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Today’s Outline

• Value Function Approximation
• Deep Reinforcement Learning
• DQN for Atari Games
• AlphaGo for Go

2



Value Function 
Approximation
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The Q Learning Algorithm
• If we know the model
• Turn the Bellman Optimality Equation into an iterative update
• This is called Value Iteration

1Reference: David Silver, 2015
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• Choose next actions to ensure exploration
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The Q Learning Algorithm

• Initialize !, which is a table of size #states×#actions

• Start at state #$
• For % = 1,2,3, … .
• Take -. chosen uniformly at random with probability /
• Take argmax5∈7 !(9., :) with probability 1 − /
• Update Q: 

• ! 9., -. = ! 9., -. + >.(?.@$ + Amax5∈7 ! 9.@$, : − !(9., -.))

• Parameter / is the exploration parameter

• Parameter >. is the learning rate

• Under appropriate assumptions1, lim.→E! = !∗

Temporal difference error

1Reference: Christopher J. C. H. Watkins and Peter Dayan, 1992

Explore

Exploit



Tabular Q Learning is Not Enough
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1Reference: Krishnamurthy et al. https://arxiv.org/abs/1602.02722



Tabular Q Learning is Not Enough
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Function Approximation Recipe

• Use a deep network or any other function class to to 
represent 
• the value function, and/or 
• the policy, and/or
• the model

• Optimize this network end to end
• Example: 
• If the approximator is differentiable
• Use stochastic gradient descent

• Do the optimization incrementally or in batch mode

1Reference: David Silver, 2015
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Q Function Approximation
• Instead of storing #states×#action parameters in a table, 

we want to find more scalable ways to capture Q values
• Represent " using a function approximator with weights #:
" %, '; # ≈ "∗(%, ')

• We will bring back deep learning for this in the next lecture!

Linear

Decision tree

Neural network

Basis functions

Nearest neighbor

1Figure: David Silver
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Q Function Approximation
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Q Function Approximation
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Q Function Approximation: Example
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Q Function Approximation: Example
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Q Function Approximation: Another 
Perspective
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1Reference: David Silver, 2015

• Recall the Q Learning update

! "#, %# = ! "#, %# + (#(*#+, + -max1∈3 ! "#+,, 4 − !("#, %#))

• At optimality

• E *#+, + -max1∈3 ! "#+,, 4 − ! "#, %# = 0

• Intuitively, this tells us to minimize the empirical error 
between 
• *#+, + -max1∈3

! "#+,, 4, 9 and !("#, %#, 9)
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Q Function Approximation: Another 
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Example: Function Approximation Success 
(2013)

1Figure: Defazio Graepel, Atari Learning Environment



Issues with Function Approximation

• This can potentially be a nonlinear optimization over !
• Unless we use a linear approximator

• Can optimize incrementally or in batch
• Which is better? (we will answer this for DQN later)

• Naïve optimization may diverge and oscillate! This is 
because
• The data is not i.i.d.
• Policy/Value may be too sensitive to action choice (max 

over actions may completely change future trajectory)



Questions?
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• Value Function Approximation
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Deep Reinforcement 
Learning I: DQN
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Deep Reinforcement Learning

• Bringing in the success of deep perception/prediction 
architectures to function approximation

• We will look at two RL agents
• DQN (2013)
• AlphaGo (2016)

• Attempt to highlight some additional aspects that made 
these agents succeed so well in their respective domains
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Why Deep Representations?

1Reference: Julie Bernauer/Ryan Olson, Li Deng
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Why Deep Representations?

• CNN as the Function Approximator
• Captures two key properties
• Local connections with weight sharing
• Pooling for translation invariance 

Image

Pooling

Convolution

1Figure: Li Deng



DQN Plays Atari (2013)

1Figure: Defazio Graepel, Atari Learning Environment



DQN Architecture

1Reference: David Silver, 2015



DQN Extends Function Approximation

• DQN does Q learning with function approximation
• Uses a CNN as the approximator
• Extension
• Does batch optimization to update the weights
• Freezes targets over several steps



DQN Extends Function Approximation

1Reference: David Silver, 2015
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DQN Architecture

1Reference: David Silver, 2015



• DQN does not know the rules of the game a-priori
• No feature engineering or hyper-parameter tuning for DQN across games

1Figure: DeepMind

DQN Performance Results



Did the Extensions Help?
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1Reference: David Silver, 2015



Scalable Version: An Architecture by 
Google

• 100 actors, 100 learners, and  31 parameter holding 
machines. 

• Reduce compute from 14 days to 6 hours
• This is a 30x speedup using 200x compute power

1Reference: Nair, et al. Massively parallel methods for deep reinforcement learning. arXiv:1507.04296



Questions?
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Deep Reinforcement 
Learning I: AlphaGo
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1Reference:  DeepMind, March 2016

AlphaGo Conquers Go (2016)



The Game of Go
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1Reference:  DeepMind, IJCAI 2016

• Go is 2500 years old. Has about 10#$% states.
• Making it impossible for computers to evaluate who is 

winning



The Game of Go

50
1Reference:  DeepMind, IJCAI 2016

• Go was one of the only classic board games before March 
2016, where AI agents were not the best



The Forward Search Problem

• Recall the two sequential decision making problems
• Reinforcement learning
• Planning

• The forward search problem is a planning problem
• That is, we know the model of the world

• Useful in the case when we cannot plan everything 
beforehand

• Focus on what action to take next
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The Forward Search Problem for Go
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1Reference: David Silver, 2015



Forward Search Using Simulations
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1Reference: David Silver, 2015



Forward Search Using Simulations
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Forward Search Using Simulations
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1Reference: David Silver, 2015

• We will look at two variants
• Simple Monte Carlo Search
• Monte Carlo Tree Search



Simple Monte Carlo Search
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1Reference: David Silver, 2015



Simple Monte Carlo Search for Go
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1Reference: David Silver, 2015



Monte Carlo Tree Search for Go
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Monte Carlo Tree Search for Go
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Monte Carlo Tree Search for Go
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Monte Carlo Tree Search for Go
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Monte Carlo Tree Search for Go
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1Reference: David Silver, 2015



Monte Carlo Tree Search: Evaluation
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1Reference: David Silver, 2015



Monte Carlo Tree Search: Simulation
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1Reference: David Silver, 2015



AlphaGo Extensions

• Uses Monte Carlo tree search for action selection
• But uses a deep policy network and a deep value 

network to truncate the search tree
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Value networkPolicy network

1Figures: DeepMind



AlphaGo Extensions

• Value Network
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1Figures: DeepMind



AlphaGo Extensions

• Policy Network
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1Figures: DeepMind
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AlphaGo Extensions
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AlphaGo Extensions
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AlphaGo Extensions

• Training the two networks
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1Figures: DeepMind



AlphaGo Extensions

• The initial policy network
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1Figures: DeepMind



AlphaGo Extensions

• The final policy network
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1Figures: DeepMind



AlphaGo Extensions

• The value network
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1Figures: DeepMind



AlphaGo Extensions

• The MCTS procedure
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1Figures: DeepMind



AlphaGo
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1Figure: http://static1.uk.businessinsider.com/image/56e0373052bcd05b008b5217-810-602/



Questions?
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Summary

• RL is a great framework to make agents intelligent
• Specify goals and provide feedback
• Traditional methods are not scalable

• Function approximation lets us manage scale (number of states)

• Complements deep learning (that solves the perception problem) 
allowing practical AI agents
• DQN: Experience replay, freezed Q-targets
• AlphaGo: Monte Carlo Tree Search with approximations

• Many challenges still remain
• Inefficient exploration, partial observability etc.
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1Reference: See https://www.youtube.com/watch?v=WiTnlCjWFuw. Demo by Nvidia at CES 2017



Appendix
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Sample Exam Questions

• What is the purpose of function approximation?
• Can state value function be function approximated? Is 

the data in the replay memory i.i.d.?
• What is a search tree? Why is it used?
• How are simulations used in a forward search? (i.e., in 

a simple Monte Carlo search)
• What are some practical issues with deploying an RL 

agent in real world?
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Additional Resources
• An Introduction to Reinforcement Learning by Richard Sutton and 

Andrew Barto
• http://incompleteideas.net/sutton/book/the-book.html

• Course on Reinforcement Learning by David Silver at UCL 
(includes video lectures)
• http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

• Research Papers
• Deep RL collection: https://github.com/junhyukoh/deep-

reinforcement-learning-papers
• [MKSRVBGRFOPBSAKKWLH2015] Mnih et al. Human-level 

control through deep reinforcement learning. Nature, 
518:529–533, 2015.

• [SHMGSDSAPLDGNKSLLKGH2016] Silver et al. Mastering 
the game of Go with deep neural networks and tree search. 
Nature, 529: 484–489, 2016.
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Recap of DQN Extensions

• Experience replay
• Store transitions in replay memory !
• Sample a subset from !
• Optimize mean squared error between
• "#$% + 'max+∈- . /#$%, 1, 2 and .(/#, 4#, 2) on this data

• Fixed Q-targets
• Fix parameter 2 in "#$% + 'max+∈-

. /#$%, 1, 2 for 
several steps



Cons of RL

• In general, Reinforcement Learning requires 
experiencing the environment many many times

• This is because it is a trial and error based approach

• May be impractical for many complex tasks
• Unless one has access to simulators where an RL agent 

can practice a billon+ times
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RL Topics Not Covered

• Partial observability of states
• Monte Carlo methods 
• Example: !-Greedy Policy Iteration with Monte 

Carlo estimation
• Temporal difference methods
• Example: SARSA(")

• Policy function approximation
• Model based methods
• …
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