exploration parameter

Parameter a; is the learning rate

The Q Learning Algorithm

Initialize (), which is a table of size #statesX#actions
Start at state 54

Fort = 1,2,3,....
* Take A chosen uniformly at random with probability €
* Take argmax,c4 Q(S¢, a) with probability 1 — € Exploit
* Update Q:
* Q(StAr) = QS Ap) + ap(Reyq + Yy max Q(St1,a) — Q(St, Ap))

Temporal difference error

Explore

Parameter € is the exploration parameter
Parameter a; is the learning rate

Under appropriate assumptions’, tll_)rglo Q=0

TReference: Christopher J. C. H. Watkins and Peter Dayan, 1992

The Q Learning Algorithm: Recap

* Bellman Optimality Equation gives rise to the Q-Value
lteration algorithm

* Making this algorithm incremental, sampled and adding
e-greedy exploration gives Q Learning Algorithm

Q-Value lteration Q-Learning

Q(s;a) < E |R+7 max Q(S,2) | s,a| | Q(S,A) & R+ max Q(S',)

where x & y = x + x + oy — x)

1Reference: David Silver, 2015

Questions?

Summary

* RLis a great framework to make agents intelligent

* Specify goals and provide feedback

* Many challenges still remain: exciting opportunity to
contribute towards next generation of artificially
intelligent and autonomous agents.

* |n the next lecture, we will see that deep learning
function approximation based RL agents show promise
in large complex tasks: representations matter!

* Applications such as
* Self-driving cars
* Intelligent virtual agents

75

Appendix

Sample Exam Questions

* What is the difference between a Markov Chain and
a Markov Reward Process?

* What is the difference between a Markov Chain and
a Markov Decision Process?

* Why is exploration needed in the reinforcement
learning setting?

* What does the optimal state-action value function
signify?

* What are the two objects (distributions) of an RL
model?

* What is the difference between supervised learning
and reinforcement learning?

Additional Resources

An Introduction to Reinforcement Learning by Richard Sutton and ‘
Andrew Barto

* http://incompleteideas.net/sutton /book /the-book.html
Course on Reinforcement Learning by David Silver at UCL
(includes video lectures)

* http://wwwO.cs.ucl.ac.uk /staff /d.silver /web /Teaching.html

Research Papers

* Deep RL collection: https://qgithub.com /junhyukoh /deep-
reinforcement-learning-papers

* [MKSRVBGRFOPBSAKKWLH2015] Mnih et al. Human-level
control through deep reinforcement learning. Nature,

518:529-533, 2015.

* [SHMGSDSAPLDGNKSLLKGH2016] Silver et al. Mastering
the game of Go with deep neural networks and tree search.

Nature, 529: 484-489, 201 6.

78

http://incompleteideas.net/sutton/book/the-book.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://github.com/junhyukoh/deep-reinforcement-learning-papers

Cons of RL

* Reinforcement Learning requires experiencing the
environment many many times

* This is because it is a trial and error based approach

* Impractical for many complex tasks

* Unless one has access to simulators where an RL agent
can practice a billon times

RL versus other Machine Learning

Settings

* There is a notion of exploration and exploitation,
similar to Multi-armed bandits and Contextual bandits

m Exploration finds more information about the environment
m Exploitation exploits known information to maximise reward

m It is usually important to explore as well as exploit

* Key difference: actions influence future contexts

m Reinforcement learning is like trial-and-error learning
m The agent should discover a good policy
m From its experiences of the environment

m Without losing too much reward along the way

80
1Reference: David Silver, 2015

RL versus other Sequential Decision

Making Settings

Two fundamental problems in sequential decision making

m Reinforcement Learning:

m [he environment is initially unknown
m [he agent interacts with the environment
m [he agent improves its policy

m Planning:

m A model of the environment is known

m The agent performs computations with its model (without any
external interaction)

m [he agent improves its policy

m a.k.a. deliberation, reasoning, introspection, pondering,
thought, search

81
1Reference: David Silver, 2015

Types of RL Agents

* There are many ways to design them, so we roughly
categorize then as below:

m Value Based

§ m Model Free

m Value Function m Policy and/or Value Function
m Policy Based 8

m Policy m Model Based

. m Policy and/or Value Function
m Actor Critic m Model

m Policy

m Value Function

82
1Reference: David Silver, 2015

Relating the Two Value Functions |

va(s) = 3 m(als)gu(s, a)

acA

1Reference: David Silver, 2015

Relating the Two Value Functions I

ar(5,3) = R2+7 Y PLva(s)

s’eS

1Reference: David Silver, 2015

Recursion in MDP: Value Function
Version

ve(s) =) m(als) | R+~) Pasva(s)

acA s'eS

1Reference: David Silver, 2015

Relating Policy and Value Function

An optimal policy can be found by maximising over g.(s, a),

(1 if a=argmax g.(s,a)
. 0 otherwise

1Reference: David Silver, 2015

