Advanced Prediction Models

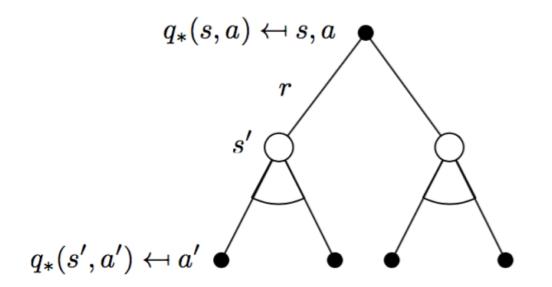
Deep Learning, Graphical Models and Reinforcement Learning

Today's Outline

- Value Function Approximation
- Deep Reinforcement Learning
 - DQN for Atari Games
 - AlphaGo for Go

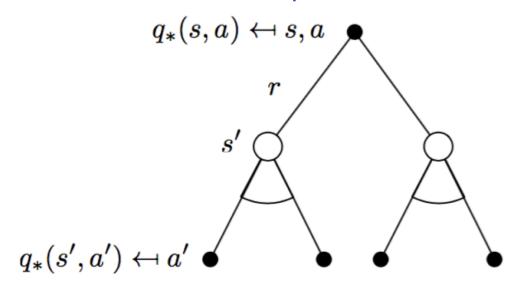
Value Function Approximation

- If we know the model
 - Turn the Bellman Optimality Equation into an iterative update
 - This is called Value Iteration



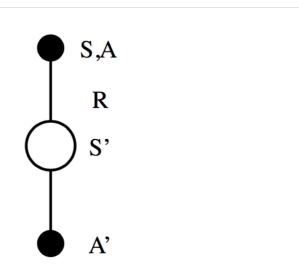
$$q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \max_{a'} q_*(s', a')$$

- If we do not know the model
 - Do sampling to get an incremental iterative update
 - Choose next actions to ensure exploration



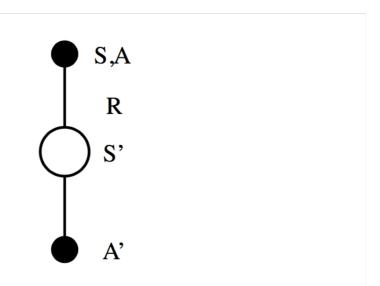
$$q_*(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \max_{a'} q_*(s', a')$$

- If we do not know the model
 - Do sampling to get an incremental iterative update
 - Choose next actions to ensure exploration



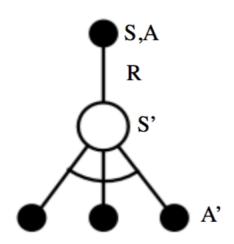
$$Q(S,A) \leftarrow Q(S,A) + \alpha (R + \gamma Q(S',A') - Q(S,A))$$

- If we do not know the model
 - Do sampling to get an incremental iterative update
 - Choose next actions to ensure exploration



$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A)\right)$$

- If we do not know the model
 - Do sampling to get an incremental iterative update
 - Choose next actions to ensure exploration



$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma \max_{a'} Q(S',a') - Q(S,A)\right)$$

- Initialize Q, which is a table of size #states $\times \#$ actions
- Start at state S_1
- For t = 1,2,3,...
 - Take A_t chosen uniformly at random with probability ϵ

Explore

• Take $\operatorname{argmax}_{a \in A} Q(S_t, a)$ with probability $1 - \epsilon$

Exploit

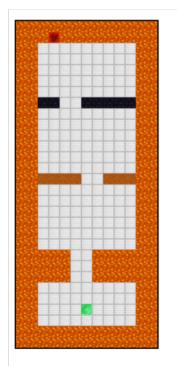
- Update Q:
 - $Q(S_t, A_t) = Q(S_t, A_t) + \alpha_t(R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) Q(S_t, A_t))$

Temporal difference error

- Parameter ϵ is the exploration parameter
- Parameter α_t is the learning rate
- Under appropriate assumptions¹, $\lim_{t \to \infty} Q = Q^*$

¹Reference: Christopher J. C. H. Watkins and Peter Dayan, 1992

Tabular Q Learning is Not Enough



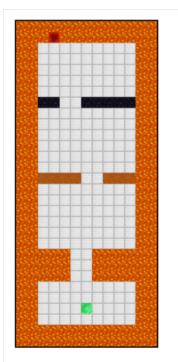
Robotic agent navigating in real-world (left)

States: Position in a grid

Actions: Forward/Back/Left/Right

Reward: 1 on reaching target, -100 for dying

Tabular Q Learning is Not Enough



Robotic agent navigating in real-world (right)

States: Camera view in front of the robot

Actions: Forward/Back/Left/Right

Reward: 1 on reaching target, -100 for dying

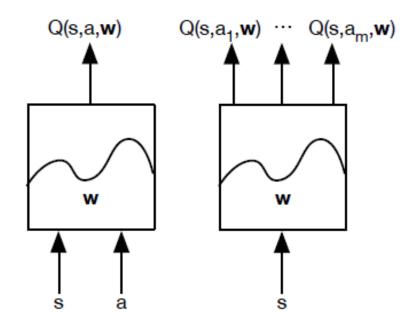
Function Approximation Recipe

- Use a deep network or any other function class to to represent
 - the value function, and/or
 - the policy, and/or
 - the model

Function Approximation Recipe

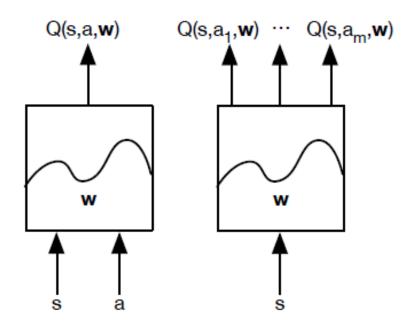
- Use a deep network or any other function class to to represent
 - the value function, and/or
 - the policy, and/or
 - the model
- Optimize this network end to end
 - Example:
 - If the approximator is differentiable
 - Use stochastic gradient descent
- Do the optimization incrementally or in batch mode

- Instead of storing #states×#action parameters in a table,
 we want to find more scalable ways to capture Q values
- Represent Q using a function approximator with weights W: $Q(s,a;w) \approx Q^*(s,a)$



¹Figure: David Silver

- Instead of storing #states×#action parameters in a table,
 we want to find more scalable ways to capture Q values
- Represent Q using a function approximator with weights W: $Q(s,a;w) \approx Q^*(s,a)$



Linear

Decision tree

Neural network

Basis functions

Nearest neighbor

¹Figure: David Silver

Approximate the action-value function

$$\hat{q}(S, A, \mathbf{w}) \approx q_{\pi}(S, A)$$

16

Approximate the action-value function

$$\hat{q}(S, A, \mathbf{w}) \approx q_{\pi}(S, A)$$

■ Minimise mean-squared error between approximate action-value fn $\hat{q}(S, A, \mathbf{w})$ and true action-value fn $q_{\pi}(S, A)$

$$J(\mathbf{w}) = \mathbb{E}_{\pi}\left[\left(q_{\pi}(S,A) - \hat{q}(S,A,\mathbf{w})\right)^{2}\right]$$

17

Approximate the action-value function

$$\hat{q}(S, A, \mathbf{w}) \approx q_{\pi}(S, A)$$

■ Minimise mean-squared error between approximate action-value fn $\hat{q}(S, A, \mathbf{w})$ and true action-value fn $q_{\pi}(S, A)$

$$J(\mathbf{w}) = \mathbb{E}_{\pi}\left[\left(q_{\pi}(S,A) - \hat{q}(S,A,\mathbf{w})\right)^{2}\right]$$

Use stochastic gradient descent to find a local minimum

$$-\frac{1}{2}\nabla_{\mathbf{w}}J(\mathbf{w}) = (q_{\pi}(S,A) - \hat{q}(S,A,\mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S,A,\mathbf{w})$$
$$\Delta\mathbf{w} = \alpha(q_{\pi}(S,A) - \hat{q}(S,A,\mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S,A,\mathbf{w})$$

Q Function Approximation: Example

Represent state and action by a feature vector

$$\mathbf{x}(S,A) = \begin{pmatrix} \mathbf{x}_1(S,A) \\ \vdots \\ \mathbf{x}_n(S,A) \end{pmatrix}$$

Q Function Approximation: Example

Represent state and action by a feature vector

$$\mathbf{x}(S,A) = \begin{pmatrix} \mathbf{x}_1(S,A) \\ \vdots \\ \mathbf{x}_n(S,A) \end{pmatrix}$$

Represent action-value fn by linear combination of features

$$\hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)^{\top} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S, A) \mathbf{w}_{j}$$

Q Function Approximation: Example

Represent state and action by a feature vector

$$\mathbf{x}(S,A) = \begin{pmatrix} \mathbf{x}_1(S,A) \\ \vdots \\ \mathbf{x}_n(S,A) \end{pmatrix}$$

Represent action-value fn by linear combination of features

$$\hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)^{\top} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S, A) \mathbf{w}_{j}$$

Stochastic gradient descent update

$$\nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)$$
$$\Delta \mathbf{w} = \alpha (q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w})) \mathbf{x}(S, A)$$

Q Function Approximation: Another Perspective

Recall the Q Learning update

$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha_t (R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) - Q(S_t, A_t))$$

Q Function Approximation: Another Perspective

Recall the Q Learning update

$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha_t(R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) - Q(S_t, A_t))$$

- At optimality
 - $E\left[R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) Q(S_t, A_t)\right] = 0$

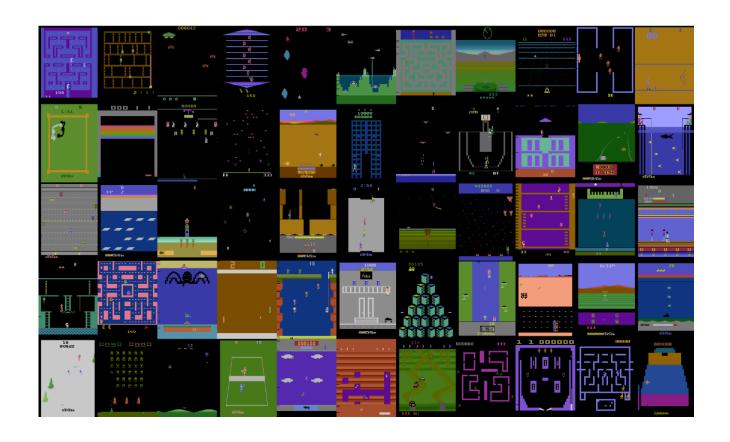
Q Function Approximation: Another Perspective

Recall the Q Learning update

$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha_t(R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) - Q(S_t, A_t))$$

- At optimality
 - $E\left[R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) Q(S_t, A_t)\right] = 0$
- Intuitively, this tells us to minimize the empirical error between
 - $R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a, w)$ and $Q(S_t, A_t, w)$

Example: Function Approximation Success (2013)



Issues with Function Approximation

- This can potentially be a nonlinear optimization over W
 - Unless we use a linear approximator
- Can optimize incrementally or in batch
 - Which is better? (we will answer this for DQN later)
- Naïve optimization may diverge and oscillate! This is because
 - The data is not i.i.d.
 - Policy/Value may be too sensitive to action choice (max over actions may completely change future trajectory)

Questions?

Today's Outline

- Value Function Approximation
- Deep Reinforcement Learning
 - DQN for Atari Games
 - AlphaGo for Go

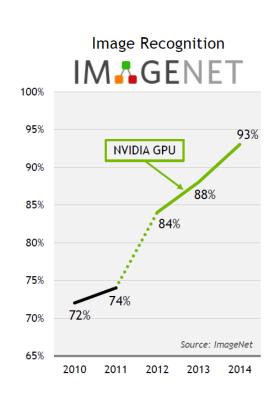
Deep Reinforcement Learning I: DQN

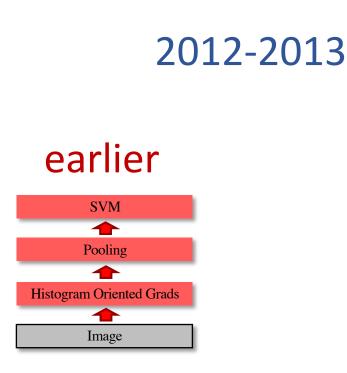
Deep Reinforcement Learning

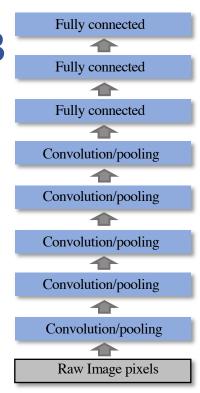
 Bringing in the success of deep perception/prediction architectures to function approximation

- We will look at two RL agents
 - DQN (2013)
 - AlphaGo (2016)
- Attempt to highlight some additional aspects that made these agents succeed so well in their respective domains

Why Deep Representations?



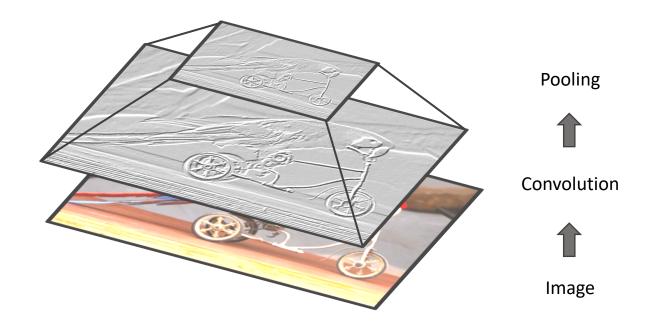




¹Reference: Julie Bernauer/Ryan Olson, Li Deng

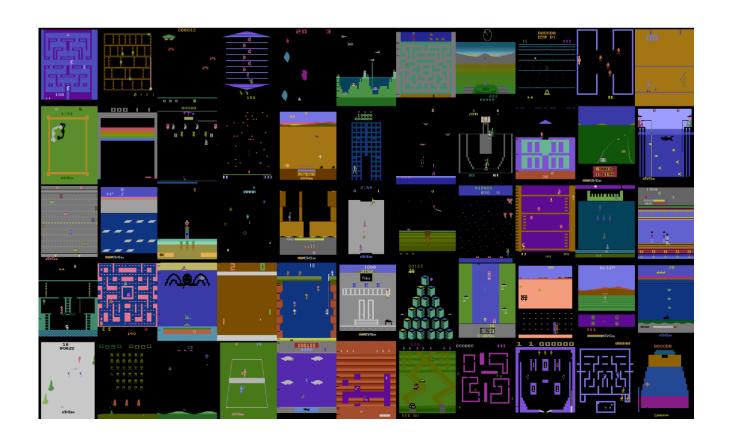
Why Deep Representations?

- CNN as the Function Approximator
- Captures two key properties
 - Local connections with weight sharing
 - Pooling for translation invariance

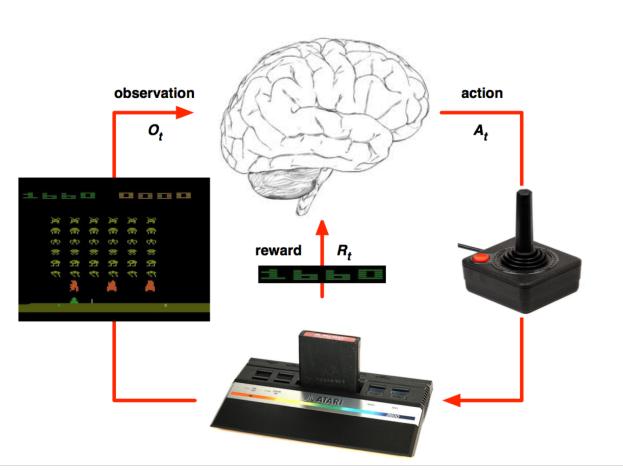


¹Figure: Li Deng

DQN Plays Atari (2013)



DQN Architecture



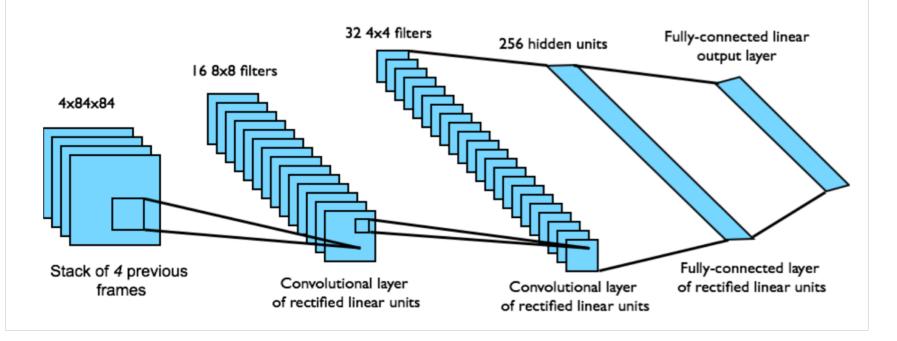
- Rules of the game are unknown
- Learn directly from interactive game-play
- Pick actions on joystick, see pixels and scores

DQN Extends Function Approximation

- DQN does Q learning with function approximation
- Uses a CNN as the approximator
- Extension
 - Does batch optimization to update the weights
 - Freezes targets over several steps

DQN Extends Function Approximation

- End-to-end learning of values Q(s, a) from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step



DQN uses experience replay and fixed Q-targets

■ Take action a_t according to ϵ -greedy policy

DQN uses experience replay and fixed Q-targets

- Take action a_t according to ϵ -greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D}
- Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}

DQN uses experience replay and fixed Q-targets

- Take action a_t according to ϵ -greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D}
- Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- Compute Q-learning targets w.r.t. old, fixed parameters w⁻

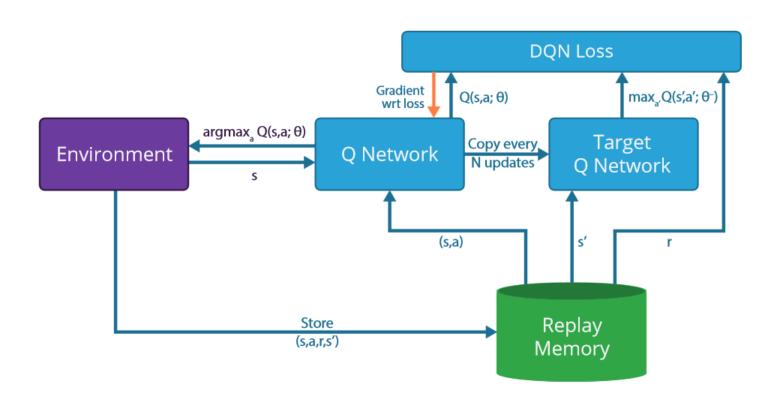
DQN uses experience replay and fixed Q-targets

- Take action a_t according to ϵ -greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D}
- Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- Compute Q-learning targets w.r.t. old, fixed parameters w^-
- Optimise MSE between Q-network and Q-learning targets

$$\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s'\sim\mathcal{D}_i}\left[\left(r + \gamma \max_{a'} Q(s',a';w_i^-) - Q(s,a;w_i)\right)^2\right]$$

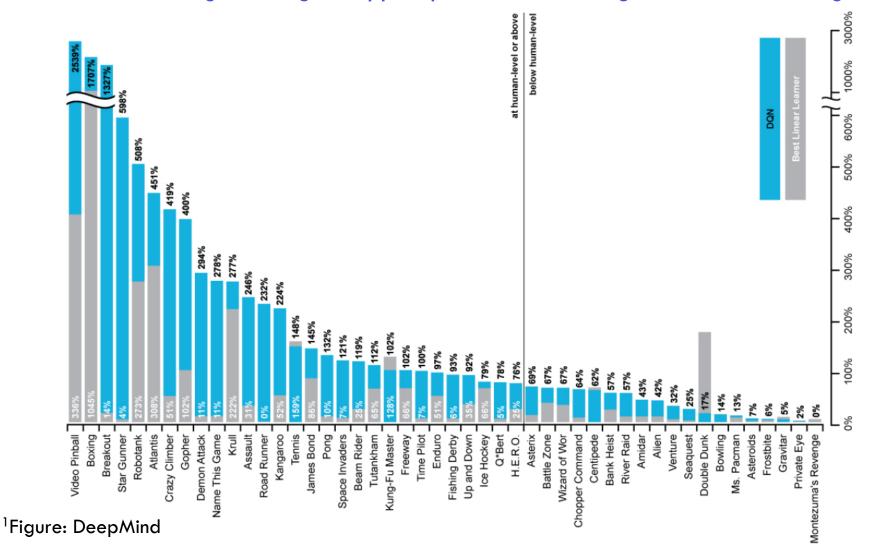
Using variant of stochastic gradient descent

DQN Architecture



DQN Performance Results

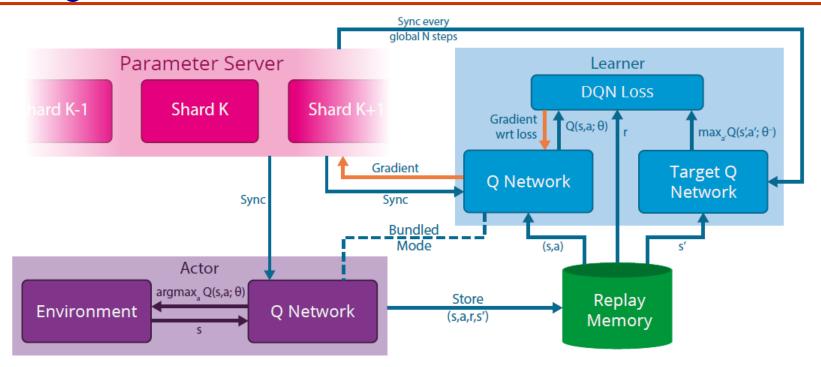
- DQN does not know the rules of the game a-priori
- No feature engineering or hyper-parameter tuning for DQN across games



Did the Extensions Help?

	Replay	Replay	No replay	No replay
	Fixed-Q	Q-learning	Fixed-Q	Q-learning
Breakout	316.81	240.73	10.16	3.17
Enduro	1006.3	831.25	141.89	29.1
River Raid	7446.62	4102.81	2867.66	1453.02
Seaquest	2894.4	822.55	1003	275.81
Space Invaders	1088.94	826.33	373.22	301.99

Scalable Version: An Architecture by Google



- 100 actors, 100 learners, and 31 parameter holding machines.
- Reduce compute from 14 days to 6 hours
- This is a 30x speedup using 200x compute power

¹Reference: Nair, et al. Massively parallel methods for deep reinforcement learning. arXiv:1507.04296

Questions?

Today's Outline

- Value Function Approximation
- Deep Reinforcement Learning
 - DQN for Atari Games
 - AlphaGo for Go

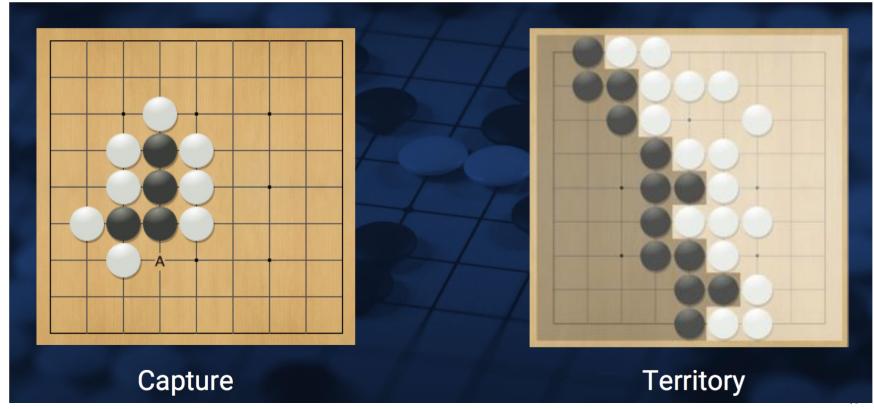
Deep Reinforcement Learning I: AlphaGo

AlphaGo Conquers Go (2016)

¹Reference: DeepMind, March 2016

The Game of Go

- Go is 2500 years old. Has about $10^{270}\,\mathrm{states}$.
- Making it impossible for computers to evaluate who is winning



¹Reference: DeepMind, IJCAI 2016

The Game of Go

 Go was one of the only classic board games before March 2016, where Al agents were not the best

Program	Level of Play	RL Program to Achieve Level	
Checkers	Perfect	Chinook	
Chess	International Master	KnightCap / Meep	
Othello	Superhuman	Logistello	
Backgammon	Superhuman	TD-Gammon	
Scrabble	Superhuman	Maven	
Go	Grandmaster	MoGo ¹ , Crazy Stone ² , Zen ³	
Poker ⁴	Superhuman	SmooCT	

¹Reference: DeepMind, IJCAI 2016

 $^{^{1}9 \}times 9$

 $^{^29 \}times 9$ and 19×19

 $^{^{3}19 \}times 19$

⁴Heads-up Limit Texas Hold'em

The Forward Search Problem

- Recall the two sequential decision making problems
 - Reinforcement learning
 - Planning
- The forward search problem is a planning problem
 - That is, we know the model of the world
- Useful in the case when we cannot plan everything beforehand

Focus on what action to take next

The Forward Search Problem for Go

- How good is a position s?
- Reward function (undiscounted):

$$R_t = 0$$
 for all non-terminal steps $t < T$
 $0 = 1$ if Black wins

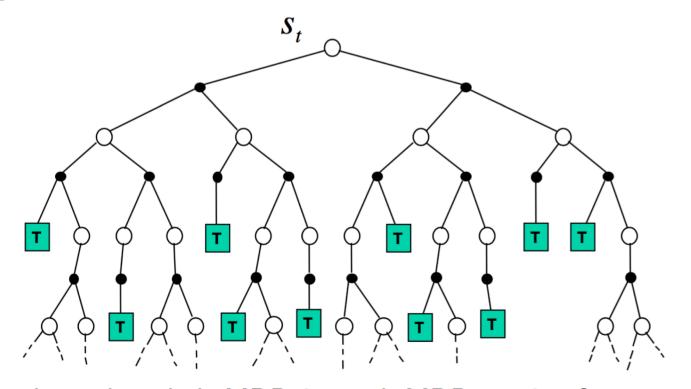
$$R_T = \begin{cases} 1 & \text{if Black wins} \\ 0 & \text{if White wins} \end{cases}$$

- Policy $\pi = \langle \pi_B, \pi_W \rangle$ selects moves for both players
- Value function (how good is position s):

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_T \mid S = s \right] = \mathbb{P} \left[\mathsf{Black \ wins} \mid S = s \right]$$
 $v_{*}(s) = \max_{\pi_B} \min_{\pi_W} v_{\pi}(s)$

Forward Search Using Simulations

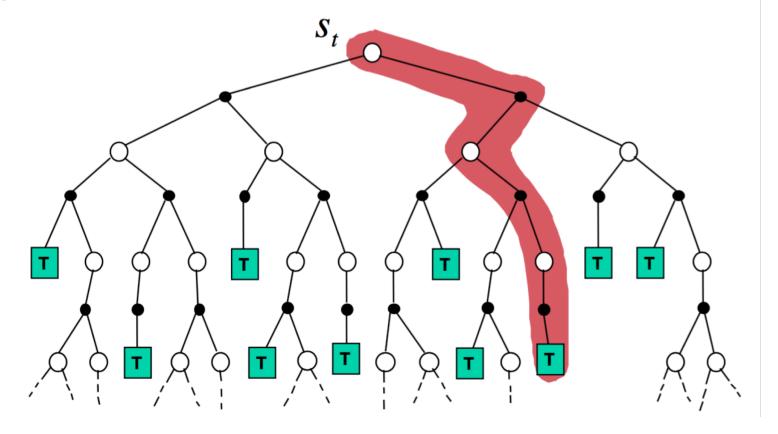
- Forward search algorithms select the best action by lookahead
- They build a search tree with the current state s_t at the root
- Using a model of the MDP to look ahead



No need to solve whole MDP, just sub-MDP starting from now

Forward Search Using Simulations

- Simulate episodes of experience from now with the model
- Apply model-free RL to simulated episodes



Forward Search Using Simulations

Simulate episodes of experience from now with the model

$$\{s_t^k, A_t^k, R_{t+1}^k, ..., S_T^k\}_{k=1}^K \sim \mathcal{M}_{\nu}$$

Apply model-free RL to simulated episodes

- We will look at two variants
 - Simple Monte Carlo Search
 - Monte Carlo Tree Search

Simple Monte Carlo Search

- lacksquare Given a model $\mathcal{M}_{
 u}$ and a simulation policy π
- For each action $a \in A$
 - Simulate K episodes from current (real) state s_t

$$\{s_t, a, R_{t+1}^k, S_{t+1}^k, A_{t+1}^k, ..., S_T^k\}_{k=1}^K \sim \mathcal{M}_{\nu}, \pi$$

Evaluate actions by mean return (Monte-Carlo evaluation)

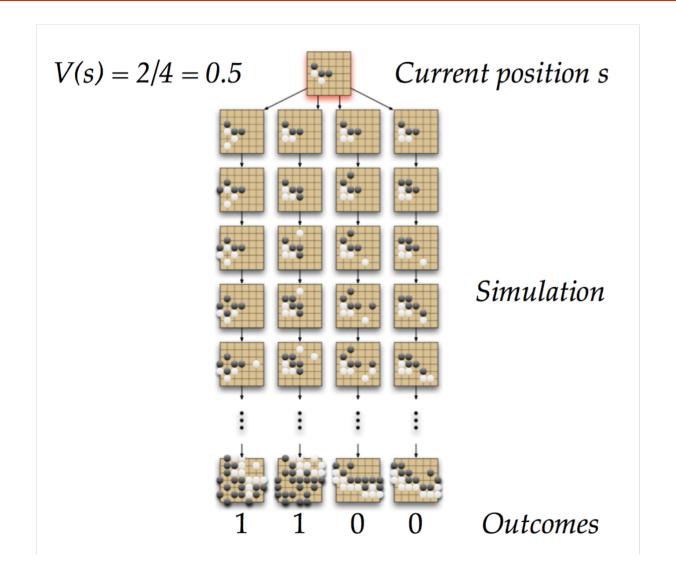
$$Q(s_t,a) = rac{1}{K} \sum_{k=1}^K G_t \stackrel{P}{
ightarrow} q_{\pi}(s_t,a)$$

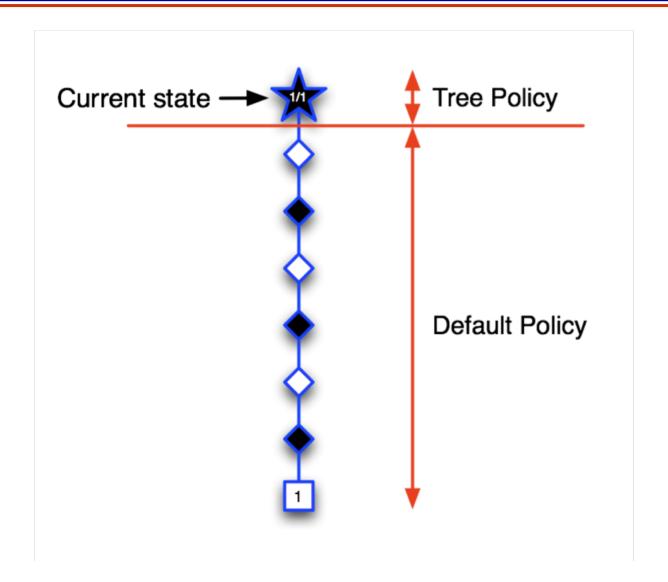
Select current (real) action with maximum value

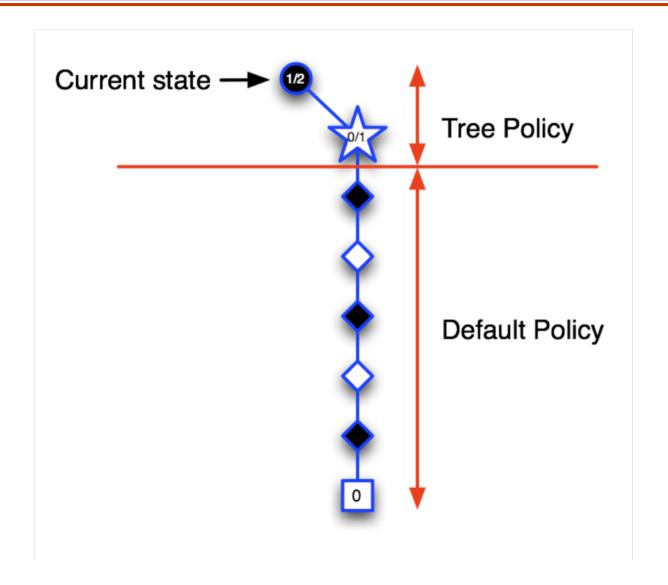
$$a_t = \operatorname*{argmax} Q(s_t, a)$$

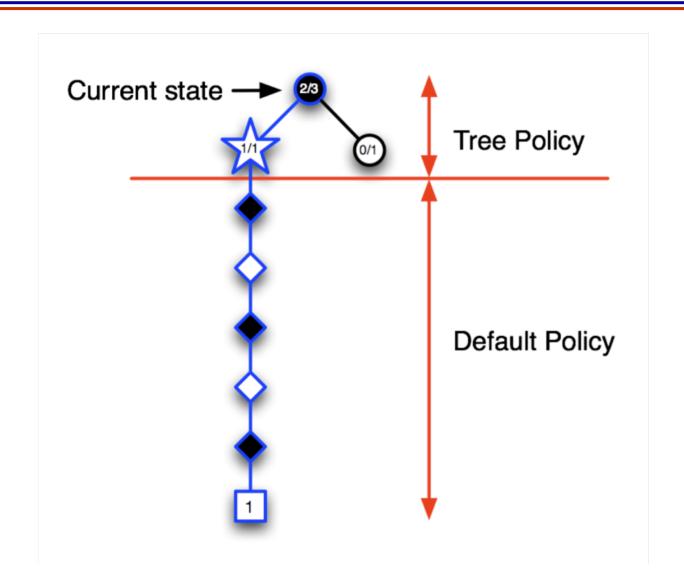
 $a \in \mathcal{A}$

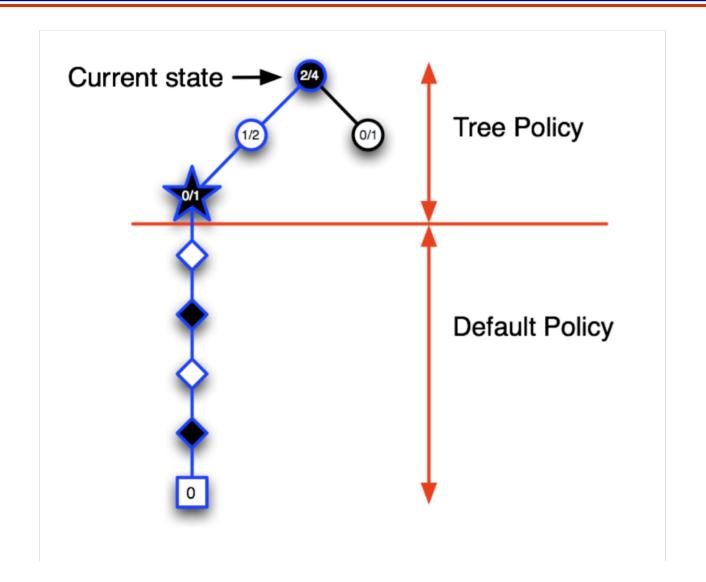
Simple Monte Carlo Search for Go

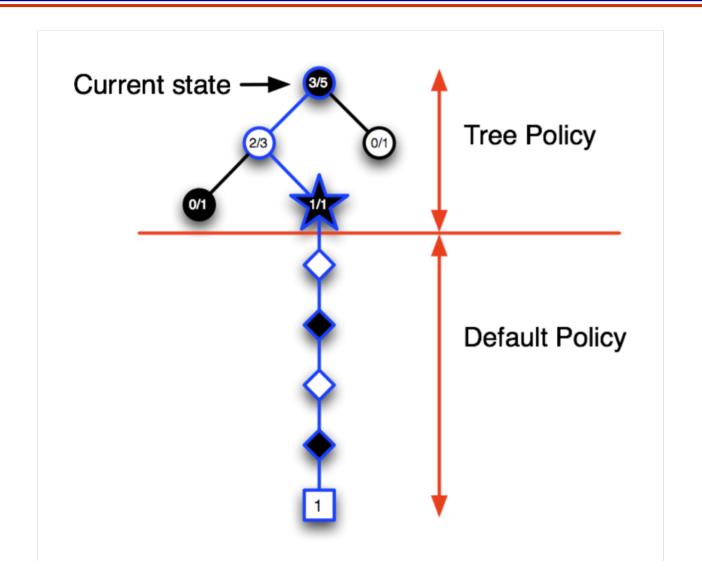












Monte Carlo Tree Search: Evaluation

- lacksquare Given a model \mathcal{M}_{ν}
- Simulate K episodes from current state s_t using current simulation policy π

$$\{s_t, A_t^k, R_{t+1}^k, S_{t+1}^k, ..., S_T^k\}_{k=1}^K \sim \mathcal{M}_{\nu}, \pi$$

- Build a search tree containing visited states and actions
- **Evaluate** states Q(s, a) by mean return of episodes from s, a

$$Q(s, a) = \frac{1}{N(s, a)} \sum_{k=1}^{K} \sum_{u=t}^{T} \mathbf{1}(S_u, A_u = s, a) G_u \stackrel{P}{\rightarrow} q_{\pi}(s, a)$$

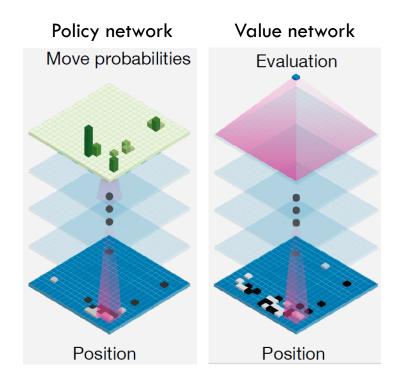
After search is finished, select current (real) action with maximum value in search tree

$$a_t = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s_t, a)$$

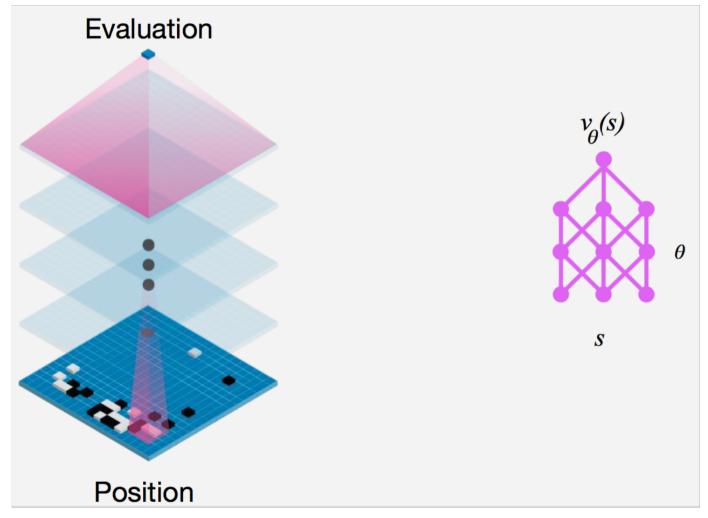
Monte Carlo Tree Search: Simulation

- In MCTS, the simulation policy π improves
- Each simulation consists of two phases (in-tree, out-of-tree)
 - Tree policy (improves): pick actions to maximise Q(S,A)
 - Default policy (fixed): pick actions randomly
- Repeat (each simulation)
 - **Evaluate** states Q(S, A) by Monte-Carlo evaluation
 - Improve tree policy, e.g. by ϵ greedy(Q)
- Monte-Carlo control applied to simulated experience
- Converges on the optimal search tree, $Q(S,A) \rightarrow q_*(S,A)$

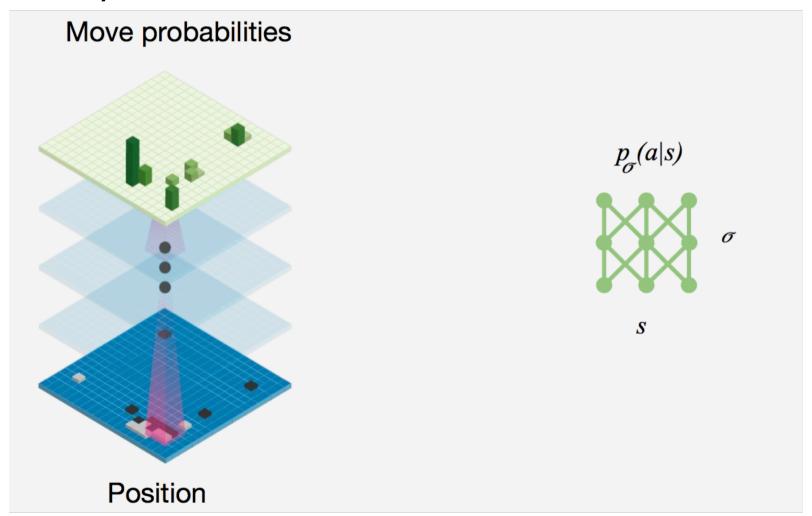
- Uses Monte Carlo tree search for action selection
- But uses a deep policy network and a deep value network to truncate the search tree

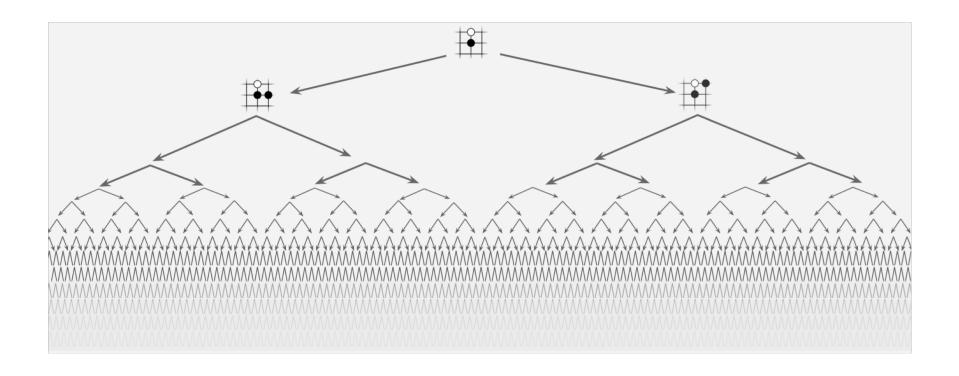


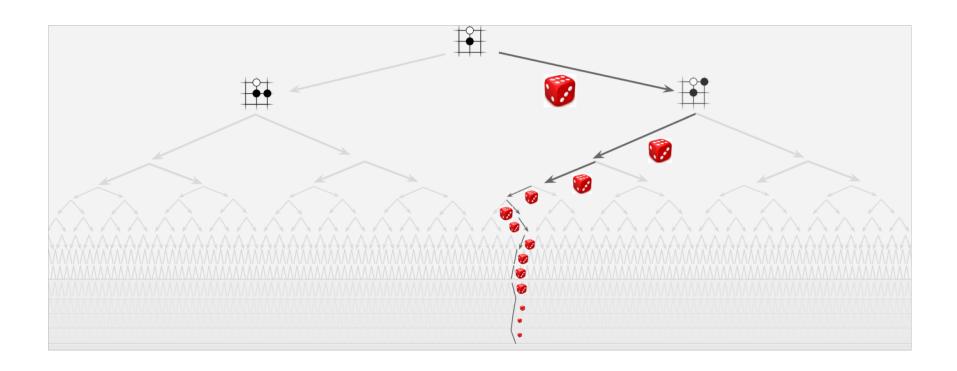
Value Network

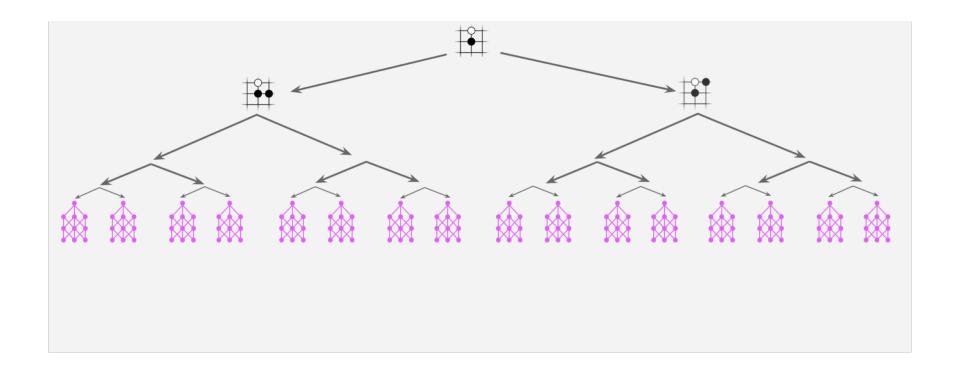


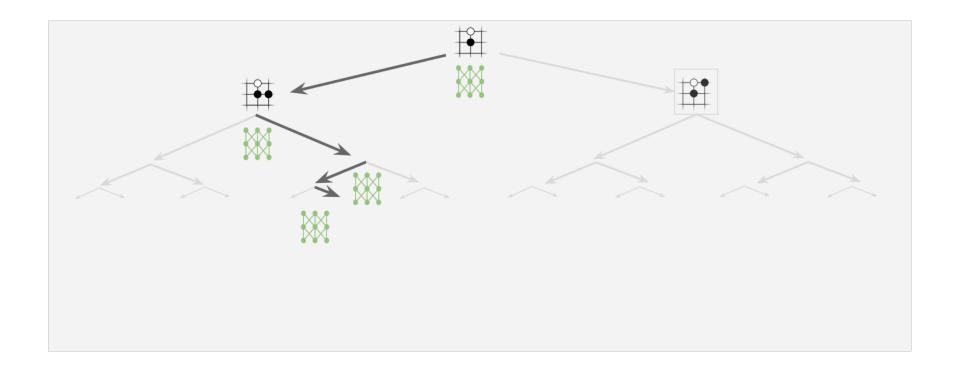
Policy Network



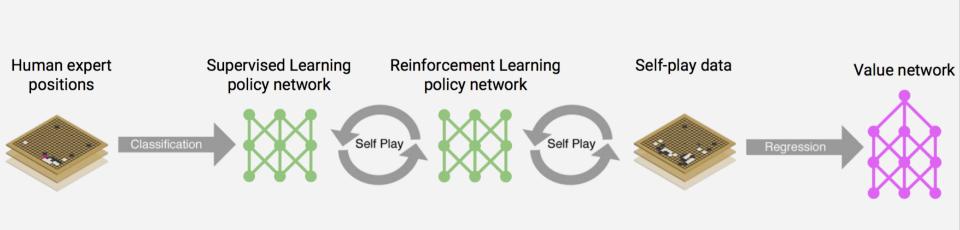








Training the two networks



The initial policy network

Policy network: 12 layer convolutional neural network

Training data: 30M positions from human expert games (KGS 5+ dan)

Training algorithm: maximise likelihood by stochastic gradient descent

$$\Delta\sigma \propto rac{\partial \log p_{\sigma}(a|s)}{\partial \sigma}$$

Training time: 4 weeks on 50 GPUs using Google Cloud

Results: 57% accuracy on held out test data (state-of-the art was 44%)

The final policy network

Policy network: 12 layer convolutional neural network

Training data: games of self-play between policy network

Training algorithm: maximise wins z by policy gradient reinforcement learning

$$\Delta\sigma \propto rac{\partial \log p_{\sigma}(a|s)}{\partial \sigma}z$$

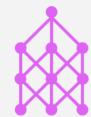
Training time: 1 week on 50 GPUs using Google Cloud

Results: 80% vs supervised learning. Raw network ~3 amateur dan.

The value network

Value network: 12 layer convolutional neural network

Training data: 30 million games of self-play



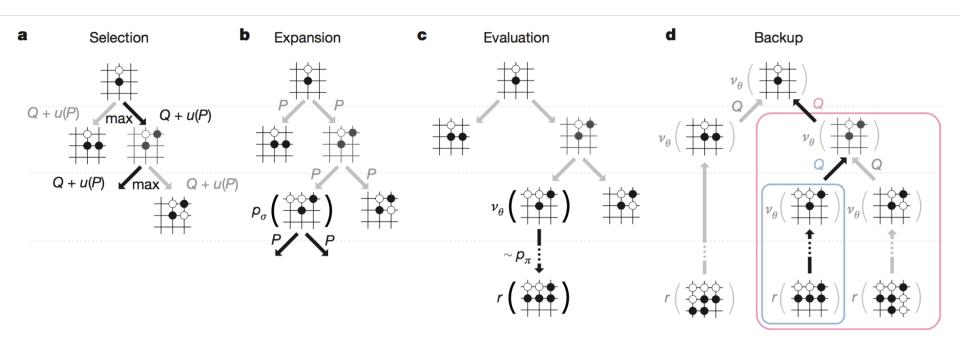
Training algorithm: minimise MSE by stochastic gradient descent

$$\Delta \theta \propto \frac{\partial v_{\theta}(s)}{\partial \theta}(z - v_{\theta}(s))$$

Training time: 1 week on 50 GPUs using Google Cloud

Results: First strong position evaluation function - previously thought impossible

The MCTS procedure



AlphaGo

AlphaGO 1202 CPUs, 176 GPUs, 100+ Scientists. Lee Se-dol
1 Human Brain,
1 Coffee.

Questions?

Summary

- RL is a great framework to make agents intelligent
 - Specify goals and provide feedback
 - Traditional methods are not scalable
- Function approximation lets us manage scale (number of states)
- Complements deep learning (that solves the perception problem) allowing practical Al agents
 - DQN: Experience replay, freezed Q-targets
 - AlphaGo: Monte Carlo Tree Search with approximations
- Many challenges still remain
 - Inefficient exploration, partial observability etc.

Appendix

Sample Exam Questions

- What is the purpose of function approximation?
- Can state value function be function approximated? Is the data in the replay memory i.i.d.?
- What is a search tree? Why is it used?
- How are simulations used in a forward search? (i.e., in a simple Monte Carlo search)
- What are some practical issues with deploying an RL agent in real world?

Additional Resources

- An Introduction to Reinforcement Learning by Richard Sutton and Andrew Barto
 - http://incompleteideas.net/sutton/book/the-book.html
- Course on Reinforcement Learning by David Silver at UCL (includes video lectures)
 - http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
- Research Papers
 - Deep RL collection: https://github.com/junhyukoh/deep-reinforcement-learning-papers
 - [MKSRVBGRFOPBSAKKWLH2015] Mnih et al. Human-level control through deep reinforcement learning. Nature, 518:529–533, 2015.
 - [SHMGSDSAPLDGNKSLLKGH2016] Silver et al. Mastering the game of Go with deep neural networks and tree search. Nature, 529: 484–489, 2016.

Recap of DQN Extensions

- Experience replay
 - Store transitions in replay memory D
 - Sample a subset from D
 - Optimize mean squared error between
 - $R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a, w)$ and $Q(S_t, A_t, w)$ on this data

- Fixed Q-targets
 - Fix parameter w in $R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a, w)$ for several steps

Cons of RL

- In general, Reinforcement Learning requires experiencing the environment many many times
- This is because it is a trial and error based approach

- May be impractical for many complex tasks
- Unless one has access to simulators where an RL agent can practice a billon+ times

RL Topics Not Covered

- Partial observability of states
- Monte Carlo methods
 - Example: ϵ -Greedy Policy Iteration with Monte Carlo estimation
- Temporal difference methods
 - Example: $SARSA(\lambda)$
- Policy function approximation
- Model based methods
- •