Advanced Prediction
Models

Deep Learning, Graphical Models and Reinforcement
Learning

Today’s Outline

* Value Function Approximation

* Deep Reinforcement Learning
* DQN for Atari Games
* AlphaGo for Go

Value Function
Approximation

The Q Learning Algorithm

* If we know the model
* Turn the Bellman Optimality Equation into an iterative update

* This is called Value lteration

g«(s,a) <4 s,a

q«(s',a’") +a

g«(s,a)|=R2 +~ E P2, max g.(s’,a’)
a/
s’eS

1Reference: David Silver, 2015

The Q Learning Algorithm

If we do not know the model
* Do sampling to get an incremental iterative update
* Choose next actions to ensure exploration

g«(s,a) <4 s,a

q.(s',a’") +a

g«(s,a)|=R2 +~ Z 2 max g«(s’,a")

1Reference: David Silver, 2015

The Q Learning Algorithm

* If we do not know the model
* Do sampling to get an incremental iterative update

* Choose next actions to ensure exploration

@ sa

R

Os

@

Q(S,A) «+ Q(S,A)+a (R+vQ(S,A) — Q(S,A))

1Reference: David Silver, 2015

The Q Learning Algorithm

* If we do not know the model
* Do sampling to get an incremental iterative update

* Choose next actions to ensure exploration

@ sa

R

Os

@

Q(S,A) «+ Q(S,A) +a (R+vQ(S'|A) — Q(S,A))

1Reference: David Silver, 2015

The Q Learning Algorithm

* If we do not know the model
* Do sampling to get an incremental iterative update

* Choose next actions to ensure exploration

R(S,A) + Q(S,A) + « (R + max Q(S',d) - Q(S,A))

1Reference: David Silver, 2015

The Q Learning Algorithm

Initialize (), which is a table of size #statesX#actions
Start at state 54

Fort = 1,2,3,....
* Take A chosen uniformly at random with probability €
* Take argmax,c4 Q(S¢, a) with probability 1 — € Exploit
* Update Q:
* Q(StAr) = QS Ap) + ap(Reyq + Yy max Q(St1,a) — Q(St, Ap))

Temporal difference error

Explore

Parameter € is the exploration parameter
Parameter a; is the learning rate

Under appropriate assumptions’, tll_)rglo Q=0

TReference: Christopher J. C. H. Watkins and Peter Dayan, 1992

Tabular Q Learning is Not Enough

Robotic agent navigating in real-world (left)

States:|Position in a grid
Actions: Forward/Back/Left/Right
Reward: 1 on reaching target, -100 for dying

10

TReference: Krishnamurthy et al. https://arxiv.org/abs/1602.02722

Tabular Q Learning is Not Enough

Robotic agent navigating in real-world (right)
States] Camera view in front of the robot

Actions: Forward/Back/Left/Right
Reward: 1 on reaching target, -100 for dying

11
TReference: Krishnamurthy et al. https://arxiv.org/abs/1602.02722

Function Approximation Recipe

* Use a deep network or any other function class to to
represent

* the value function, and/or
* the policy, and/or
* the model

1Reference: David Silver, 2015

Function Approximation Recipe

* Use a deep network or any other function class to to
represent

* the value function, and/or
* the policy, and/or
* the model
* Optimize this network end to end
* Example:
* If the approximator is differentiable
* Use stochastic gradient descent

* Do the optimization incrementally or in batch mode

1Reference: David Silver, 2015

Q Function Approximation

* Instead of storing #statesX#action parameters in a table,
we want to find more scalable ways to capture Q values

* Represent () using a function approximator with weights w:
Q(s,a;w) = Q°(s,a)

Q(s,a,w) Q(s,a;,w

K
~ Y
o

Qs,a_.,w)

m’

S

Figure: David Silver

Q Function Approximation

* Instead of storing #statesX#action parameters in a table,
we want to find more scalable ways to capture Q values

* Represent () using a function approximator with weights w:
Q(s,a;w) = Q*(s,a)

Q(s,a,w) Qls,a;,w) - Qls,a;,w) Linear

T T T Decision tree
/\/\ /\/\ Neural network

w

w
T T Basis functions
S a

s Nearest neighbor

Figure: David Silver

Q Function Approximation

m Approximate the action-value function

8(S, A, w) & (S, A)

1Reference: David Silver, 2015

16

Q Function Approximation

m Approximate the action-value function
§(S, A, w) ~ gx(S, A)

m Minimise mean-squared error between approximate
action-value fn §(S, A, w) and true action-value fn q,(S, A)

J(W) = K, [(q'ir(sa A) _ 6(57 A,W))2]

1Reference: David Silver, 2015

Q Function Approximation

m Approximate the action-value function

8(S, A, w) & (S, A)

m Minimise mean-squared error between approximate
action-value fn §(S, A, w) and true action-value fn q,(S, A)

J(w) =Exr |(

q7r(57 A) o 6(57 A7 W))2]

m Use stochastic gradient descent to find a local minimum

5 Vud(w) = (3(5,A)

Aw = of

g-(S,A)

1Reference: David Silver, 2015

—G(S,A,w))Vuig(S, A w)

—G(S,A,w))Vwig(S, A w)

18

Q Function Approximation: Example

m Represent state and action by a feature vector

X1(5, A)
x(S,A) = E
Xn(S, A)

1Reference: David Silver, 2015

19

Q Function Approximation: Example

m Represent state and action by a feature vector

X1(5, A)
x(S,A) = E
Xn(S, A)

m Represent action-value fn by linear combination of features

§(S,A,w) =x(S,A) w = ij(S, A)w;
j=1

1Reference: David Silver, 2015

Q Function Approximation: Example

m Represent state and action by a feature vector
X]_(S, A)

X(S, A) —
Xn(S, A)

m Represent action-value fn by linear combination of features
n
§(S,A,w) =x(S,A) w = ij(S, A)w;
j=1
m Stochastic gradient descent update

Vwi(S, A w) = x(S, A)
Aw = o(g-(S, A) — 4(S,A,w))x(S, A)

1Reference: David Silver, 2015

Q Function Approximation: Another

Perspective

* Recall the Q Learning update

Q(St, Ar) = Q(St, Ap) + ar(Reyr + Y fcrlleaj(Q(Se+1,a) — Q(St,Ap))

22

1Reference: David Silver, 2015

Q Function Approximation: Another
Perspective

* Recall the Q Learning update

Q(St, Ar) = Q(St, Ap) + ar(Reyr + Y fcrlleaj(Q(Se+1,a) — Q(St,Ap))

* At optimality

* E [Rt+1 + y mdx Q(Sey1,a) — Q(St;At)] =0

23
1Reference: David Silver, 2015

Q Function Approximation: Another
Perspective

* Recall the Q Learning update

Q(St, Ar) = Q(St, Ap) + ar(Reyr + Y fcrlleaj(Q(Se+1,a) — Q(St,Ap))

* At optimality

* E [Rt+1 + y mdx Q(Sey1,a) — Q(St:At)] =0

* Intuitively, this tells us to minimize the empirical error
between

* Reyq t Vrcrlleaj(Q(Sts+1,a,w) and Q(S, A, w)

24
1Reference: David Silver, 2015

Example: Function Approximation Success

(2013)

Figure: Defazio Graepel, Atari Learning Environment

Issues with Function Approximation

* This can potentially be a nonlinear optimization over w

* Unless we use a linear approximator

* Can optimize incrementally or in batch
* Which is better? (we will answer this for DQN later)

* Naive optimization may diverge and oscillate! This is
because

* The data is not i.i.d.

* Policy /Value may be too sensitive to action choice (max
over actions may completely change future trajectory)

Questions?

Today’s Outline

* Value Function Approximation

* Deep Reinforcement Learning
* DQN for Atari Games
* AlphaGo for Go

28

Deep Reinforcement
Learning |: DQN

Deep Reinforcement Learning

* Bringing in the success of deep perception/prediction
architectures to function approximation

* We will look at two RL agents
* DQN (2013)
* AlphaGo (2016)

* Attempt to highlight some additional aspects that made
these agents succeed so well in their respective domains

Why Deep Representations?

Image Recognition 2 O 1 2 - 2 O 1 3 s
_ IMAGENET _‘
95% 93% . “a
NVIDIA GPU
*—/ earlier Comluionpootng
“a
88%
- 84% “a
o - Comomimoine
70% 72% e -
655 Source: ImageNet —
2010 2011 2012 2013 2014 Raw Image pixels

'Reference: Julie Bernauer/Ryan Olson, Li Deng

Why Deep Representations?

* CNN as the Function Approximator

* Captures two key properties
* Local connections with weight sharing

* Pooling for translation invariance

Pooling

L

Convolution

L

Image

"Figure: Li Deng

DQN Plays Atari (201 3)

Figure: Defazio Graepel, Atari Learning Environment

DQN Architecture

observation _4/' E, % i [[\ -) action
‘," { 43 ‘\ == -) /
o, A D N By eSS A,

VNN § m Rules of the game are

< 'r”—(__:”/ =
= unknown

)
m Learn directly from

reward R,

Interactive game-play

m Pick actions on
joystick, see pixels
and scores

1Reference: David Silver, 2015

DQN Extends Function Approximation

* DQN does Q learning with function approximation
* Uses a CNN as the approximator

* Extension
* Does batch optimization to update the weights
* Freezes targets over several steps

DQN Extends Function Approximation

m End-to-end learning of values Q(s, a) from pixels s
m Input state s is stack of raw pixels from last 4 frames
m Output is Q(s, a) for 18 joystick/button positions
m Reward is change in score for that step
32 4x4 filters 256 hidden units Fully-connected linear
output layer
| 6 8x8 filters

4x84x84
Stack of 4 previous . Fully-connected layer

frames Convolutional layer Convolutional layer of rectified linear units

of rectified linear units of rectified linear units

1Reference: David Silver, 2015

DQN Extends Function Approximation

DQN uses experience replay and fixed Q-targets

m Take action a; according to e-greedy policy

1Reference: David Silver, 2015

DQN Extends Function Approximation

DQN uses experience replay and fixed Q-targets

m Take action a; according to e-greedy policy
m Store transition (s¢, a¢, re+1, St+1) in replay memory D

m Sample random mini-batch of transitions (s, a, r,s’) from D

1Reference: David Silver, 2015

DQN Extends Function Approximation

DQN uses experience replay and fixed Q-targets

m Take action a; according to e-greedy policy
m Store transition (s¢, a¢, re+1, St+1) in replay memory D
m Sample random mini-batch of transitions (s, a, r,s’) from D

m Compute Q-learning targets w.r.t. old, fixed parameters w™

1Reference: David Silver, 2015

DQN Extends Function Approximation

DQN uses experience replay and fixed Q-targets

m Take action a; according to e-greedy policy

m Store transition (s¢, a¢, re+1, St+1) in replay memory D

m Sample random mini-batch of transitions (s, a, r,s’) from D
m Compute Q-learning targets w.r.t. old, fixed parameters w™

m Optimise MSE between Q-network and Q-learning targets

L (Wi) — IEs,a,r,s’w’D,-

2
(r + 7y max Q(SI, a; Wi_) — Q(s, a; Wi))]

m Using variant of stochastic gradient descent

1Reference: David Silver, 2015

DQN Architecture

DQN Loss

Gradient

wrt loss maxa,Q(s,a ;6)

argmax_ Q(s,a; 6)

Environment

Q Network

Store
(s,a,rs)

1Reference: David Silver, 2015

DQN Performance Results

-priori

DQN does not know the rules of the game a

%000€ %0001
| 1) Ll

%009 %00S

%00€ %002 %00L %0
|

[

|oAd|-uRINY MOjOq

%0
%z |
%S |
%9 |
%L|
%EL |
%vi

o %l
%sz [l

%z Il
%ey
wer
%.s
s
%zo [N
“ro I
%9
%9 I
%60 N

2AOQR JO [2A3J-URINY J©

No feature engineering or hyper-parameter tuning for DQN across games

%o I
wor)
wer)

oz [

e I
oy

swoor I

swzor [

weor WA

szes I

ot T 1
o

see: T

vt)

o e

wvez |
=
wovz IR

T rr e rr T rrrrr v rrrrror

abuanay s ewnzajuop
ak3 ayenud
Jeynels

ajgisoi4

SploJeIsy

uewoed ‘s
Buimog

jung agnoqg
1sanbeag

aunyuap

uslly

Jeplwy

piey Jealy

iSieH Jueg
apadnua)
puewwo) Jaddoyd
IO/ JO pIezipp
auoz apeg
Xua)sy
‘OY3IH
1eg.0
KaxooH 89|
umoq pue dn
Aquaq Buiysi4
oinpu3

jolid awi|
Remaai4
J9)1se\ n4-6uny)
weyyuen
Japry weag
sJapeAu| aoeds
Buod

puog sawep
SIVVETR
oosebueyy
Jsuuny peoy
jnessy

1INy

aweo) siy| saweN
YOoBRY uoweq
J8ydos
Jaquu| Azes)
snuepy
juejoqoy
Jsuung Jejs
noyeasg
Buixog

llequid OspIA

Figure: DeepMind

Did the Extensions Help?

Replay Replay | No replay | No replay

Fixed-Q | Q-learning Fixed-Q | Q-learning

Breakout 316.81 240.73 10.16 3.17
Enduro 1006.3 831.25 141.89 29.1
River Raid 7446.62 4102.81 2867.66 1453.02
Seaquest 2894 .4 822.55 1003 275.81
Space Invaders | 1088.94 826.33 373.22 301.99

1Reference: David Silver, 2015

Scalable Version: An Architecture by
_Google

Sync every

global N steps
Parameter Server Learner
DQN Loss
SIETEL Gradient .
wrt loss - max_Q(s;a’; 87)
| f Gradient Target Q
——Bundled _ _ I
i Mode
Actor 1

argmax_ Q(s,a; 0) Store
Environment nosssssssw Q Network G.arns)

* 100 actors, 100 learners, and 31 parameter holding
machines.

* Reduce compute from 14 days to 6 hours
* This is a 30x speedup using 200x compute power

TReference: Nair, et al. Massively parallel methods for deep reinforcement learning. arXiv:1507.04296

Questions?

Today’s Outline

* Value Function Approximation

* Deep Reinforcement Learning
* DQN for Atari Games
* AlphaGo for Go

46

Deep Reinforcement
Learning |: AlphaGo

AlphaGo Conquers Go (201 6)

o " le pow.
. e) 0 . & Al haGf-)
@KBA +0: Google DeepMind #98 AlphaGe
THE INTERNATIONAL WEEKLY JOURNAL DF S 1< Challenge Match
< 0F SCIENEE ol 2 sl

{ ' l

\
|
|

.
-
- -
- -
- - - -
- - -
- e e - e s e
- -
— - - - o= -
™ & e \
- o . o e
a ~ & - <
- .~ - - s e s e e -
- W - ..‘ ~ > -
Se ans v _ove ete e
~ - -« -« - -
e & e g TV "
oo oF o aT 8% N o
- - - e
ooy T o
- - —

|

C——

At last — a computer program that
can beat a champion Go player

ALL SYSTEMS GO

CONSERVATION FESEARCH ETHIES POPULAR SCIENCE i
SONGBIRDS SAFEGUARD WHEN GENES
A LA CARTE TRANSPARENCY GOT ‘SELFISH’

Iflegrl harvest of millions xm't let apermess backfre Dawking’s caliing
of Mediterranean birds on ingividuals card forty years on
PACE 452 L 2 A 42

TReference: DeepMind, March 2016

The Game of Go

e Gois 2500 years old. Has about 10479 states.

* Making it impossible for computers to evaluate who is
winning

Capture Territory
TReference: DeepMind, IJCAI 2016

The Game of Go

* Go was one of the only classic board games before March
2016, where Al agents were not the best

Program Level of Play RL Program to Achieve Level
Checkers Perfect Chinook
Chess International Master KnightCap / Meep
Othello Superhuman Logistello
Backgammon Superhuman TD-Gammon
Scrabble Superhuman Maven
Go Grandmaster MoGo', Crazy Stone®, Zen3
Poker? Superhuman SmooCT
'9x9
°9 x 9 and 19 x 19
319 x 19
*Heads-up Limit Texas Hold’em <

TReference: DeepMind, IJCAI 2016

The Forward Search Problem

* Recall the two sequential decision making problems
* Reinforcement learning
* Planning

* The forward search problem is a planning problem
* That is, we know the model of the world

* Useful in the case when we cannot plan everything
beforehand

* Focus on what action to take next

The Forward Search Problem for Go

m How good is a position s?

m Reward function (undiscounted):

R; = 0 for all non-terminal steps t < T

R _ 1 if Black wins
=11 0 if White wins

m Policy m = (wg, mw) selects moves for both players

m Value function (how good is position s):

Ve(s) = E; [Rr | S = s] = P[Black wins | § = s]

Vi (S) = max min v,(s)
™ TwW

1Reference: David Silver, 2015

52

Forward Search Using Simulations

m Forward search algorithms select the best action by lookahead
m They build a search tree with the current state s; at the root
m Using a model of the MDP to look ahead

O O O O
o a (lg\l Q 0 Q
! \\ ; /l \\ : / \\ / N

AV | /\l
Yo /N /

m No need to solve whole MDP, just sub-MDP starting from now

1Reference: David Silver, 2015

53

Forward Search Using Simulations

m Simulate episodes of experience from now with the model

m Apply model-free RL to simulated episodes

54
1Reference: David Silver, 2015

Forward Search Using Simulations

m Simulate episodes of experience from now with the model
k Ak pk k1K
{St aAta Rt—l—lv XXX ST}kzl ~ M,

m Apply model-free RL to simulated episodes

* We will look at two variants
* Simple Monte Carlo Search
* Monte Carlo Tree Search

55
1Reference: David Silver, 2015

Simple Monte Carlo Search

m Given a model M, and a simulation policy 7

m For each action a € A
m Simulate K episodes from current (real) state s;

k k k k1K
{5t7 d, Rt—|—17 St+1? At+1a S ST}k:I ~ MV’T‘-

m Evaluate actions by mean return (Monte-Carlo evaluation)

K
1
Q(st,a) = K Z Gt = Gn(st,)
k=1

m Select current (real) action with maximum value

a; = argmax Q(s;, a)
acA

56
1Reference: David Silver, 2015

Simple Monte Carlo Search for Go

Current position s

57

Simulation
Outcomes

-
-

r——
| |
o

—_—
11

111
11
%0 1

5
0

11
11
3

1
1

4 4

111
11
®oe]

.
._t

111

11
oo

1

L1l

L
T
=5

- -
- - s
—— s
—
——4

V(s)=2/4=0.5

| [Soie

BN
g
™
=l Al
-
|
1

11

I

#“
#“
—_— ——

Jr—
-—

A--- ‘&.--- &--' &---

1 3
i
1

&
B
6=
i

111

1Reference: David Silver, 2015

Monte Carlo Tree Search for Go

Current state —>ﬁ : Tree Policy
A

Default Policy

1Reference: David Silver, 2015

58

Monte Carlo Tree Search for Go

Current state —»
Tree Policy

A

Default Policy

1Reference: David Silver, 2015

59

Monte Carlo Tree Search for Go

Current state —» &£
ﬁ) Tree Policy

1Reference: David Silver, 2015

A

Default Policy

60

Monte Carlo Tree Search for Go

Current state —» &

Tree Policy

>

Default Policy

1Reference: David Silver, 2015

61

Monte Carlo Tree Search for Go

Current state —» €& A

Tree Policy

>

Default Policy

L1909

1Reference: David Silver, 2015

62

Monte Carlo Tree Search: Evaluation

m Given a model M,
m Simulate K episodes from current state s; using current
simulation policy 7

k pk k k1K
{St, At’ Rt_l_l, St+17 seey ST}k:1 i M}/,T‘-

m Build a search tree containing visited states and actions
m Evaluate states Q(s,a) by mean return of episodes from s, a

K T
Q(s,a) = N(sl 2) Z Z 1(5,,A, = s,a)G, A ar(s, a)

k:l u=t

m After search is finished, select current (real) action with
maximum value in search tree

ar = argmax Q(st, a)
acA

1Reference: David Silver, 2015

Monte Carlo Tree Search: Simulation

m In MCTS, the simulation policy 7 improves

m Each simulation consists of two phases (in-tree, out-of-tree)

m Tree policy (improves): pick actions to maximise Q(S, A)
m Default policy (fixed): pick actions randomly

m Repeat (each simulation)

m Evaluate states Q(S, A) by Monte-Carlo evaluation
m Improve tree policy, e.g. by € — greedy(Q)

m Monte-Carlo control applied to simulated experience

m Converges on the optimal search tree, Q(S,A) — q.(S, A)

64
1Reference: David Silver, 2015

AlphaGo Extensions

e Uses Monte Carlo tree search for action selection

* But uses a deep policy network and a deep value
network to truncate the search tree

Policy network Value network
Move probabilities Evaluation

Position Position

Figures: DeepMind

65

AlphaGo Extensions

* Value Network

Evaluation
~-

Position
Figures: DeepMind

v (5)

66

AlphaGo Extensions

* Policy Network
Move probabilities

bye

Position
Figures: DeepMind

p(als)

67

AlphaGo Extensions

9
>>
>
>

T~ T —
SN AN AN A U ANA N A AN A AN AN AN AN AN ANAY
NN NN NN NN NN /?K INNININ NN NN NN NN NN NN NN NN N

A AR Y
AMAAMAMAAMAAA

68
Figures: DeepMind

AlphaGo Extensions

Figures: DeepMind

69

AlphaGo Extensions

G omm omm Be AA Rh AR a8

70
Figures: DeepMind

AlphaGo Extensions

a/ﬁ
T~

/
=

Figures: DeepMind

71

AlphaGo Extensions

* Training the two networks

Human expert Supervised Learning Reinforcement Learning
positions policy network policy network

Self-play data

Value network

i SHiC e—j

Figures: DeepMind

72

AlphaGo Extensions

* The initial policy network

Policy network: 12 layer convolutional neural network
Training data: 30M positions from human expert games (KGS 5+ dan)

Training algorithm: maximise likelihood by stochastic gradient descent

0log p,(als)
Oo

Ao x

Training time: 4 weeks on 50 GPUs using Google Cloud

Results: 57% accuracy on held out test data (state-of-the art was 44%)

Figures: DeepMind

73

AlphaGo Extensions

* The final policy network

Policy network: 12 layer convolutional neural network
Training data: games of self-play between policy network

Training algorithm: maximise wins z by policy gradient reinforcement learning

Blogp,,(als) -
oo

Ao x

Training time: 1 week on 50 GPUs using Google Cloud

Results: 80% vs supervised learning. Raw network ~3 amateur dan.

Figures: DeepMind

74

AlphaGo Extensions

* The value network

Value network: 12 layer convolutional neural network
Training data: 30 million games of self-play

Training algorithm: minimise MSE by stochastic gradient descent

A x ngés) (z — vg(s))

Training time: 1 week on 50 GPUs using Google Cloud

Results: First strong position evaluation function - previously thought impossible

75
Figures: DeepMind

AlphaGo Extensions

* The MCTS procedure

a Selection b Expansion c

it it

Q + u(P) mak Q + u(P)

Q+u(P) /nax Q + u(P)

Figures: DeepMind

Evaluation

d Backup
Ly
e
/' Q
g

76

AlphaGo

. ALPHAGO

01:55:46 1B N\

N LEE SEDOL

01:55:41

AlphaGO Lee Se-dol
1202 CPUs, 176 GPUs, 1 Human Brain,
100+ Scientists. 1 Coffee.

Figure: http:/ /static1.uk.businessinsider.com /image /56e0373052bcd05b008b5217-810-602/

77

Questions?

Summary

RL is a great framework to make agents intelligent
* Specify goals and provide feedback
* Traditional methods are not scalable

Function approximation lets us manage scale (number of states)

Complements deep learning (that solves the perception problem)
allowing practical Al agents

* DQN: Experience replay, freezed Q-targets
* AlphaGo: Monte Carlo Tree Search with approximations

Many challenges still remain
* Inefficient exploration, partial observability etc.

Ul
|

A0 |

A

'Reference: See https://www.youtube.com /watch2v=WiTnlCjWFuw. Demo by Nvidia at CES 2017

Appendix

Sample Exam Questions

* What is the purpose of function approximation?

* Can state value function be function approximated? Is
the data in the replay memory i.i.d.?

* What is a search tree? Why is it used?

* How are simulations used in a forward search? (i.e., in
a simple Monte Carlo search)

* What are some practical issues with deploying an RL
agent in real world?

Additional Resources

An Introduction to Reinforcement Learning by Richard Sutton and ‘
Andrew Barto

* http://incompleteideas.net/sutton /book /the-book.html
Course on Reinforcement Learning by David Silver at UCL
(includes video lectures)

* http://wwwO.cs.ucl.ac.uk /staff /d.silver /web /Teaching.html

Research Papers

* Deep RL collection: https://qgithub.com /junhyukoh /deep-
reinforcement-learning-papers

* [MKSRVBGRFOPBSAKKWLH2015] Mnih et al. Human-level
control through deep reinforcement learning. Nature,

518:529-533, 2015.

* [SHMGSDSAPLDGNKSLLKGH2016] Silver et al. Mastering
the game of Go with deep neural networks and tree search.

Nature, 529: 484-489, 201 6.

83

http://incompleteideas.net/sutton/book/the-book.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://github.com/junhyukoh/deep-reinforcement-learning-papers

Recap of DQN Extensions

* Experience replay
* Store transitions in replay memory D
* Sample a subset from D

* Optimize mean squared error between
* R+ y max Q(S¢+1,a,w) and Q(S¢, As, W) on this data
a

* Fixed Q-targets
* Fix parameter Win R;,1 + ¥ max Q(S;yq1,a,w) for
ae

several steps

Cons of RL

* In general, Reinforcement Learning requires
experiencing the environment many many times

* This is because it is a trial and error based approach

* May be impractical for many complex tasks

* Unless one has access to simulators where an RL agent
can practice a billon+ times

RL Topics Not Covered

Partial observability of states

Monte Carlo methods

* Example: €e-Greedy Policy Iteration with Monte
Carlo estimation

Temporal difference methods
* Example: SARSA(A)

Policy function approximation
Model based methods

